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Abstract
We analyse a modification of the BFKL kernel for the adjoint repre-

sentation of the colour group in the maximally supersymmetric (N=4)
Yang-Mills theory in the limit of a large number of colours, related
to the modification of the eigenvalues of the kernel suggested by S.
Bondarenko and A. Prygarin in order to reach Hermitian separability
of the eigenvalues. We restore the modified kernel in the momentum
space. It turns out that the modification is related only to the real
part of the kernel and that the correction to the kernel can not be
presented by a single analytic function in the entire momentum region,
which contradicts to the known properties of the kernel.
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.

1 Introduction
The kernel of the BFKL (Balitsky-Fadin-Kuraev-Lipatov) equation [1] – [4]
contains the so called real and virtual parts. The virtual part is determined
by the gluon Regge trajectory and is the same for all representations of
the colour group in the t-channel. In the next-to-leading order (NLO) the
calculation of the trajectory in QCD was carried out in Refs. [5] – [9] and was
confirmed in Refs. [10, 11]. The supersymmetric Yang-Mills theories contain,
in addition to the gauge bosons and fermions, also scalar particles. Their
contribution to the trajectory was obtained in [12, 13]. The real part of the
kernel comes from the real particle production. In QCD at the NLO these
particles are gluons and quark-antiquark pairs. Their contributions to the
kernel for the adjoint representation of the colour group were calculated in
Refs. [14, 15] and Ref. [16] respectively. The scalar particle contribution to
the real part of the kernel was obtained in Refs. [17, 13].

It is necessary to note here that the NLO corrections to the BFKL kernel
are scheme dependent because of the possibility to redistribute corrections
to scattering amplitudes between the kernel and impact factors of scattered
particles [18]. The calculations in Refs. [14] – [17] were performed in the
scheme introduced in Ref. [19], which we call the standard one. It turns out,
however, that in the N=4 supersymmetric Yang-Mills theory (N=4 SYM) in
the planar limit another scheme, which we call conformal, is more convenient.
It is associated with the modified kernel Km, introduced in Ref. [20], which
is obtained from the usual BFKL kernel in the adjoint representation by sub-
traction of the gluon trajectory depending on the total t-channel momentum.
One of advantages of this kernel is its infrared safety, which permits to con-
sider this kernel at physical transverse dimension D− 2 = 2. This advantage
is manifested in all Yang-Mills theories. Another important advantage, man-
ifested in the N=4 SYM, is the dual conformal invariance, i.e. invariance
under Möbius transformations in the space of dual two-dimensional trans-
verse momenta. In the leading order (LO) the invariance of Km is easily seen
[20]. But in the NLO in the standard scheme, in which the kernel was initially
calculated, Km is not Möbius invariant. The existence of the scheme where
the modified kernel is Möbius invariant (Möbius scheme) was conjectured in
Ref. [21] and then proved in Ref. [22], where the transformation of the kernel
from the standard form to the conformal (Möbius invariant) form Kc was
found explicitly.
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The eigenvalues ω(t) of the kernel Km calculated in the NLO in [21] are
written as

ω(ν, n) = −a (Eνn + a ενn) , a =
g2Nc
8π2

, (1)

where Eνn is the "energy" in the leading approximation [20], given by

Eνn = −1

2

|n|
ν2 + n2

4

+ψ(1+iν+
|n|
2

)+ψ(1−iν+
|n|
2

)−2ψ(1) , ψ(x) = (ln Γ(x))′ ,

(2)
and the next-to-leading correction ενn can be written as follows:

ενn = −1

4

(
ψ′′(1 + iν +

|n|
2

) + ψ′′(1− iν +
|n|
2

)+

+
2iν
(
ψ′(1− iν + |n|

2 )− ψ′(1 + iν + |n|
2 )
)

ν2 + n2

4

)
−

−ζ(2)Eνn − 3ζ(3)− 1

4

|n|
(
ν2 − n2

4

)
(
ν2 + n2

4

)3 . (3)

Here the ζ(n) is the Riemann zeta-function.
Recently in Ref. [23] the modification of the eigenvalues (3) was suggested

so that they acquired the property of Hermitian separability present for the
singlet BFKL kernel [24]. After this modification the adjoint NLO BFKL
eigenvalues are expressed through holomorphic and antiholomophic parts of
the leading order eigenvalue and their derivatives. It was argued that the
proposed choice of the modified NLO expression is supported by the fact
that it is possible to obtain the same result in a relatively straightforward
way directly from the singlet NLO BFKL eigenvalue replacing alternating
series by series of constant sign.

