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1 Introduction

Muon-antimuon pair production in electron-positron annihilation is one of the most funda-

mental QED processes. Its amplitude in the Born approximation is a perfect starting point

for first acquaintance with perturbative calculations which is witnessed by many textbooks

on quantum field theory. What is more important, this process plays a crucial role in any

experiment with electron-positron colliders. Besides being used for determining luminosity,

it also gives a large background for more rare events including possible manifestations of

New Physics. The Born approximation is not sufficient for these purposes and one needs

to take into account higher orders of perturbation theory in the fine structure constant

α ≈ 1/137.036. The NLO corrections to this process have been calculated long ago in

Refs. [1, 2]. For the precision of the planned collider experiments the NNLO precision is

required, see, e.g., recent review [3] and references therein.
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We stress that the exact account of the produced lepton massmℓ (ℓ = µ, τ) is important

not only for the production of τ -leptons, but also for that of muons. In particular, this

account is required for the correct measurement of the cross section of e+e− → π+π−.

The measurement of this cross section is of great importance, especially at relatively low

energies, as it contributes significantly to hadron vacuum polarization correction to gµ− 2.

As the muon mass is of the same order of magnitude as that of pion, the exact account for

this mass is necessary both for precise luminocity measurements and for the backgraound

seperation.

In contrast, the electron mass m can always be considered as a small parameter. Even

for muon production on the threshold the power corrections with respect to this parameter

are suppressed as (me/mµ)
2 ∼ 2.3 × 10−5 and can be safely neglected. In particular, in

Refs. [1, 2] these power corrections have been omitted. However, due to the collinear

divergences which appear in the amplitude with massless electron, one can not simply put

m to zero. Note that for QCD calculations one usually does put the light quark mass to

zero. But this is entirely due to the fact, that the collinear divergences disappear when

the hard cross sections are convoluted with parton distribution functions of colorless (zero

color charge) hadrons. Meanwhile, in QED processes with the charged particles involved

the collinear divergences must be tamed by the account of those particles’ masses, even if

they are small, to give mass logarithms.

The important prerequisite of NNLO calculation is the availability of the corresponding

two-loop master integrals. In Refs.[4, 5] the two-loop master integrals for the eµ → eµ

process were calculated at zero electron mass. Note that this process is a cross-channel

of e+e− → ℓ+ℓ−. However the analytical continuation to the annihilation channel is not

trivial due to the lack of Euclidean kinematic region, [6], cf. Ref. [7], where the expressions

for on-shell massless nonplanar double box in different channels can not be obtained by

analytical continuation due to the same reason1. Nevertheless, in Ref. [8] such an analytical

continuation was done numerically and the contribution to differential cross section from

the spin-averaged interference of two-loop amplitudes with the Born amplitude for massless

electron was obtained. As expected, the result contained soft and collinear divergences.

Meanwhile, as we explain above, the observable cross sections for light charged particles

do not contain the collinear divergences but necessarily contain the mass logarithms.

The goal of the present paper is to provide the analytical results for the two-loop QED

amplitudes of the e+e− → ℓ+ℓ− process which contribute to C-even part of the differential

cross section. We show that for this contribution the electron mass should be taken into

account only in the one- and two-loop form factors and polarization operator, which are

known, with some reservations, exactly in this parameter for a long time. In what follows,

we will talk about the process e+e− → µ+µ− for definiteness, but the same consideration

with some obvious modifications is also valid for the production of τ -leptons.

1In that paper the result for different regions was obtained by considering the double box with one

off-shell leg, so that the parameters s, t, u were independent and the Euclidean region s, t, u < 0 existed.
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Figure 1: 1γ-, 2γ- and 3γ-reducible diagrams that contribute to e+e− → µ+µ− process

up to two loops. First set contains one- and two-loop corrections to the electron and muon

form factors and to the photon self-energy, Le + Lµ + Lγ ⩽ 2. In the second diagram

Le + Lγ + Lµ ⩽ 1.

2 General consideration

We consider the process

e−(p1) + e+(p2) −→ µ−(q1) + µ+(q2) . (2.1)

and introduce conventional invariants

s = (p1+p2)
2 = (q1+q2)

2 , t = (p1−q1)
2 = (p2−q2)

2 , u = (p1−q2)
2 = (p2−q1)

2 . (2.2)

The momenta and invariants satisfy usual constraints

p1 + p2 = q1 + q2 , p21 = p22 = m2 , q21 = q22 = M2 , s+ t+ u = 2m2 + 2M2 , (2.3)

where m = me and M = mµ are the electron and muon masses, respectively. All through

the paper we will also use the notation β =
√

1− 4M2

s which is the muon velocity in c.m.

frame.

We will use the following prescription for the dimensionally regularized loop integra-

tion:
d4l

(2π)4
→ ddl

(2π)d
=

(
eγE

4π

)ϵ ddl

(2π)d
=

1

(4π)2
eϵγEddl

πd/2
, (2.4)

where γE = 0.577 . . . is the Euler constant, d = 4−2ϵ. Consequently, in the formulae below

we will use notations

ddl =
(
eγE
4π

)ϵ
ddl , dd−1l =

(
eγE
4π

)ϵ
dd−1l . (2.5)

We use dimensional regularization to regularize both the ultraviolet and infrared diver-

gences.

The diagrams which contribute to the e+e− → µ+µ− amplitude, in addition to the

number of loops L, can be conveniently graded by the minimal number n of the photon lines

which should be cut to split the diagram into two parts, one containing initial electron and
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positron, another — final muon and antimuon. We will call such a diagram nγ-reducible.

Obviously, we have diagrams with L ⩾ n− 1 ⩾ 0. Thus, the full amplitude reads

A =
∞∑

L=0

aL+1
L+1∑
n=1

A(L)
nγ , (2.6)

where a = α
4π (α ≈ 1/137.036 is the fine structure constant) and we denote by aLA

(L)
nγ the

L-loop nγ-reducible part of the amplitude.

Up to two loops we have 1γ-, 2γ-, and 3γ-reducible diagrams, see Fig. 1. The diagrams

with two photons describe the production of muons in C-even state, while those with one

or three photons correspond to the muon production in C-odd state. In the total cross

section the interference between C-odd and C-even diagrams vanishes. While it is not so

in the differential cross section, the interference between C-odd and C-even diagrams is an

odd function of c = cos θ, where θ is a scattering angle. Therefore, in the experimental

setup it is usually possible to separate the C-even part of the differential cross section from

the C-odd one. The former comes from the interference of C-odd diagrams with C-odd

ones or from that of C-even diagrams with C-even ones.

