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1 Introduction

Multi-Regge form of many-particle amplitudes underlies the well-known
BFKL (Balitsky—Fadin—-Kuraev—Lipatov) approach [1, 2, 3, 4|, which gives
the most common basis for the description of small x processes. The idea
of this form emerged in the process of the calculations [5, 2] of elastic scat-
tering amplitudes at large c.m.s. energies /s and fixed momentum transfer
V/—t in the leading logarithmic approximation (LLA) which means summa-
tion of radiative corrections of the type of (g2 In(s/[t|))™ (g is the coupling
constant). The dispersive method used in the calculations requires knowl-
edge of all inelastic amplitudes in the multi-Regge kinematics (MRK) where
produced particles have limited (not growing with s) transverse momenta
and strongly ordered longitudinal momenta. It turned out [5, 2] that these
amplitudes have the multi-Regge form in the first few orders of perturba-
tion theory. This led to the hypothesis that this form is valid in the LLA
in all orders of perturbation theory. Lately, this hypothesis has been proved
[6]. Then, it was generalized for the next-to-leading logarithmic approxima-
tion (NLLA), which means summation of radiative corrections of the type
of g%(9?In(s/[t]))". Note that in this approximation one has to consider not
only the LLA amplitudes with g?-corrections, but also amplitudes with a
couple of particles having longitudinal momenta of the same order. They
correspond to the kinematics which is called quasi multi-Regge (QMRK). To
unify consideration we will use in the following the notion "jet" both for such
couple of particles and for a single particle and will treat QMRK as MRK
with jets.

The BFKL approach in the NLLA is widely used in Quantum Chromo-
dynamics (QCD) now. It is used also in supersymmetric Yang-Mills theories
(SYM); in particular, it was used in the maximally extended (N = 4) SYM
for check of self-consistency of the ABDK-BDS (Anastasiou-Bern-Dixon-
Kosower — Bern-Dixon-Smirnov) ansatz 7, 8] MBPS for amplitudes with
the maximal helicity violation (MHV amplitudes) in the multi-color (pla-
nar) limit and for verification of the conjectures of dual conformal invari-
ance [10, 9, 11, 12, 13, 14, 15] and correspondence between the MHV am-
plitudes and expectation values of Wilson loops [13, 14, 16, 17, 18, 19],
presentation of true amplitudes as the product MBPS on a function of



conformal-invariant ratios of kinematic invariants R called the remainder
factor, and for the calculation of this factor in the multi-Regge kinematics
[20, 21, 22, 23, 24, 25, 26, 27].

To be confident in the results of the BFKL approach in the NLLA one
needs a proof of validity of the multi-Regge form of many-particle amplitudes
in this approximation. The way of proving based on s-channel unitarity was
outlined in [28] and worked out in detail in [29]. The main steps of the proof
are the following. The requirement of compatibility of the s-channel unitarity
with the Reggeized form of amplitudes leads to an infinite set of the relations
(bootstrap relations) connecting derivatives of this form over energy variables
with the discontinuities in this variables, which, in turn, are determined by
this form. It turns out that all these relations are fulfilled if several condi-
tions on the Reggeon vertices and trajectory (bootstrap conditions) are valid.
Thus, the proof of the multi-Regge form is reduced to check validity of the
bootstrap conditions.

In this paper we present the results necessary for this check in Yang-
Mills theories containing fermions (we will call them also quarks) and scalars
in arbitrary representations of the colour group with a general form of the
Yukawa-type interaction. First, we define the multi-Regge form of multiple
production amplitudes and present all components of this form in the NLLA.
Then the bootstrap approach to the proof of the validity of this form is
sketched, all main components of the bootstrap conditions are defined and
fulfilment of these conditions is discussed.

The paper is organized as follows. In Section 2 we define the multi-Regge
form of the MRK amplitudes and specify the theories in which this form will
be proved. In Section 3 we present the Regge trajectory of the gauge boson
(we call it gluon as in QCD) and the Reggeon vertices entering in the multi-
Regge form. In Section 4 the bootstrap approach is briefly presented and
the bootstrap conditions are formulated. In Section 5 verification of these
conditions is presented.

2 The multi-Regge form of multiple production
amplitudes

The multi-Regge form of the amplitude As_,, 2 of the process A + B —
Jo+J1+ ...+ Jp + Jpt1 is shown in Fig.1, where the zig-zag lines represent
Reggeized gluon (Reggeon) exchange, right and left black blobs represent
the Particle-Particle-Reggeon (PPR) vertices and black blobs in the middle
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Fig. 1. Schematic representation of the amplitude 2 — 2+n. The zig-zag lines
represent Reggeized gluon exchange. Right and left black blobs represent the
Particle-Particle-Reggeon (PPR) vertices; black blobs in the middle represent
the Reggeon-Reggeon-Particle vertices.

represent the Reggeon-Reggeon-Particle (RRP) vertices. The PPR and RRP
vertices are called also scattering and production vertices correspondingly.