2 The modification of the kernel
The proposed modification of the eigenvalues (1)-(3) is

ω(ν, n)→ ω(ν, n) + ∆ω(ν, n) ,

∆ω(ν, n) =
a2

2

(
iν|n|

(ν2 + n2

4 )2
− ψ′(1 + iν +

|n|
2

) + ψ′(1− iν +
|n|
2

)

)

×
(
ψ(1 + iν +

|n|
2

)− ψ(1− iν +
|n|
2

)

)
. (4)
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Evidently, the difference in the eigenvalues means the difference in the kernels:

K̂ → K̂ + ∆K̂ .

Formally, one can write

∆K̂ =

n=+∞∑
n=−∞

∫ +∞

−∞
dν∆ω(ν, n)|ν, n〉〈ν, n| ,

where |ν, n〉 are the eigenstates of the kernel normalized as

〈ν′, n′|ν, n〉 = δnn′δ(ν′ − ν) .

In Möbius scheme, the eigenfunctions 〈~q1, ~q2|ν, n〉 = δ(~q− ~q1− ~q2)φν,n(~q1, ~q2)
in the momentum space can be taken as in Refs. [21] and [22], i.e. as

φν,n(q1, q2) = fν,n(
q1
q2

) =
1√
2π2

(
q1
q2

)n
2 +iν (

q∗1
q∗2

)−n
2 +iν

, q1 + q2 = q , (5)

with the normalization∫
~q 2d~q1
~q 2
1 ~q

2
2

(φν,n(q1, q2))
∗
φµ,m(q1, q2) =

∫
d2z

|z|2
f∗ν,n(z) fµ,m(z) = δ(µ−ν) δmn .

(6)
Here we use the complex notations q = qx + iqy and q∗ = qx − iqy. Then, we
can present the difference in the kernel as follows:

∆Kc(~q1, ~q
′
1 ; ~q) =

n=+∞∑
n=−∞

∫ +∞

−∞
dν ∆ω(ν, n)φνn (q1, q2) (φνn(q′1, q

′
2))
∗
. (7)

Let us define

f1(z) =

n=+∞∑
n=−∞

∫ +∞

−∞
dν

1

2π2
|z2| iν(

z

z∗
)

n
2

iν|n|
(ν2 + n2

4 )2

×
(
ψ(1 + iν +

|n|
2

)− ψ(1− iν +
|n|
2

)

)
, (8)

and

f2(z) =

n=+∞∑
n=−∞

∫ +∞

−∞
dν

1

2π2
|z2| iν(

z

z∗
)

n
2

(
ψ′(1− iν +

|n|
2

)− ψ′(1 + iν +
|n|
2

)

)
×
(
ψ(1 + iν +

|n|
2

)− ψ(1− iν +
|n|
2

)

)
, (9)
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so that

∆Kc(~q1, ~q
′
1 ; ~q) =

a2

2
F (z), F (z) = f1(z) + f2(z) , (10)

where z = q1q
′
2/(q2q

′
1).

At |z| < 1 the integrals over ν in Eqs. (8), (9) can be calculated by
taking residues in the lower half-plane of ν. Taking into account that ψ(x)
is an analytical function of x having only poles with residues equal to −1 at
x = −l, l being a natural number, we obtain for f1(z)

f1(z) =
1

2π

∞∑
n=1

zn
[
ln |z2|(ψ(1)− ψ(1 + n))− ψ′(1 + n)− ψ′(1)+

+

∞∑
l=0

|z2|l+1

(
1

(l + 1)2
− 1

(l + n+ 1)2

)]
+ c.c. , (11)

where c.c. means complex conjugate. Using the relations

∞∑
n=1

an(ψ(1+n)−ψ(1))=− ln(1− a)