Up to two loops the cross section reads

dσ = |A|2 dΦ = dσC-even + dσC-odd, (2.7)

dσC-even = a2
[
|A(0)

1γ |2 + 2ℜA(1)
1γ A

(0)∗
1γ a+

(
|A(1)

1γ |2 + |A(1)
2γ |2

+ 2ℜA(2)
1γ A

(0)∗
1γ + 2ℜA(2)

3γ A
(0)∗
1γ

)
a2
]
dΦ, (2.8)

dσC-odd = 2a3ℜ
[
A(1)

2γ A
(0)∗
1γ +

(
A(1)

2γ A
(1)∗
1γ +A(2)

2γ A
(0)∗
1γ

)
a
]
dΦ . (2.9)

Our normalization corresponds to the expression

A(0)
1γ =

1

s
U(q1)γ

µV (q2) v̄(p2)γµu(p1)

for the Born amplitude, so that the phase space dΦ reads (we omit
√

1− 4m2
e/s in the

denominator)

dΦ =
8

s2
δ(p1 + p2 − q1 − q2)

dd−1q1 d
d−1q2

(2π)d−6
. (2.10)

In the present paper we will consider only the contributions to C-even part of the dif-

ferential cross section, which is, therefore, an even function of c = cos θ. The contributions

to the C-odd part of the cross section (charge asymmetry) will be considered in a separate

paper.

Note that some diagrams with the insertion of hadronic vacuum polarization also

contribute at relative orders α and α2. Although these contributions can not be calculated

from the first principle, they can, in principle, be expressed as a weighted integral of

imaginary part of hadronic vacuum polarization function Πhadr(s). For the C-even part

of the differential cross section up to NNLO these are the 1γ-reducible diagrams only.

We present the correspoding formulae when discussing the vacuum polarization and form

factors contribution.
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2.1 Collinear divergences and account of electron mass

We are now in position to analyze which diagrams develop collinear divergence at zero

electron mass. Let us consider the gauge-invariant sum of diagrams with massless electron

which can be represented in the form

S =

∫
dl1 . . . dlnδ

(
p1 + p2 −

∑
lk

) jµn...µ1Jµn...µ1

P 2
n−1 . . . P

2
1 l

2
n . . . l

2
1

. (2.11)

Here

jµ1...µn = v̄γµnP̂n−1γ
µn−1 . . . P̂1γ

µ1u, Pk = p1 −
k∑

r=1

lr, (2.12)

and Jµn...µ1 is a “conserved current” satisfying

lµk
k Jµn...µ1 = 0, (k = 1, . . . , n) (2.13)

The collinear divergences may come from the integration region where l1, . . . , lk∝∼ p1 and/or

lr, . . . , ln∝∼p2 with 0 ⩽ k < r ⩽ n, where ∝∼ denotes approximate collinearity. However, it is

easy to check that in this region the numerator in Eq. (2.11) is suppressed due to the Dirac

equations p̂1u = v̄p̂2 = 0 and transversality condition (2.13). Therefore, in such diagrams

the collinear divergences do not appear.

These diagrams can be conveniently described as the ones which do not contain a

photon line which connects two points on the electron line. We stress, that the above

argumentation concerns the whole gauge-invariant set of the diagrams, which guarantees

the condition (2.13) to be fulfilled. The individual diagrams described as above may still

exhibit collinear divergences, but they cancel in the gauge-invariant sum.

Note that the diagrams containing a photon line which connects two points on the

electron line can not be represented in the form (2.11) with Jµn...µ1 satisfying Eq. (2.13).

Such are the diagrams in Fig. 1 from sets A1 and A2 with Le > 0. Therefore, only

for those diagrams we have to keep the electron mass nonzero. A good news from the

above consideration is that we already have all ingredients for the calculation of dσC-even

at NNLO.2 Indeed, the diagrams of the set A1γ are known exactly in the masses of both

particles. The two-loop diagrams of the set A2γ do not enter dσC-even. Finally, the diagrams

of the set A3γ are expressed in terms of zero electron mass master integrals calculated in

Ref. [6].

2.2 Soft divergences

In the previous subsection we have discussed the collinear divergences of the amplitudes.

But there also soft divergences. In a seminal paper [10] it was shown that these divergences

factorize in amplitude as

A = eaVH , (2.14)

2Note, that the master integrals of the set A1γ with l̃e = 1 with the account of the electron mass were

recently calculated in Ref. [9] thus paving a way to the calculation of dσC-odd at NNLO.

– 5 –



where H is the so called hard massive amplitude, which is finite at d = 4, and the factor

eaV absorbs all soft singularities. The function V is defined as3

V = −
∑
i<j

QiQjV (pi, pj) , (2.15)

where the sum runs over all pairs of incoming and outgoing particles, all momenta pi are

considered to be incoming, and Qi is the charge, in units of |e|, of i-th particle multiplied

by ±1 for incoming/outgoing particle, respectively. The function V (pi, pj) is defined as4

V (pi, pj) = −8π2

∫
ddk

i (2π)d
1

k2 + i0

(
2pi − k

k2 − 2kpi + i0
+

2pj + k

k2 + 2kpj + i0

)2

. (2.16)

The explicit form of this function up to ϵ0 can be found in the Appendix A.

For our present setup we have

V = VII + VFF + VIF = V (p1, p2) + V (−q1,−q2) + 2[V (p1,−q1)− V (p1,−q2)]. (2.17)

The advantage of using the hard amplitudes H is that we can put ϵ = 0 in them. One

might argue that without knowing the higher-order ϵ-expansion terms in H we will not be

able to reconstruct the amplitude A via Eq. (2.14). This is true, but we still will be able

to use the hard amplitudes to obtain the observable differential cross section inclusive with

respect to soft photons. Namely, it is well known [10, 12] that the radiation of soft photons

factorizes in such a cross section and we have

dσincl(ω0) = eaW(ω0)dσ, (2.18)

where dσ = |A|2 dΦ is the “elastic” cross section, ω0 is the maximal energy of each soft

photon. The function W(ω0) reads

W(ω0) = −
∑
i<j

QiQjW (pi, pj |ω0) , (2.19)

where

W (pi, pj |ω0) = −16π2

∫
ω<ω0

dd−1k

(2π)d−12ω

(
pi

k · pi
− pj

k · pj

)2

(2.20)

The explicit form of slightly differently defined soft real function was obtained in Ref. [13]

up to ϵ0. For reader convenience we present the corresponding formulas for our present

definition (2.20) in Appendix A.

For our present setup, similar to Eq. (2.17) we have

W = WII +WFF +WIF = W (p1, p2) +W (−q1,−q2) + 2[W (p1,−q1)−W (p1,−q2)].

(2.21)

3Note that, in contrast to QCD, in QED the perturbative expansion in a of V contains only one-loop

contribution.
4Note, that for convenience, we have introduced the factor

(
eγ

4π

)ϵ

compared to the definition of Ref.

[11].
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The important point is that the divergence-free inclusive cross section is an observable, in

contrast to the “elastic” cross section. Written in terms of hard amplitude, it reads

dσincl(ω0) = eaW(ω0)+2aℜV |H|2 dΦ. (2.22)

Now, although each function W(ω0) and 2ℜV contains divergences, their sum is finite at

ϵ = 0. Thus we conclude that all three quantities, H, W(ω0) and V, are sufficient to be

known up to ϵ0 in order to construct the observable inclusive cross section.