It is necessary to note here that the simple factorized form shown in
Fig.1 is valid for the real parts of the MRK amplitudes only. In fact, the
imaginary parts are much more complicated than the real ones and have not
any factorized form at all.

In the following for any 4-vector v we use the decomposition v = v*n; +
v~ ng + vy with light-cone vectors nj o such that (nins) = 1, and therefore
vt = (v,ng), v~ = (v,n1). It is supposed that the dominant components
of the momenta ps4 and pp of the initial particles A and B are pj and
pp correspondingly, so that the squared energy in the c.m.s. s ~ 2pjgp]§.
Each of the final jets J;, ¢ = 1,...n 4+ 1 with momentum k; = q; — ¢;+1, qo =
DA, (nt2 = —pp can represent either a single particle or a couple of particles.
Their rapidities y;, y; = %ln (k:r/kf) fori=1,...n,y0 = In (\/ﬁpjg/|qu_|)
and yp4+1 = In (|q(n+1)l|/\/§p§) are strongly ordered: yo > y1 > -+ >
Yn > Yn+1; all ki1 are limited.

In these denotations the multi-Regge form for the real parts of the MRK



amplitudes can be written as

n

w(qi)(Yi—1—v:) wW(qn+1)(Yn—Yn+1)
(& f (& R,
RAspyo = 25I‘§01A <I I —_— ’y}]ziRiH) 5 FJW,-:—llB7
i1 41 9in+1)L
(2.1)

where w(q) is called the gluon trajectory (in fact, the trajectory is 1+ w(q)),
PffO 4 and I‘i*l p are the scattering vertices and 'V}Iéii Ry, are the produc-

tion vertices. The numerator of the Reggeon propagator ew(#)(¥i-1-vi) —
w(qi

(si/ kffu_kii) “ ), where s; = (ki + ki+1)? ~ 2k;,,k;" is known as the

Regge-factor.

In the NLLA one has to know the gluon trajectory with the two-loop
accuracy, the Reggeon vertices with one-particle jets with the one-loop cor-
rections and the Reggeon vertices with two-particle jets at the Born approx-
imation only. In QCD all these vertices and the trajectory were calculated
with the required accuracy many years ago (see, for instance, [28] and refer-
ences therein). Here we present them for a wide class of Yang-Mills theories
with ny quark fields 9] (a; and ¢ are correspondingly colour and flavour
indices, i = 1,..., ny) and ns (pseudo)scalar fields ¢7'* (A, and r are colour
and flavour indices respectively, r = 1,..., ng) in any representations of the
colour group with a general form of the Yukawa-type interaction

Ly = gy (O [slety’) (Bij)ase, ¢ + hec.. (2.2)

In the lagrangian (2.2) [ys], = 1 for scalars and [vys], = ivs = —y991y%y2 for
pseudoscalars; (Rfj)i’l: ¢, are flavour matrices of the Yukawa-type interaction.
Different fields transform according to different representations of the gauge
group SU(N,) with generators T}, = —ifabe for gluons, t¢ for quarks and T,
for scalars. The colour projectors (jo)g'gcj obey the commutation relations
following from the gauge invariance:

(D) e (B3 — (R (6 aes = (RGN (T - (23)
Here the summation is only performed over colour indices b, d, and m,.. We
will use the symmetry factors KJZ (k%) equal to 1/2 for Majorana quarks (for
the real scalars) and equal to 1 for Dirac quarks (for complex scalars) and
the denotations

nyg f Mg s
T
— } : [l - E 521 24
g i=1 " N’ “ r=1 " Ne’ 24
where generators Tif , T)? are normalized by the relations
Te[T°T?) = Nobap , Te[tY] = T 64 , TY[TATY) = T26a - (2.5)
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Quadratic Casimir operators are defined as
T°T* = Cy = N,, tit¢ =Ch, T2T* = C5L. (2.6)

In the fundamental representation Tif =1/2and C% = (N?-1)/(2N.). But

note that we use the denotations t;’,Tzf and C} for any representation of
the colour group for quarks. The quark loop contributions with the colour
structure Tr[t??] can be obtained from the QCD ones (where quarks are
in the fundamental representation) by the substitution ny — 25, k! T/,
and the contributions with the colour structure t¢t%t¢ by the substitution
1/N? — 1 —2C%/N. . One can also restore the contributions of vacuum
polarization by scalars from corresponding quark contribution in QCD by
the substitution [30, 31| ny — 23" kST7/(4(1+¢€)).