1− a
,

∞∑
n=1

an(ψ′(1+n)+ψ′(1))=
2aζ(2)− Li2(a)

1− a
,

∞∑
l=0

al+1

(l + 1)2
= Li2(a) ,

∞∑
n=0

zn
∞∑
l=0

|z2|l+1 1

(l + n+ 1)2
= z∗

Li2(z)− Li2(|z2|)
1− z∗

,

(12)
where

Li2(x) = −
∫ 1

0

dy

y
ln(1− xy), Li2(1) = ζ(2) , (13)

we obtain

f1(z) =
1

2π

[
ln |z2|

(
ln(1− z)

1− z
+

ln(1− z∗)
1− z∗

)
+ 2

1− |z2|
|1− z|2

Li2(|z2|)+

+
1− 2z∗ + |z2|
|1− z|2

Li2(z) +
1− 2z + |z2|
|1− z|2

Li2(z∗)− 2
z + z∗ − 2|z2|
|1− z|2

ζ(2)

]
.

(14)
For the function f2(z), taking into account that

ψ(x)ψ′(x)|x→−l = − 1

(x+ l)3
+
ψ(1 + l)

(x+ l)2
+ constant , (15)
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where l is a natural number, we have at |z| < 1

f2(z) =
1

2π

∞∑
n=0

(
1− 1

2
δn,0

)
zn
∞∑
l=0

|z2|l+1

[
ln2 |z2|+

+2 ln |z2|
(
ψ(1 + l)− ψ(2 + n+ l)

)
− 4ψ′(2 + n+ l)

]
+ c.c. . (16)

The equalities
∞∑
l=0

a1+lψ(2+l) =
aψ(1)− ln(1− a)

1− a
,

∞∑
l=0

a1+lψ′(2+l) =
aζ(2)− Li2(a)

1− a
,

∞∑
n=1

zn
∞∑
l=0

|z2|l+1ψ(2 + n+ l) =

=
1

1− z∗

[
ln(1− |z2|)− |z4|ψ(1)

1− |z2|
− z∗ ln(1− z)− z2ψ(1)

1− z

]
,

∞∑
n=1

zn
∞∑
l=0

|z2|l+1ψ′(2+n+l) =
1

1− z∗

[
Li2(|z2|)− |z2|ζ2

1− |z2|
− z∗Li2(z) = zζ2

1− z2

]
(17)

give us

f2(z) =
1

2π|1− z|2

[
|z2| ln2 |z2| − 2 ln |z2|

(
(1 + |z2|) ln(1− |z2|)−

−z∗ ln(1−z)−z ln(1−z∗)

)
−4Li2(|z2|)+4z∗Li2(z)+4zLi2(z∗)−4|z2|ζ(2)

]
.

(18)
For the sum F (z) = f1(z) + f1(z) we obtain at |z| < 1

F (z) =
1

2π(|1− z|2)

[
|z2| ln2 |z2| − ln |z2|

(
2(1 + |z2|) ln(1− |z2|)−

−(1 + z∗) ln(1− z)− (1 + z) ln(1− z∗)

)
− 2(1 + |z2|)Li2(|z2|)+

+(1 + 2z∗ + |z2|)Li2(z) + (1 + 2z + |z2|)Li2(z∗)− 2(z∗ + z)ζ(2)

]
. (19)
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Here it should be noted that the functions f1(z) and f2(z) (and hence
their sum F (z)) are defined by Eqs. (8) and (9) both for |z| < 1 and for
|z| > 1; moreover, due to the property ∆ω(ν, n) (see Eq. (4))

∆ω(−ν,−n) = ∆ω(ν, n) , (20)

it must be
F (z) = F

(
1

z

)
. (21)

Together with Eq. (19), which gives the function F (z) in the region |z| < 1,
Eq. (21) determines F (z) in the region |z| > 1. From the other hand, the
right side of Eq. (19) gives the function F(z) in the whole plane of z. It turns
out, however, that at |z| > 1 the function F(z) does not coincide with F (z)
determined by Eq. (21). Indeed, it is seen from (19) that the function F(z)
has a cut starting at z = 1 and is not a single valued function. To see it
clearly one can rewrite F(z) using the relation