The decomposition (2.17) allows us to define the finite hard contributions alH(l)
nγ such

that

aA(0)
1γ + a2A(1)

1γ + a3A(2)
1γ +O(a4) = ea(VII+VFF )

[
aH(0)

1γ + a2H(1)
1γ + a3H(2)

1γ +O(a4)
]
(2.23)

aA(0)
1γ + a2A(1)

2γ + a3A(2)
3γ +O(a4) = eaVIF

[
aH(0)

1γ + a2H(1)
2γ + a3H(2)

3γ +O(a4)
]

(2.24)

These two equations define amplitudes A(0)
1γ , A

(1)
1γ , A

(1)
2γ , A

(2)
1γ , A

(2)
3γ which enter the C-even

cross section (2.8) in terms of the corresponding hard amplitudes H(0)
1γ , H

(1)
1γ , H

(1)
2γ , H

(2)
1γ ,

H(2)
3γ and vice versa. Let us write the explicit relations

H(0)
1γ = A(0)

1γ ,

H(1)
1γ = A(1)

1γ −
(
VII + VFF

)
A(0)

1γ ,

H(1)
2γ = A(1)

2γ − VIFA(0)
1γ ,

H(2)
1γ = A(2)

1γ −
(
VII + VFF

)
A(1)

1γ + 1
2

(
VII + VFF

)2A(0)
1γ ,

H(2)
3γ = A(2)

3γ − VIFA(1)
2γ + 1

2

(
VIF

)2A(0)
1γ (2.25)

In each of thus defined quantities the soft singularities cancel. In the C-odd cross section

there enters one more amplitude, A(2)
2γ . Let us present for completeness the definition of

the corresponding hard amplitude H(2)
2γ :

H(2)
2γ = A(2)

2γ − VIFA(1)
1γ − (VII + VFF )A(1)

2γ + VIF (VII + VFF )A(0)
1γ . (2.26)

It is obvious that the expressions of A in terms of H are given by the same formulae with

the replacement H ↔ A, V• → −V•.

Moreover, it is easy to see that the cancellation of soft divergences can be further

specialized. Namely, if we introduce notation A(L)
nγ,Le,Lγ ,Lµ

to denote the diagrams with

fixed parameters Le, Lγ , Lµ, see Fig. 1, we can define, e.g.

H(2)
1γ,1,0,1 = A(2)

1γ,1,0,1 − VIIA(1)
1γ,0,0,1 − VFFA(1)

1γ,1,0,0 + VIIVFFA(0)
1γ,0,0,0, (2.27)

H(2)
2γ,1,0,0 = A(2)

2γ,1,0,0 − VIFA(1)
1γ,1,0,0 − VIIA(1)

2γ,0,0,0 + VIFVIIA(0)
1γ,0,0,0 . (2.28)

which are also finite at ϵ = 0.
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3 Tensor decomposition

Since our goal is to obtain the NNLO cross section including the polarization effects, we

have to determine the linearly independent (spin-)tensor structures which may appear in

the amplitude. Then the coefficients in front of those tensor structures, the invariant

amplitudes, will determine the differential cross section for any polarization state of the

particles. We will follow the most radical approach by constructing the full set of possible

tensor structures in d dimensions. The same approach was used in Ref. [11], which lead the

authors to 7 tensor structures of which one was evanescent in d = 4. For our present four-

fermion amplitude we observe an infinite hierarchy of tensor structures which is constructed

of antisymmetric products of γ-matrices for each of the two fermion chains contracted with

each other over Lorentz indices. More precisely, we have the following basis

Tn,j,i = UTj,µ1...µnV v̄tµ1,...,µn

i u,

tµ1...µn
0 = γ[µ1 . . . γµn] , tµ1...µn

1 = (q1 − q2)µγ
[µγµ1 . . . γµn] ,

Tµ1...µn
0 = γ[µ1 . . . γµn] , Tµ1...µn

1 = (p1 − p2)µγ
[µγµ1 . . . γµn] , (3.1)

where

γ[µ1 ...γµn] =
1

n!

∑
σ∈Sn

(−1)|σ|γµσ1 . . . γµσn (3.2)

denotes the anti-symmetrized product of matrices and u = u(p1), v = v(p2), U = U(q1), V =

V (q2) are the Dirac spinors of electron, positron, muon, and antimuon, respectively.

In what follows we will enumerate tensor structures using one index as follows

Tn,j,i = T4n+2j+i (3.3)

Given the variation range of i and j indices, see Eq. (3.1), it is obvious that this notation

is unambiguous. Despite the fact that the basis of tensor structures is infinite, at each loop

level only a finite subset of structures Tk may appear as the maximal number of γ-matrices

in each fermion chain is restricted. In particular, for two loops there may be up to 5

gamma-matrices in each fermion chain. Consequently, there are only 21 tensor structures

{T0, . . . , T20} = {T0,0,0, . . . , T5,0,0} which may appear. Up to two loops the amplitude can

be expanded as

A =
20∑
k=0

AkTk, (3.4)

where the scalar functions Ak are the invariant amplitudes. In order to find them, we

calculate the matrix

Mk,k′ = ⟨TkT ∗
k′⟩, (3.5)

where ⟨. . .⟩ denotes the averaging over the spin variables:

⟨UΓ1V v̄Γ2u(UΓ3V vΓ4u)
∗⟩

= Tr[(q̂1 +M)Γ1(q̂2 −M)γ0Γ†
3γ

0]× Tr[(p̂2 −m)Γ2(p̂1 +m)γ0Γ†
4γ

0]/(Tr 1)2 . (3.6)
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Then we have

Ak =
∑
k′

⟨AT ∗
k′⟩

(
M−1

)
k′k

(3.7)

The invariant amplitudes Ak determine the differential cross section for any polarization

states of the particles. In particular, the unpolarized cross section reads

dσ = AkMkk′A
∗
k′dΦ (3.8)

3.1 Invariant amplitudes at d = 4.

Of course, at d = 4 we have yet fewer possible tensor structures. In particular, the tensor

structures with more than 4 antisymmetrized gamma-matrices vanish identically. This

leaves us with 17 tensor structures of which, due to 4-dimensional algebra of gamma-

matrices only 8 are linearly independent. Those eight structures can be chosen as

{T0, . . . , T7} , (3.9)

while the remaining elements can be represented as

T8 = − 1

2(M4 − tu)

(
(s− 4M2)(t− u)T0 + 2M(s− 4M2)T2 + (t− u)T7

)
,

T9 =
2M

t− u
T11 = −2M

3
T12 = −4M

s
(T3 + (t− u)T4) ,

T10 =
M

(M4 − tu)