It is worth noting that the interaction (2.2) permits transitions with non-
conservation of fermion and scalar flavours. For the diagonal transitions we
omit the flavour indices.

The N-extended SYM contains ny; = N Majorana quarks and ng =

2(N — 1) neutral scalars. The matrices ( Zf)fl:bf in SYM have the form

( :f)Z:bf = Affoz'bf and the flavour matrices A” subject to the conditions
[AT]2 = —1, Tr[A"] = 0, Tr[ATA! = ngé"™ with ny = np. The Yukawa
constant in SYM reduces to gy = g/2.

As it is known, dimensional regularization violates supersymmetry, there-
fore in SYM a modification of the dimensional regularization is used which
is called dimensional reduction [32]. Hereafter to present explicitly N = 4
SYM results we use the dimensional reduction scheme, where ny = 6 — 2e.

3 Gluon Regge trajectory and Reggeon vertices

Apart from contributions of the Yukawa-type interaction (2.2), all Reggeon
vertices as well as the gluon trajectory in the Yang-Mills theories with quarks
and scalars in any representations of the colour group can be obtained from
known results with the NLLA accuracy by the substitutions discussed above.

There are two kinds of scattering vertices: with dominant "4+" and dom-
inant "—" components of particle momenta, or, in other words, in fragmen-
tation region of particles A and B. Evidently, ones can be obtained from
other by appropriate substitutions. We present the scattering vertices for
the particle A fragmentation region.



3.1 Gluon trajectory

The two-loop calculations of the trajectory were carried out in Refs. [33, 34,
35, 36, 37| and then confirmed in [38, 39]. Using the integral representation
for the trajectory in QCD [34] we obtain in D = 4+ 2¢ space time dimensions

-9°
w(—q; %) = m
d2+2€k L . .
X/m<1+g f(k,0)+ f(0,k — ) f(/f,k—%)]> » (3.1)
where 2NT(1 o)
-2 g c — €
= 7(477)2‘*6 , (3.2)
I'(z) is the Euler gamma-function, g is the bare coupling, and
N (Tt
[k, k) = AT — )
d2+2€] (El _ ];‘2)2 B B B
></ A <ln < 7 ) 20(1+2¢) —p (1 —¢€) +
29 (1 -1 4 3.3
T 0rgrvl) - - o B2 ) (3:3)
dJ(:E)Z%, ar =114+ T7e—4(1 +€)&5 — &s. (3.4)

For N =4 SYM, the coefficients a; vanishes in the dimensional reduction.
An explicit expression for the trajectory was calculated in QCD [37] only
the limit ¢ — 0. Using this result we obtain
=27 >2\€ PQ (6)

w(=q%) = -g%(q?) 2o "

w0 o (g gt 3) F @%@ 100, G

where ((n) is the Riemann zeta-function. In N = 4 SYM with the dimen-
sional reduction one has

ST -ssvan = ) g + 8@ | 262 - 2+ 0




In the MS scheme the bare coupling is connected to the renormalized cou-
pling, g,, through the relation

L ﬁo] o GNT(1—¢) By 11 4

1
—€
= 9 1 = e N = o 2%~ 38
g g} H |: +gM2NC€ gp, (47T)2+6 ]\]’c 3 3§f 36
(3.7)

In terms of the renormalized coupling, one obtains

o= (3z) T -

Lo\ 2€ —2 72
_ Bo (1 1
() [ () (o) o

67 20 8 404 112 52
X (3 —2¢(2) - gff - §§s> 57 T 2¢(3) + 2—7€f + 2—7§s + (’)(6)] :

3.2 Vertices for one-particle jets

Reggeon vertices with gluons are gauge invariant. To simplify representation
of these vertices, we will use for the polarization vector e of the gluon with
the momentum k the light-cone gauge (en2) = 0, so that
(e’ k)l-
et =elf — 2 L=nl . 3.9

s (3.9)
It worth noting that knowing some vertex in this gauge, one can restore its
gauge invariant form. Here we have used the notation (a,b); = (ay,b)).