Li2(x) + Li2(1− x) = ζ(2)− ln(x) ln(1− x), (22)

in the form

F(z) =
1

2π(|1− z|2)

[
|z2| ln2 |z2|+ 2(1 + |z2|)Li2(1− |z2|)−

−(1+2z∗+|z2|)Li2(1−z)−(1+2z+|z2|)Li2(1−z∗)+1

2
(1−|z2|) ln |z2| ln |1−z|2+

+
z − z∗

2
ln

z

z∗
ln |1− z|2 − |1 + z|2

2
ln

z

z∗
ln

1− z
1− z∗

]
. (23)

It is easy to see that all terms besides the last one are single valued around
the point z = 1, but the last one has not such property. Of course, F(z) is
a single valued function at |z| < 1; but this property is lost in the whole z-
plane. It means, in particular, that F(z) 6= F( 1

z ). It can be shown explicitly
from (23) using the relation

Li2(1− x) + Li2(1− 1/x) = −1

2
ln2(x) . (24)

It gives

F
(

1

z

)
=

1

2π|1− z|2

[
−|1− z|

2

4
ln2 |z2| − 2(1 + |z2|)Li2(1− |z2|)+
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+(1+2z+|z2|)Li2(1−z)+(1+2z∗+|z2|)Li2(1−z∗)+1

2
(1−|z2|) ln |z2| ln |1−z|2+

+
z − z∗

2
ln

z

z∗
ln |1− z|2 − |1 + z|2

4
ln2 z

z∗
+
|1 + z|2

2
ln

z

z∗
ln

z − 1

z∗ − 1

]
. (25)

Note that the point z = 1 is the only singular point of the function F(z) in
the closed circle |z| ≤ 1. Moreover, it is easily seen from Eq. (23) that the
singularity of F(z) in this point is an integrable one. It means that the mod-
ification of the eigenvalues (4) is related only with the real part of the kernel.
Thus, we obtain that the modification of the BFKL kernel corresponding to
the modification of the eigenvalues suggested in [23] is written as

∆Kc(~q1, ~q
′
1 ; ~q) =

{
a2

2 F
(
q1q

′
2

q2q′1

)
if
∣∣∣ q1q′2q2q′1

∣∣∣ ≤ 1

a2

2 F
(
q2q

′
1

q1q′2

)
if
∣∣∣ q1q′2q2q′1

∣∣∣ ≥ 1
, (26)

where F (z) is defined in Eq. (19), q1 + q2 = q′1 + q′2 = q, and can not be
presented by a single analytic function in the entire domain.

3 Conclusion
We found the correction (26) to the BFKL kernel for the adjoint represen-
tation of the colour group in the planar N=4 SYM corresponding to the
modification of the eigenvalues of the kernel suggested in Ref. [23]. It turned
out that this correction is related only to the real part of the kernel. How-
ever, it can not be presented by one analytic function in the entire region of
transverse momenta, contrary to the real parts of the kernel in the Möbius
[22] and standard [14]-[17] schemes. Note that the real part in the standard
scheme was found for arbitrary space-time dimension, therefore the argument
of Ref. [23] in favour of the modification, based on removal of the infrared
divergences seems untenable.

In our opinion, other arguments of Ref. [23] in favour of the modifica-
tion are also inconsistent. The ambiguity of the NLO kernel because of the
possibility to redistribute NLO corrections between the kernel and impact
factors is irrelevant, because transformations of the kernel admitting to this
ambiguity do not change their eigenvalues. It is clearly seen from the fact
that change of eigenvalues means change of dependence on energy, whereas
impact factors are energy independent by definition. It was argued also in
Ref. [23] that the modification is supported by the fact that it is possible to
obtain the same result in a relatively straightforward way directly from the
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singlet NLO BFKL eigenvalue, replacing alternating series by series of con-
stant sign. But it can not be a serious argument because there is no simple
relation between singlet and adjoint kernels.

Thus, the modification of the eigenvalues of the BFKL kernel suggested in
Ref. [23] contradicts to the knwn properties of the kernel, and the main mo-
tivation for this modification – the Hermitian separability of the eigenvalues
– does not have serious grounds.
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