(
(t− u)2T0 + 2M(t− u)T2 + sT7

)
,

T15 =
u− t

4
T16 =

3

2

t− u

M4 − tu

(
(t− u)2T0 + 2M(t− u)T2 + sT7

)
,

T13 = T14 = T17 = T18 = T19 = T20 = 0 . (3.10)

In the above relations we have neglected the electron mass. The number of elements in (3.9)

can be easily understood as the number of independent helicity amplitudes Hλe−λe+λµ−λµ+

when the P -parity is conserved. Namely, we have

H++++
P
= H−−−−, H+++−

P
= H−−−+, H++−+

P
= H−−+−, H++−−

P
= H−−++, (3.11)

H+−++
P
= H−+−−, H+−+−

P
= H−+−+, H+−−+

P
= H−++−, H+−−−

P
= H−+++ (3.12)

Then, if we take into account also the C-parity conservation, we have additional identities

H+++−
C
= H++−+, H+−++

C
= H+−−− , (3.13)

which leaves us with 6 independent amplitudes

H++++, H+++−, H++−−, (3.14)

H+−++, H+−+−, H+−−+ . (3.15)

Finally, for massless electron we have helicity conservation requirement which forbids the

amplitudes on the first row of the above equation thus leaving us with three amplitudes.
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Luckily, our choice of tensor structures Tk has secured that we observe exactly three

nonzero coefficients A1, A3, A4 in our results in front of

T1 = UV v̄(q̂1 − q̂2)u, (3.16)

T3 = U(p̂1 − p̂2)V v̄(q̂1 − q̂2)u, (3.17)

T4 = UγµV v̄γµu. (3.18)

We finish this Section by noting that all above considerations are equally valid for hard

amplitudes H. In particular,

H = H1T1 +H3T3 +H4T4 . (3.19)

4 1γ-reducible diagrams

We can represent the contribution of A1γ diagrams in Fig. 1 in the form

A1γ =
a

s [1−Πtot(s)]
U (Γµ)(µ) V v̄(Γµ)(e)u , (4.1)

Here Πtot(s) is one-photon irreducible polarization operator and the vertices (Γµ)(e,µ) are

expressed via form factors Fk,(e,µ) as

(Γµ)(µ) = γµF1,(µ)(s)−
σµνPν

2M
F2,(µ)(s), (4.2)(

Γµ

)
(e)

= γµF1,(e)(s) +
σµνP

ν

2m
F2,(e)(s), (4.3)

where P = p1 + p2 = q1 + q2, so that P 2 = s, and σµν = γ[µγν] = 1
2 [γ

µγν − γνγµ].

The electron Pauli form factor F2,(e)(s) ∼ O(m2/s) can be neglected within our preci-

sion.

Using the identity

Uγ[µγν]PνV = U [−2Mγµ + qµ1 − qµ2 ]V , (4.4)

we obtain

A1γ = A1,1γT1 +A4,1γT4, (4.5)

A1,1γ = −
aF1,(e)F2,(µ)

2Ms [1−Πtot(s)]
(4.6)

A4,1γ =
aF1,(e)(F1,(µ) + F2,(µ))

s [1−Πtot(s)]
(4.7)

Note that the tensor structure T3 does not appear in 1γ-reducible contributions. It

is easy to understand from the fact that such diagrams have definite parity (negative)

with respect to charge conjugation of electron-positron, or muon-antimuon, wave functions

separately.
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4.1 Polarization operator

The polarization operator can be written as a sum of lepton and hadron parts

Πtot(q
2) =

∑
ℓ

Πℓ(q
2) + Π(had)(q2) . (4.8)

We define the coefficients Π
(l)
ℓ of the perturbative expansion of Πℓ as

Πℓ(q
2) =

∑
l

alΠ
(l)
ℓ (q2) . (4.9)

Up to two loops the leptonic polarization operator is universal, i.e.

Πℓ(q
2) = Π(q2/m2

ℓ ) , (4.10)

where the function Π(x) does not depend on the flavor. Two-loop polarization operator

Π(x) has been known since the work of Kallen and Sabry [14]. The simplest form was

recently presented in Ref. [15]. The asymptotic for x ≫ 1 can be easily obtained from the

known result.

Concerning the hadronic polarization operator Π(had)(s), it is at present not possible

to obtain it from the first principles. Its imaginary part ℑΠ(had)(s) is related to the

observable inclusive hadronic cross section e+e− → hadrons and real part can be obtained

via the dispersion relation

Π(had)(q2) =
q2

π

∞∫
s0

dsℑΠ(had)(s)

s(s− q2)
. (4.11)

In the leading order in α the relation between ℑΠ(had)(s) and the standard quantity

R(s) =
σe+e−→hadrons

σe+e−→µ+µ−,Born,mµ=0
(4.12)

reads

ℑΠ(had)(s) = −α

3
R(s) . (4.13)

However, for our present purpose we need Πh(q
2) with the account of the first correction

in α. With this precision its relation with what is called σe+e−→hadrons in the experiments

needs to be scrutinized. We do not consider this question in the present paper.

4.2 Form factors

Similar to the polarization operator, the form factors can also be represented as

Fk,(ℓ),tot(q
2) = Fk,(ℓ)(q

2) + F
(had)
k,(ℓ) (q2) . (4.14)

where the term F
(had)
k,(ℓ) stands for the contribution of the diagram with hadronic vacuum

polarization insertion.
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q

p1 p2

(0) (1b) (1m) (2a) (2b) (2c) (2d) (2e) (2f)

Figure 2: Diagrams for unrenormalized form factors up to two loops. The external legs

are labeled as on the first diagram. The last diagram depicts the contribution with another

lepton loop. The diagram (1m) is required to construct the renormalized form factors. The

dot on the fermion line on this diagram stands for the fermion-fermion vertex −im.

We define the coefficients F
(l)
k,(i) of the perturbative expansion of the form factors via

Fk,(i) =
∑
L

aLF
(L)
k,(i). (4.15)

Note that we use dimensional regularization to regularize both the ultraviolet and the

infrared divergences. While the former disappears after renormalization, the latter still

remains. Therefore, when defining the perturbative expansion we should pay attention to

the factors which tend to unity ϵ goes to zero. In particular, our definition of dimensionally

regularized loop integration measure (2.4) differs from that used in Ref. [16, 17]. One should

remember this fact when making the comparison of the results. We have independently

obtained the expansion of the form factors up to two loops, including the contribution of

the two-loop diagram with another species lepton loop. The corresponding diagrams are

depicted in Fig. 2.

We have found an agreement with the results of Refs. [16, 17]. Note, however, that

the published expressions in those papers contain typos both in the results for the master

integrals and in the results for the renormalized form factors and we thank the authors for

sending us their results in an electronic form which we actually used to make a comparison.