Scattering vertices

Using results of Refs. [40, 34, 41, 42] for the one-loop gluon, quark and
scalar corrections correspondingly, we obtain for the gluon-gluon-Reggeon
vertex I'%,

/g ¢ F2(1+€) 2
.= —g(e ,e)LTgG e

10" (01 Fiqag | TP H(-0)=20(14e) -

o+ €)%ar + 2€%as 20— )¢ I'2(1+¢) "
21+ ¢)2(1 + 26)(3 + 2¢) 9L A T (4 + 2¢)
R s v qrqt
X Teigel €1y <gl —(D—-2) 7 >a2, (3.10)
1



where e and €’ are the polarization vectors of the gluons G and G’ respectively,
q is the Reggeon momentum, Tg,c is the colour factor,

a2=1—|—e—2§f—|—§s. (3.11)

For N = 4 SYM, the coefficients as vanishes in the dimensional reduction.

The quark-quark-Reggeon vertex Pg,Q with one-loop accuracy was
calculated in QCD in [43]. Scalar corrections in SYM were found in [42].
Using these results, we obtain

_ 12
Fg}-Qi = gopity (Pt —ui(p)

1 2p+
x |1— gQ(—qi)E% (% + (1 —e)+ (1) —2¢(1+e)+  (3.12)

a) — 3(3 + 26) 20}—; 1 3 — 2 R(Y)
i 2(1 4 2¢)(3 + 2¢) +( N, 1)(6 2(1+2e)) MR

5:6/2), is the contribution of the Yukawa-type interaction. We don’t
present it here in the general case because we don’t need its explicit form to
prove the validity of the bootstrap conditions. In SYM this term is absent due
to the cancellation of the scalar and pseudoscalar contributions. They have
different signs because corresponding matrix elements contain odd numbers
of gamma matrices between two matrices s in the pseudoscalar case and two
identity matrices in the scalar case.

The scalar-scalar-Reggeon vertex F}S:‘, 5, was calculated in [42] in

R
where FQ

SYM by the method developed in [44]. The calculations can be easily ex-
tended to any representation of the colour group with the result

LS s, = 900 (T s, s,

_ 21 +6) (1
x[1—f@ﬂ@;faiza(g+¢u—eymmn—zw1+q+ -
a1 —4(3 4 2¢) 207, 1 2 ¥)
+ 2(11+ 23420 ( NCS B 1) [E 7 +26D1+P§;,st

where F}S%,(};?r is the contribution of the Yukawa-type interaction. As well as

for the qu{ark vertex, we don’t present it here in the general case, because we
don’t need its explicit form. In SYM we have [42]

r2(1+¢ . ()"
TEY) — TR 52(—¢% )" 2 14
S’S glss9 (—q1) eT(1+ 2¢) ¢ (3.14)

152

10



where I, = 0 if S is a scalar and I, = 1 if S is a pseudoscalar.

Production vertex

In the Born approximation the Reggeon-Reggeon-gluon vertex 'ygl Ro
was obtained in [5]. One-loop gluon corrections to the vertex were calculated
in Refs. [40, 45, 46, 47|. In the last paper they were obtained at arbitrary
D = 4 4 2¢. With the same accuracy, the quark and scalar corrections were
obtained in [48] and [31] respectively. At arbitrary D the corrections are
rather complicated (mainly because of the gluon contribution). We present
them here in the form where only terms singular at small gluon transverse
momentum & (k = q1 — g2, q1,2 are the momenta of the Reggeons R; o) are
given at arbitrary D, but the other terms in the limit € — 0.

Vgle 'VRl(R; + 29§2T1§1R2€L(k)Q%LV“(Q1,QQ) ) (3.15)
where
G(B % q
Vi = —29TR\r, €L (q? K k%) (3.16)

is the Born vertex [5] in the light-cone gauge (e,n2) = 0,

v qQ)Z(E_E_f_S) KL unu"’Qu IQu_’_(l 5_f+é)x
’ 6 k2 qu qu_qu qu 6 3 6

» K(k_ )2 MO )
2 2 p) p)
KLai (Q%J_ - qu) qﬂ (Q%J_ - qu)

22 g2 2 e
X [Q%J_ +q5, — qquQM In ql_l} |-
1

1 QSJ_ qu Q%J_
LK g 5 @3, 2|k I
—§<k—2—§— In® =+ + -7 . (3.17)
1 91 a5
For N =4 SYM in the dimensional reduction scheme
B S [[-k21¢ w2 1 q2
Vor = T (1 -9 % - =+’ [é—ﬂ : (3.18)
€ 2 2 a5,

3.3 Vertices for two-particle jets

Now we turn to vertices which are absent in the LLA and appear in the
NLLA. They are needed in the Born approximation only.