Concerning the contribution to the form factors of the lepton loop of another species, we

have obtained the expressions valid for all kinematic regions. In Ref. [18] this contribution

has been considered in one kinematic region. We have compared our results for this region

with those of Ref. [18] and found an agreement apart from the opposite sign. Details of

our calculation of this contribution are presented in the Appendix B.

Let us define the “hard” form factors FH,k,(i) as

FH,1,(e) = e−aVIIF1,(e), FH,2,(e) = e−aVIIF2,(e), (4.16)

FH,1,(µ) = e−aVFFF1,(µ), FH,2,(µ) = e−aVFFF2,(µ) (4.17)

Then from Eqs. (4.5) and (2.14) we have the following expressions for the contribution

of 1γ-reducible diagrams into hard invariant amplitudes H1 and H4:

H1,1γ = −
aFH,1,(e)FH,2,(µ)

2Ms [1−Πtot(s)]
(4.18)

H4,1γ =
aFH,1,(e)(FH,1,(µ) + FH,2,(µ))

s [1−Πtot(s)]
(4.19)
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Figure 3: Contribution of hadronic vacuum polarization to form factors.

The terms F
(had)
k,(ℓ) in Eq. (4.14), which stand for the contribution of the diagram in Fig. 3,

can not be calculated from the first principles. However, using Eq. (4.11) we can represent

them as

F
(had)
k,(ℓ) (s) = −4a

π

∫ ∞

s0

ds1
s1

Kk

(
s
m2

ℓ
, s1
m2

ℓ

)
ℑΠ(had)(s1) (4.20)

where the integrals kernels K1,2 are expressed in terms of the dilogarithm function. Their

explicit forms are presented in Appendix C.

Note that within our precision, in these contributions we can use Eq. (4.13) to obtain

the numerical estimate for F
(had)
k,(ℓ) from the experimental data for σe+e−→hadrons.

5 2γ- and 3γ-reducible diagrams

As we already stated above, the contributions A(1)
2γ and A(2)

3γ which enter the C-even part

of the cross section do not develop collinear divergences and, therefore, can be calculated

at zero electron mass. Fortunately, the master integrals for this setup have been calculated

in Ref. [6]. We use these results with some modifications.

In Ref. [6] the variables x̃ and z̃ nave been introduced.5 They are related to s and t

via
s

M2
=

(
x̃+

1

x̃

)2 t

M2
= 1−

(
x̃+ 1

x̃

)2
z̃2 + 1

. (5.1)

The master integrals obtained in Ref. [6] are expressed in terms of Goncharov’s polylog-

arithms G(a|z̃ − x̃−1) with ak ∈ {−x̃−1,±x̃±1 − x̃−1,±i − x̃−1,±(x̃2 + 1 + x̃−2)±1/2 −
x̃−1,±i(x̃2 + 3 + x̃−2)1/2 − x̃−1}.

In these variables the physical region corresponding to the annihilation channel is

defined by inequalities

x̃ > 1 , x̃−1 < z̃ < x̃ . (5.2)

The forward-backward symmetry with respect to the replacement t ↔ u acts on these

variables as z̃ ↔ z̃−1. Both the arguments and the parameters of the Goncharov’s polylog-

arithms in the results of Ref. [6] are modified nontrivially by this substitution which we

consider as somewhat inconvenient.

5Therein these variables were called x and z, respectively, but we add tilde here to avoid confusion with

the notations of the present paper.
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Therefore we have undertaken some efforts to pass to more symmetric variables.

Namely, we introduce

β =
x̃2 − 1

x̃2 + 1
, c = cos θ =

(
x̃2 + 1

) (
z̃2 − 1

)
(x̃2 − 1) (z̃2 + 1)

, (5.3)

where β is the velocity of the produced leptons in c.m.s. and θ is the scattering angle.

While these variables are sufficient for the one-loop and planar two-loop master inte-

grals, for the nonplanar master integrals we had to introduce another pair of variables,

ξ =
x̃− 1

x̃+ 1
=

√
1+β−

√
1−β√

1+β+
√
1−β

, χ =
(x̃+ 1)(z̃ − 1)

(x̃− 1)(z̃ + 1)
= (

√
1+β+

√
1−β)(

√
1+βc−

√
1−βc)

(
√
1+β−

√
1−β)(

√
1+βc+

√
1−βc)

. (5.4)

In terms of new variables the physical region for the annihilation channel is defined by the

inequalities

0 < β < 1 , −1 < c < 1 , 0 < ξ < 1 , −1 < χ < 1 . (5.5)

Using the new variables and functional relations for the Goncharov’s polylogarithms, we

have expressed the results of Ref. [6] in terms of the following functions:

• G (w1, . . . . , wn|β) with wi ∈
{
0, ±1, ±1

c , ±c+ is, ±c− is, ±c+ s′, ±c− s′
}
, where

s =
√
1− c2, s′ =

√
3 + c2,

• G (w1, . . . . , wn| 2ξ) with wi ∈
{
0,±2i,±2,±2i

χ ,± 2
χ

}
,

• G
(
w1, . . . . , wn| 4ξ2

)
with wi ∈

{
0,±4,± 4

χ ,± 4
χ2

}
.

Note that the forward-backward symmetry t ↔ u acts on the new variables as

(β, c) → (β,−c) , (ξ, χ) → (ξ,−χ) . (5.6)

The final result contains these polylogarithms up to the fourth weight. Using the results

for A(1)
2γ and A(2)

3γ and Eq. (2.25) we have obtained the correponding finite hard amplitudes

H(1)
2γ and H(2)

3γ .

Note that, in order to find the high-energy asymptotics of the amplitudes, given the

absence of collinear divergences in these contributions, we find it simpler to obtain the

massless amplitudes by a separate calculation. Besides, such a calculation provided an

independent cross check of our exact results.

6 Results and ancillary files

The results of the present work are the expressions for invariant amplitudes and related

quantities sufficient for construction of the C-even part of NNLO differential cross section

inclusive with respect to soft photons up to power corrections in electron mass. In par-

ticular, the analytical results for the amplitudes A(2)
3γ have been derived here for the first

time to the best of our knowledge. Some of results have been rederived, correcting and/or

improving if needed the previous results. Below we list the results which we attach to the

present paper with explicit statement about their novelty/familiarity:
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1. Results for the soft-virtual and soft-real functions V and W , Eqs. (2.16) and (2.20),

in dimensional regularization up to ϵ0 terms. The latter has been obtained earlier

in Ref. [13] by one of the authors, and here we present the results of that paper for

completeness. The result for soft-virtual factor in the most general form is obtained

for the first time in the present paper to the best of our knowledge. The high-energy

asymptotics of V was presented previously in Ref. [11]. Note that, according to the

considerations of Ref. [11], higher orders in ϵ in both V and W are not needed for

the calculation at any loop order. The explicit forms are presented in Eqs. (A.7),

(A.10), (A.15). The corresponding ancillary files can be found in VW/ folder.

2. Well-known results for the one- and two-loop polarization operator, see Refs. [14, 15].

The corresponding ancillary files can be found in PO/ folder.

3. Form factors and their various asymptotics.

• “Universal” contributions from the diagrams (0) − (2e) in Fig. 2 containing

only one lepton kind up to two loops. Those contributions have been obtained

earlier in Refs. [16, 17], however, the printed expressions contain several typos.

Nevertheless, we have successfully compared our results with the computer-

readable file kindly sent by the authors of [16] and found an exact agreement.6

The results for these contributions together with their various asymptotics are

located in FF/ folder.

• Contribution from the two-loop diagram (2f) in Fig. 2 with insertion of fermion

loop with lepton of another flavor. This contribution has been obtained recently

in Ref. [18], however only in a small subdomain of the whole physical region.

Besides, we diverge with that result in an overall sign. The results for this con-

tribution together with their various asymptotics are located in FFM/ subfolder.

• Integration kernels in Eq. (4.20) for the contributions to the form factors of the

diagram with hadronic polarization operator insertion, Fig. 3. Explicit forms

are presented in Eqs. (C.2), (C.3). Somehow, we were not able to find these

explicit formulas in the literature. The results for these integration kernels are

located in FFH/ folder.

4. Hard invariant amplitudes H
(L)
k,nγ with n = 1, 2, 3 at ϵ = 0. They are related to

the corresponding amplitudes A
(L)
k,nγ via Eq. (2.25). According to Eq. (2.22), these

amplitudes are sufficient for obtaining the observable differential cross section. These

amplitudes for L = 2 are obtained in the present paper for the first time. The results

for these amplitudes together with their various asymptotics are located in H/ folder.

Each folder contains the Readme.md file describing the folder content in detail.

6When comparing, one should keep in mind that the loop measure in that paper differs from the one in

this paper.
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7 Discussion and Conclusion

Let us now discuss the obtained results. Although the full discussion should include also

the polarization effects which can be readily obtained from the invariant amplitudes of

the present work, here we will restrict ourselves only to the discussion of the unpolarized

differential cross section. Besides, while our results can be equally applied to the τ pair

production, here we will consider only the process e+e− → µ+µ−. The Mathematica

notebook CrossSection.nb constructing this quantities from the hard amplitudes and

soft factors V and W is attached to the paper.

As it is obvious from our results, the differential cross section is polynomial in two vari-

ables, Lω = ln
√
s

2ω0
and L = ln s

m2 , with coefficients being the functions of β =
√
1− 4M2/s

and c = cos θ. Namely, we will write

dσC-even
dΩ = dσ0

dΩ

[
1 + δ(1) + δ(2)

]
, (7.1)

where
dσ0
dΩ

=
α2β

4s

[
2− β2(1− c2)

]
(7.2)

is the differential Born cross section and

δ(1) =
1∑

k,n=0

δ
(1)
knL

k
ωL

n, (7.3)

δ(2) =

2∑
k,n=0

δ
(2)
knL

k
ωL

n + δ
(2)
03 L

3, (7.4)

are the one- and two-loop relative corrections, respectively. The coefficients δ
(L)
kn are func-

tions of β and c. Since in the present paper we consider only the C-even contributions, δ
(L)
kn

are symmetric with respect to the replacement c → −c. Note that the coefficients δ
(L)
kn with

n > 0 receive contributions from 1γ-reducible diagrams only. The term δ
(2)
03 L

3 = −a2 89L
3

comes from the electron vacuum polarization insertion in the electron form factor.

For the sake of discussion we will split δ(2) into the sum

δ(2) = δ(2,red) + δ(2,irr), (7.5)

where δ(2,red) represents contribution of 1γ-reducible diagrams only as well as the terms

which come from the expansion of exp[WII + WFF ]. Meanwhile δ(2,irr) represents the

remaining contributions involving the 2γ- and 3γ-reducible diagrams or expansion terms

of exp[WIF ].

First, we note that the angular dependence of δ(2,red) appears entirely due to the muon

F2 form factor contribution. However, this form factor is small in comparison to F1 both on

the threshold and at high energies. We find that the relative magnitude of the contributions

to δ(2,red) involving F2 form factor is about 10−2 and the variation of δ(2,red) is even less

than this estimate. So, with sufficient precision we can assume that δ(2,red) is independent

of the angle.
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Figure 4: Angular dependence of 1γ-irreducible contribution δ(2,irr) multiplied by sin θ.

Here we have taken 2ω0/
√
s = 0.01.

This is completely different for δ(2,irr) which angular dependence is shown in Fig. 4 for

various β. Note that, for better appearance of the graphs in this figure, we have multiplied

δ(2,irr) by sin θ, which should be remembered when judging about the magnitude of this

quantity. With the account of this additional 1/ sin θ factor the angular dependence of

δ(2,irr) at small angles proves to be quite sharp. In fact, at high energy and small angles the

quantity δ(2,irr) can be shown to behave as ln4(1−β2c2), while its high-energy asymptotics

evaluated at m = M = 0 behaves as ln4(1 − c2) which means that the latter is valid only

when |q⊥| ≫ M , where q⊥ denotes the component of muon momentum perpendicular to

the collision axis.

In Fig. 5 we present corrections to the total cross section,

σtot = σ0

[
1 + δ

(1)
tot + δ

(2,red)
tot + δ

(2,irr)
tot

]
, (7.6)

where

σ0 =

∫
dΩ

dσ0
dΩ

=
2πα2β

3s

[
3− β2

]
(7.7)

is the total Born cross section. It can be seen that the relative magnitude of a2δ
(2,red)
tot can

reach a few percent for the chosen ω0. However, the magnitude δ
(2,irr)
tot in the total cross

section always stays below 1%. One should remember though that the magnitude of δ(2,irr)

in the differential cross section at small angles (sin θ ≪ 1) may be substantially larger due

to its sharp angular dependence, see Fig.4.

Finally, in Fig. 6 the dependence of δ(2) on 2ω0/
√
s is shown. We see that on the

interval 2ω0/
√
s ∈ [0.01, 0.1] the dependence is quite strong. In particular, if we take

ω0 = 0.1
√
s/2, the relative magnitude of the two-loop corrections drastically reduces.

To conclude, we have calculated all NNLO contributions to the C-even part of the

differential cross section for e+e− → µ+µ− process. We used the factor that the ratio

m2/M2 = m2
e/m

2
µ is tiny and neglected the power corrections in this parameter. In addition
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Figure 5: Relative one-loop and two-loop corrections to the total cross section. Here we

have taken 2ω0/
√
s = 0.01. Note that the one-loop correction is negative and shown with

the minus sign.
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Figure 6: δ(2,red) and δ(2,irr) as functions of 2ω0/
√
s. Here we have taken

√
s = 2GeV.

to the two-loop contributions coming from the diagrams with three intermediate photons,

which were obtained for the first time, we have rederived also some known results important

for our present goal. In particular, we have recalculated the massive lepton QED form

factors at two loops and found some typos in the previous papers. Our results can be used

for arbitrary polarization of all involved particles.
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A Soft virtual and real functions V (k1, k2) and W (k1, k2|ω0)

Let us calculate the soft virtual function V (k1, k2) defined in Eq. (2.16) for general masses

of two particles, k21 = m2
1, k22 = m2

2. We first calculate this function in the scattering

channel, i.e., when one of the incoming momenta has negative time-like component. It

corresponds to the condition −∞ < s < (m1 −m2)
2. Besides, we assume that m2 > m1.