11



Scattering vertices

We will present the vertices FI}P of the transition of a particle P to a two-
particle jet J. The vertex of the inverse transition I'f , = (F?P)*. We denote
the momentum of the initial particle £ and the momenta of the final particles
l1, l2, total jet momentum is I = I; + la, {7 = k* (remind, we are in the
particle A fragmentation region),

k2 12
k= k+n1—%—L+n2+kL, l; = a:il+n1— 2{;{i+n2—|—l1¢, 1=1,2, x1+x2 = 1.

(3.19)
The vertex of quark — quark-gluon jet transition I‘?QG}Q has the

same form as in QCD |35, 49]. It can also be written as in [50]:

F?QG}Q = 9261#@([1)272—1 [t?tﬁ(A'g(anlll —21lay) — Ag(llL - xlkl))_
— R (A <oy + waky) — Af (s = wako)) |ulk) |
(3.20)

where e is the gluon polarization vector, quark colour and flavour wave func-
tions are included in u(l1) and u(k),

AL(p) = — pi (21979 + P1*) - (3.21)

Let us present the vertices of the gluon G transition to pairs
{P1(l1), P>(I2)} in the form

T e = e (TOTRAY, (k) + TRTCAY, | (k) (3.22)

where TP are the colour group generators for produced particles in the cor-

and (TGTR) op-
PP Py P
erate with the colour wave functions of the particle produced in (3.22).

For gluon — quark-antiquark transition one has

responding representation. Generators (TRTG)

Al (k) = ﬂ(ll)ﬂ(Ag(lu_ — xlkl) — Ag(xglu_ — :Ellgl))v(lg) , (323)

with 1
AL(p) = e (" — zapy") (3.24)

12



The second term in (3.22) reads as follows (the minus sign is associated with
Fermi statistics)

I Y _
A = ~A5q(0l] =

(ll)gii (Ab(=lay +xoky) — Ab(zali — x1la1))u(la) . (3.25)

Let us note that the vertex F?QQ}G [61] can be obtained from F?QG}Q by
crossing, i.e. by the replacement

1
Tog — —, T1 — ——xl, ZQJ_ < _kJ_, ej_u — €1, u(k) — U(lg) . (326)
X9 i)

The gauge invariant gluon — gluon-gluon jet Reggeon vertex
P?Gle}G was obtained in [52]. In the light-cone gauge we have [51] for
the representation (3.22):

Aé1G2( ) QCTZGZL (.Am,p(lu_ — xlkj_) — .Aw,p(xglu_ — xllQL)) s (327)

where e 2 are the polarization vectors of the gluons G1 2 with the momenta
1172, and

1
App(p) = o (z1229"Pp" — 219" PP — 22g"PD") (3.28)

For the vertex of the scalar pair {S(l;), S(l2)} production by the
gluon G(k) [42] we have in (3.22)

Al (k) = =2(Mp(ho = aik1) = Mp(zabh 1 — 21la1) ) | (3.29)
where .
M/ (p) = xla:gp—2 . (3.30)

The scalar — scalar-gluon jet vertex can be easily obtained from the
previous one by the crossing replacement (3.26):

F?GS/}S = —29261,,, [(ﬁGﬁR)S,S(Mf(th —z1la) — M{'(lh — £C1/€))—

—( i TG)S,S(M;(—ZQHQIC) — ML —xlk))] M (p) = 212 (3.31)

13



The rest particle — two-particle jet transitions exist due to Yukawa-
type interaction. The Reggeon vertices for these transitions in SYM were
calculated in [42]. The scalar — quark-antiquark vertex is written as

iR (RE,)5 <($2/1 —af2)r (2 $2/¢)L)+

(.132[1 — Z‘llg)i (lg — ka)i

P
I0iays, = —99vti(l) 5

+(R§j)srt3<(x112 ke VN xl]%)l)] [ys)rvj(la)

J (xgll — Z‘llg)i (ll — Z‘lk})i

(3.32)

where ¢ is quark and j is and anti-quark flavour, r is the scalar flavour (.S, is
the scalar colour index); [vs], = 1 if S is the scalar, and [ys5], = i5 for the
pseudoscalar case. The crossing vertex P?Q'(h)S(b)}Q(k) is

2 " i 1— X1 l — T2
Tas.10; = _ggYﬂi(ll)Q%‘”? {tﬁ [(Rﬂ)sr} <((lz1 - xIZ)){JF Ezi - xQZ;DJF

+ [R5 ] Tt?((“h mal) T xlmﬂ bslrus(k).  (3.33)

(zoly — x1l2)3 (L —x1k)%

Production vertices

Denoting momenta of produced particles P; and Py as [; and lo, of Reggeons
Ry, Ry momenta as ¢; and g2, g1 — g2 = I3 + ls = [, we have for the jet
production vertices:

VY = 2 (TR By, (q13 0, 1a) + T TR By, py (q13102, 1)), (3:34)

where T# are the colour group generators for produced particles. Here for
quark-antiquark production {Q(l1), Q(l2)} one has [53, 54, 55]

Boglqi;li,l2) = ﬂ(h)?—fb(qulhlz)v(b) ;

. (3.35)
Boo(q1;l2,11) = =Bgo(q; 11, l2) o _ﬂ(ll)l—_,’_Qb((h;lg,ll)v(lg),
where
Jii(lie —dh1)
b(qr;ly,1l0) =
(@134, 2) z1(qr — )3 + xal? )
4 Tl gy (e = Kifor) n Kigno  daii] 1 (3.36)
A2 A2 4 zyaol? x1 29 ’
R _ 0zt . 0 no_ _ 14
b(Qlallle) =7b (Q17l1,l2)’7 s Al = (Izll Illz)l-

14



For the vertex of two-gluon {G1(l1),G2(l2)} production the result was
obtained in the gauge invariant form [52|. In the light-cone gauge (3.9) it
reads as [56]:

Ba,a,(q1511,12) =

o (AL, 22liy + a?ﬂu)) B

X192 (
2 q1l7 1 q ) )
( ) 1L le] -|-{E 12

AL

xq ¥ 1
= 4617_€2i (59??

- ¢ —2(qi,h) ] B walf g, — g (o — 1)} B
L122

x1(q1 _ll)i +$25%J_ z1 (¢ —11)3_ +$21%J_

xquﬂﬁ((h - ll)[j xlqﬁAﬁ + xgquAﬁ xlq%LllangL

Z%L(xl(Q1 - ll)i + x2li) Ai I%L(@li + xllgﬁ

2
T1T2qy (Aoilgl + lﬁAﬁ)) ) (3.37)

SN2 (a9l ¥ 2l2))

For the vertex of two scalar {S(I1)S(l2)} production one has [31]:

To — 1 (q1,A) 1
(h —z1q1)3 + 212207 | qi A3

bl

4 Bootstrap approach to the proof of the
multi-Regge amplitude form

— (3.38)

Bgs(qi511,1l2) = ZQ%LJHJJQ{ l

(g1,l1 —z1q1) 1

-2
¢t [(lh —2z1q1)3 + 212207 ]

4.1 Bootstrap relations

In QCD, the scheme of the proof was formulated in [29]. The main point of
the scheme is use of the restrictions imposed on the amplitudes with negative
signatures in all ¢;-channels by the unitarity conditions.

Signature (positive or negative) is a quantum number attributed to
Reggeons in the theory of complex angular momenta. Amplitudes with
Reggeon exchanges have corresponding signatures. At high energy it means
the corresponding symmetry with respect to the sign change of the energy
variables. The signature of the Reggeized gluon is negative, i.e. the MRK
amplitudes with the Reggeized gluon exchange in the channel ¢; are odd with
respect to the replacements s;, — —s;i, (sjx) = (ki + kj)2 for k>1>75+1.

15



For the MRK amplitudes in the Born approximation this property is fulfilled
for any t¢; thanks to the common factor s. Therefore the Born amplitudes
have negative signatures in all ¢;—channels and can be considered as am-
plitudes with Reggeized gluon exchanges in all these channels. In higher
approximations conventional amplitudes are given by a sum of amplitudes
with definite signatures (they are called signaturized amplitudes) in some set
of the t;—channels over all sets and over positive and negative signatures in
each channel. But the leading contribution is given by the amplitudes with
negative signatures in all the t,—channels. Indeed, due to the negative sig-
nature of the Born amplitudes the symmetry of the radiative corrections is
opposite to the signature of the amplitudes. It leads to cancellation of the
leading logarithmic terms in the amplitudes with the positive signatures. The
amplitudes with the positive signature even in one of the ¢;-channels loose at
least one power of logarithm in the imaginary part and two powers in the real
part. Therefore with the NLLA accuracy the real part of the conventional
amplitude presented in (2.1) coincides with the real part of the amplitude
Aé;}Q 4 With the Reggeized gluons (i.e. with the negative signatures) in all