Therefore, we calculate

V (k1,−k2) = −8π2

∫
ddk

i (2π)d
1

k2 + i0

(
2k1 − k

k2 − 2kk1 + i0
− 2k2 − k

k2 − 2kk2 + i0

)2

(A.1)

and assume that k01 > 0 and k02 > 0.

It is convenient to define the following variables

x12 =
k1·k2
m1m2

−
√(

k1·k2
m1m2

)2
− 1, β12 =

1− x212
1 + x212

=

√
1−

(
m1m2
k1·k2

)2
. (A.2)

The physical meaning of the variable β12 is that it is the relative velocity of particles.

We consider the family of integrals

SV(n1, n2, n3) =

∫
ddk

iπd/2
[−k2 − i0]−n1 [−k2 + 2kk1 − i0]−n2 [−k2 + 2kk2 − i0]−n3 (A.3)

and perform the IBP reduction. We find 3 master integrals all expressible in terms of

Γ-functions and hypergeometric 2F1 functions:

SV(0, 1, 0)

m2−2ϵ
1

=
SV(0, 0, 1)

m2−2ϵ
2

= Γ(−1 + ϵ), (A.4)

SV(0, 1, 1) =
Γ(−1 + ϵ)x12

m1m2

(
1− x212

){m2−2ϵ
1 2F1

(
1, 2− 2ϵ; 2− ϵ; x12 (m1−m2x12)

m2(1−x2
12)

)
−m2−2ϵ

2 2F1

(
1, 2− 2ϵ; 2− ϵ; m1−m2x12

m1(1−x2
12)

)}
. (A.5)

The function V (k1,−k2) is expressed via these master integrals as

V (k1,−k2) =
(

m2/m1−1
2(k1·k2−m1m2)

− m2/m1+1
2(k1·k2+m1m2)

+ 2−ϵ
2m2

1

)
(1− 1/ϵ)SV(0, 1, 0)

+
(

m1/m2−1
2(k1·k2−m1m2)

− m1/m2+1
2(k1·k2+m1m2)

+ 2−ϵ
2m2

2

)
(1− 1/ϵ)SV(0, 0, 1)

−
(

(2−1/ϵ)(k1−k2)2

2(k1·k2−m1m2)
+ (2−1/ϵ)(k1−k2)2

2(k1·k2+m1m2)
+ 1

)
SV(0, 1, 1) . (A.6)

Substituting and expanding in ϵ, we obtain

V (k1,−k2) = −2 (m1m2)
−ϵ

{
1 + 1

β12
lnx12

ϵ
+1−

(
1− x212

)
m1m2

2t12x12
lnx12+

m2
2 −m2

1

2t12
ln m1

m2

+
1

β12

[
f
(
x212

)
− f

(
m1x12
m2

)
− f

(
m2x12
m1

)]
+O(ϵ)

}
(A.7)
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where t12 = (k1 − k2)
2 = (m1x12 −m2)(m1 −m2x12)/x12 and

f (z) = 1
2

[
Li2 (1− z)− Li2

(
1− z−1

)]
= Li2 (1− z) + 1

4 ln
2 z . (A.8)

Note that this formula is valid for any ratio m1/m2 provided that x12 ∈ (0, 1). In order

to perform the analytical continuation to the annihilation channel, we should follow a

path C in the upper half-plane of the complex variable t. We see that on this path

t
C→ s = (k1 + k2)

2, β12
C→ β12 and x12

C→ −x12 + i0. However, a special care is required

for the analytical continuation of the function f(x212) as its argument winds around the

origin. Expressing it in terms of the function Li2(x12) and logarithms, one can check that

the following substitution rule holds

f(x212)
C−→ f(x212)− π2 − 2iπ ln

1− x212
x12

(A.9)

V (k1, k2) = −2 (m1m2)
−ϵ

{
1 + 1

β12
ln(−x12 + i0)

ϵ
+ 1 +

(1−x2
12)m1m2

2s12 x12
ln(−x12 + i0)

+
m2

2−m2
1

2s12
ln m1

m2
+

1

β12

[
f
(
x212

)
− π2 − 2iπ ln

1−x2
12

x12
− f

(
−m1x12

m2
+ i0

)
− f

(
−m2x12

m1
+ i0

)]
+O(ϵ)

}
(A.10)

where x12 and β12 are defined in (A.2) and s12 = (k1 + k2)
2 = (m1x12 + m2)(m1 +

m2x12)/x12.

For our present goal we need the following special cases of the obtained formulae. First,

we need V (p1,−q1) and V (p1,−q2). Assuming that m2 ≪ M2 ≪ |t|, we obtain

V (p1,−q1) = −2M−2ϵ

{− ln M2−t
M2 − ln M

m + 1

ϵ

− Li2

(
−t

M2−t

)
+ 1

2 ln
2 M2−t

M2 + M2−t
2t ln M2−t

M2 − ln2 M
m + 1

2 ln
M
m + 1

}
(A.11)

and V (p1,−q2) has the same form with t → u.

Note that in the difference V (p1,−q1)− V (p1,−q2) the terms independent of t and u

cancel out, so that we have

VIF = 2[V (p1,−q1)− V (p1,−q2)] = −4M−2ϵ

{
ln M2−u

M2−t

ϵ
− Li2

(
−t

M2−t

)
+ Li2

(
−u

M2−u

)
+ 1

2 ln
2 M2−t

M2 − 1
2 ln

2 M2−u
M2 + M2−t

2t ln M2−t
M2 − M2−u

2u ln M2−u
M2

}
(A.12)

Next, we need V (−q1,−q2) = V (q1, q2) for m1 = m2 = M . We have

VFF = V (q1, q2) = −2M−2ϵ

{1 + 1+x2
s

1−x2
s
(lnxs + iπ)

ϵ
+ 1 +

1− xs
2(1 + xs)

(lnxs + iπ)

+
1 + x2s
1− x2s

[
2Li2(1− xs) +

1
2 ln

2 xs − iπ ln
(1− xs)

2

xs
− π2

]
+O(ϵ)

}
, (A.13)
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where xs =
1−β
1+β .