the t; channels, R As_,0., = %A;l;}Q i

According to the Steinmann theorem [57] on absence of simultaneous sin-
gularities of amplitudes in overlapping channels (two channels s;, ;, and s;, j,
are called overlapping if either i; < ia < j1 < jo or 42 < i1 < jo < j1), the
amplitude Aé;}z 4 can be presented as a sum of contributions corresponding
to various sets of the n + 1 non-overlapping channels [58, 59]. Each of the
contributions is a series in logarithms of independent energy variables s;, j,
of the non-overlapping channels symmetrized with respect to simultaneous
change of signs of all s; ; with ¢ < k& < j, performed independently for each
k =1,..,n+ 1, with the coefficients which are real functions of transverse
momenta. Using the equality

disc,[In"(—s) +In"(s)] 0
—Ti ~ Olns

RIn" (—s) + In" ()] (4.1)

valid with the NLLA accuracy, one can obtain, with the same accuracy, the
"differential dispersion relation" [60]:

n+1 Jj—1 B 9 B
—Lm' Z discs, , — Z discs, ; Aéjwrn/s = 8—% (3? Aéﬁ}ﬂn/s) . (4.2)
I=j+1 1=0

which permit to express the partial derivatives 0/0y; of the real parts of
the amplitudes Aé;}Q 4n (divided by s) in terms of their discontinuities. The
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important point here is that with the NLLA accuracy the discontinuities
themselves can be calculated using the real parts of As_,54, in the unitarity
conditions in the s;; channels. On the other hand, the derivatives 0/0y;
determine dependence of R A> 91, /s on Ins; ;, so that using (4.2) one can
restore RAs_,94, /s unambiguously order by order in powers of In s; ; starting
from the initial conditions (in the NLLA these conditions include, besides the
tree amplitudes, one loop amplitudes at some energy scale).

As it was explained before, with the NLLA accuracy %Ai;}Q 4 can be
replaced by R As_04,, where As_,o4, is the conventional amplitude. As-
suming that R As_,04, (4.2) in the right part of (4.2) has the multi-Regge
form (2.1), we come to the relations (which are called bootstrap relations)

n+1 j—1
1 M . —
—7i lz;rldlscsj’l B lzgdlSCs,,,j Aéj”” = (W(tj+1) —w(tj)) RAzonsa -
:J =

(4.3)
It follows from the foregoing that fulfilment of these relations with the dis-
continuities in the left side calculated using R .As_,,, 42 in the unitarity condi-
tions ensures the Reggeized form of energy dependent radiative corrections.
Therefore, in order to prove the validity of the multi-Regge form (2.1) in the
NLLA (assuming that this form is correct at some scale in the one loop ap-
proximation) enough to prove that the bootstrap relations (4.3) are fulfilled.
At first glance, this problem seems insoluble because of the infinite num-
ber of these relations. However, it turns out [29] that the infinite set of the
bootstrap relations (4.3) is fulfilled if several nonlinear conditions (which are
called bootstrap conditions) imposed on the Reggeon vertices and the gluon
trajectory hold true. This statement plays a crucial role in the proof of the
correctness of the form (2.1). It was proved in QCD using the operator form
of the discontinuities [29] in the left side of (4.3). The proof remains valid for
Yang-Mills theories containing fermions and scalars in arbitrary representa-
tions of the colour group with any Yukawa-type interaction despite of change
of the fermion contributions and appearance additional scalar contributions
to the discontinuities.

Representation of the discontinuities

The operator form is defined in the space of states |G1Ga) of two t-channel
Reggeons with the orthonormality property

(G1G5|G1Ga) = 77 6(71 — /)8 (72 — 75)dg, g1 6,0, (4.4)
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Jo Ji Jie-1

K=y

[Jas1B)

Tral @

Fig. 2. Schematic representation of the discontinuity of A;:}; 4o 1D Sk pt1-
channel. The zig-zag lines represent Reggeized gluon exchange. The dashed
line denotes on-mass-shell states in the unitarity condition. The right and the
left black ovals represent the impact-factors for particle-jet and Reggeon-jet
transitions respectively. The right-angled grey blocks denote the operators
of the jet production. The blank right-angled block in the t;i-channel rep-
resents the operator e —¥r+1),

where 7; and 7/ are the Reggeon transverse momenta and G; and G/ are their
colour indices. The main elements of this form are the impact factors for
particle-jet and Reggeon-jet transitions and the operators of the BFKL kernel
K(yk — yrs1) and the jet production. Remind that we use the notion jet both
for a single particle and for a couple of particles having longitudinal momenta
of the same order. As an example, let us present the discontinuity of A;:}; 1o
in sg,41-channel (for a schematic representation of this discontinuity see
Fig. 2):

ew(an)(yo—y1)

_42(27T)D 2§l(Qk — Qn+1 — Zkl )discs,, W_HAQHQJFH = QSFJOAf X
1=k qi1
ew(@)(Wi-1—v1) .
<H’YR1 RT3 ) JkRk|< H eIC(yL 1 yl)J)e’C(yn,_yn+l)|Jn+1B>.
A I=k+1

Here the ket-states |.J,+1B) and the bra-states (J,Rj| denote the impact
factors for the particle-jet B — J,,+1 and the Reggeon-jet Ry — Jj transi-
tions respectively, K and J; are the operators of the BFKL kernel and the jet
production. The states are defined by their projections on the two-Reggeon
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states with the normalization (4.4) and the operators are specified by their
matrix elements.