Finally, let us present for completeness also the expression for soft real function W

obtained in Ref. [13]. Defined as in Eq. (2.20),

W (k1, k2|ω0) = −16π2

∫
ω<ω0

dd−1k

(2π)d−12ω

(
k1

k · k1
− k2

k · k2

)2

, (A.14)

this function evaluates to

W (k1, k2|ω0) = −4 (2ω0)
−2ϵ

{
−

1 + 1
β12

lnx12

ϵ
+

1

β12

[
f (x12 x1/x2) + f (x12 x2/x1)

− f (x1x2/x12) + f (x12 x1x2)− f
(
x212

) ]
+

1

β1
lnx1 +

1

β2
lnx2 +O(ϵ)

}
, (A.15)

where β12 =
√

1− (m1m2/k1 · k2)2 is the relative velocity and βi =
√

1−
(
mi/k0i

)2
(i =

1, 2) are the velocities of particles in the lab frame, xk =
√

1−βk
1+βk

.

B Contribution to the form factors from the insertion of vacuum polar-

ization of another lepton flavor

We consider the contribution to the two-loop lepton form factors of the diagram (2f) in

Fig. 2. In Ref. [18] this contribution has been already considered in the scattering channel

in the region

mi > m, q2 < 4(m2 −m2
i ). (B.1)

We have independently obtained this contribution for the whole physical region including

the annihilation channel which is needed for our main goal in the present paper. We define

the integral family as follows:

Ĩn1,...,n7 =

∫
dl1dl2

(iπd/2)2

7∏
i=1

(D̃i − i0)−ni , (B.2)

where

D̃1 = m2 − (p1 − l1)
2, D̃2 = m2 − (p2 − l1)

2, D̃3 = m2
i − l22,

D̃4 = m2
i − (l1 + l2)

2, D̃5 = −l21, D̃6 = l2p2, D̃7 = l2p1.

Using LiteRed for IBP reduction, we identify 7 master integrals:

(j̃1, . . . , j̃7) = (Ĩ0011000, Ĩ0101000, Ĩ0111000, Ĩ0211000, Ĩ1101000, Ĩ1111000, Ĩ2111000).

This integral family depends on two dimensionless ratios, q2/m2 and mi/m. To reduce

the differential system to ϵ-form, we introduce the variables x and z, defined as:

q2

m2
= −(1− x)2

x
,

mi

m
=

(1 + x)z

z2 + x
. (B.3)
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Figure 7: Physical region in terms of variables x and z.

The physical region in terms of the variables x and z is shown in Fig. 7. The part of

the physical region where z becomes complex is shown in darker color. Note that the region

considered in Ref. [18] corresponds to a curvilinear triangle restricted by the inequalities

0 < x < z2 < 1 . (B.4)

We first restrict ourselves to the region 0 < x < 1 and z > 1. The results for whole physical

region are obtained via analytical continuation.

Using Libra, we reduce the system to ϵ-form. We fix the boundary conditions by

considering the asymptotics x → 1 and z → ∞. More specifically, we first consider the

limit x̄ = 1 − x → 0 and determine which coefficients of the asymptotic expansion in x̄

are to be calculated. Those coefficients still depend on z and we construct the differential

system for them. We reduce this system to ϵ-form and fix the boundary conditions from

z → ∞ asymptotics using the expansion by regions. As a result, we obtain the master

integrals in terms of Goncharov’s polylogarithms with arguments x̄ and z−1.

The renormalization of these form factors requires the account of two diagrams with

counterterms. The first is the one-loop diagram with a one-loop polarization operator coun-

terterm. The second is the tree diagram with a two-loop vertex counterterm depending on

two different masses. This contribution can be accounted for by subtracting the obtained

form factor at t = 0. Alternatively, we can use the known result from [19] for the corre-

sponding counterterm. The renormalized form factors contain no infrared divergences, as

expected.

To simplify the result and, especially, to perform the analytical continuation, it is

convenient to rewrite it in terms of ordinary polylogarithms up to third order using the

technique described in [20]. Note that in the physical region the differential system for the

master integrals, in addition to the singularity at x = z2 also contains singularity at z = 1,

as shown by the dashed line, however, the specific solution does not contain this spurious
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branching locus, which serves as a good check of our setup. We perform the analytical

continuation to the region q2 > 0 by following a path in the upper half-plane of q2. It is

straightforward to check that ℑ(q2(x)) > 0 when x lies within a half-disk. Therefore, the

analytical continuation to the region q2 > 0 can be achieved along the path x = |x|eiϕ,
with |x| fixed and ϕ varying from 0 to π.

Following a similar strategy, we have succeeded to obtain a universal form of the result

valid for the whole physical region. When comparing our results with those of Ref. [18] in

the region (B.4), we find that our results agree up to an opposite overall sign.

C Contribution to the from factors from the hadronic polarization in-

sertion

Let us present the integral kernels K1,2(y, y1) in Eq. (4.20), which reads

F
(had)
k,(ℓ) (s) = −4a

π

∫ ∞

s0

ds1
s1

Kk

(
s
m2

ℓ
, s1
m2

ℓ

)
ℑΠ(had)(s1) (C.1)

For brevity we will put mℓ = 1 below. Then we have

K1(s, s1) =

[
(8 + s) s21
2 (4− s)2 s

− s1
4− s

+
s− 2

2s

]
1− x

1 + x
g (x, x1)+

[
8− 3s

4s
+

(8 + s) s1
2 (4− s) s

]
1− x

1 + x
lnx

+

[(
16− 22s+ 3s2

)
s21

8 (4− s)2
+

(32− 5s) s s1

4 (4− s)2
− 4 + s

2 (4− s)

]
1− x1
1 + x1

ln(−x1)

+

[(
16− 22s+ 3s2

)
s21

8 (4− s)2
+

s s1
2 (4− s)

1

2

]
ln s1 −

(8− 3s) s1
4 (4− s)

− 1 , (C.2)

K2(s, s1) =

[
4s1

(4− s) s
− 6s21

(4− s)2 s

]
1− x

1 + x
g (x, x1) +

[
1

s
− 6s1

(4− s) s

]
1− x

1 + x
lnx

+

[
(10− s) s21
2 (4− s)2

− s1
4− s

]
1 + x1
1− x1

ln(−x1)−
[

2s1
4− s

− (10− s) s21
2 (4− s)2

]
ln s1 −

s1
4− s

, (C.3)

Here

x = 1− s

2

(
1−

√
1− 4/s

)
+ i0, x1 = 1− s1

2

(
1−

√
1− 4/s1

)
, (C.4)

and

g(x, x1) = Li2
(
1 + x1

x

)
− Li2 (1 + xx1)− 2 ln (1− x1) lnx (C.5)

It worth to note that g(x, x1) = −g(x−1, x1) = g(x, x−1
1 ).

We underline that the above formulae correctly describe the kernels both in the scat-

tering region s < 0, s1 > 0 and in the annihilation region s > 4, s1 > 0. In particular,

when s1 ∈ [0, 4] the square root
√

1− 4/s1 in the definition of x1 can be understood as

±i
√

4/s1 − 1 with any sign.
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