The discontinuity in any s; ; - channel (i < j) can be obtained from (4.1)
by an appropriate substitution. If ¢ = 0, £ must be changed on i, all factors
besides 2s on the left from (JxRy| must be omitted and (JxRx| must be
replaced by (JoAl; if 7 < n+1, n must be changed on j—1 and |J,,+1 B) must

W(‘IJ+1)(7/J'—UJ+1) HnJrl Jm—1 eW(Q'IIL)(ym—17y7YL) Rn+1

m=j+2 fyR'mfl R q?nL Jnt1B*

be replaced by & i
G+t

The BFKL kernel consists of two parts,
K = w(f) + w(f2) + Ko, (4.5)

where the “virtual” part is given by the gluon trajectories and the “real” part
K, appears from real particle production. In the NLO

K, = K& -KPKEA, (4.6)

where A > 1 is an auxiliary parameter serving for separation of QMRK from
pure MRK, KZ is the LO (Born) real kernel and

c d
(OGIRRG105) = 5 a+ra=rf =) 1 [ f;g oA A)).

(4.7)
Here the sum is taken over all possible jets and over all discrete quantum

numbers of these jets, 79292

is the effective vertex for absorption of the jet J
in the Reggeon transition G — G2 which is related to 'yég g by the change of
signs of longitudinal momenta and the corresponding change of wave func-
tions; , .
)PP 1 dl5 d=—;

dey = (2m)"0 ( Zl ) nl 2m 4. 209(2m)P-1 7 (48)
where [; are the jet particle momenta, n is a number of identical particles in
the jet; Ay in (4.7) is the interval between the rapidities z; = 3 In[l;"/1;7] of
the jet particles. In the Born kernel the second term in (4.6) is omitted and
only one-gluon production in the LO is accounted in (4.7).

Formally the representation of the kernel by Eqs. (4.5)-(4.8) remains the
same as in QCD. The difference is in appearance of new Reggeon vertices in
the sum over J in (4.7) and in the changes of the gluon trajectory and of the
QCD Reggeon vertices because of dependence of the fermion contributions
on representation of the colour group and appearance of scalar contributions.
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The same applies to the representations of the impact factors and the operator
of the jet production. Remind that they have to be taken in the NLO in the
case of one-particle jets and in the LO in the case of two-particle jets. The
particle-particle impact-factor for the B — B’ (B and B’ can be two-particle
jets as well) transition is represented by the ket-state | B’ B) defined as

u
qgB1L

2J_ + ’CB > |B/B>B
1

(4.9)

B'B) = |B’B>A—( (20| T2 | 4 o2, ) | P22

where |B’'B)® is the LO (Born) impact factor and

(G1Ga| B'B)* =

=6'(qp — 11 —12) Z/(F%BFQB%J — r?;’zBF%l,J) dos |1 H(A — (21— yB)) :
l

J
(4.10)
Here qp = pp' — pB, z; are the rapidities of particles in the intermediate jets
and yp = In|gp1|/(vV/2pj). case when B or B’ is a two-particle jet, only the
first term must be kept in Eq. (4.9); moreover, only the Born approximation
for this term must be taken in Eq. (4.10).

For completeness let us present the impact-factor of the A — A’ tran-
sition, although it is not necessary since it can obtained from (4.9), (4.10)
by the “left «+» right” exchange, which means | ) <> ( |, A & B, 7; <> —7%,
2 =21, YA & —YB, G & — Qi + < —.

(A'A] = <A’A|A—<A'AIB( ()00 || 4w (i) | 22| 1 8 A )
gA L qAL
] 11)
(A'A|G1Go)™ =
=6 (qa - —72) Y / (19, % ~1%,1%,) d¢AH9( (94— =),
A
(4.12)

where g4 = pa —par, ya = In(v2p/lgaLl).
Accordingly, the Reggeon-particle impact factors are defined as

w(q(QiJrl)J_)

- - k2
|J1R7+1> = |J1'R1'+1>A — < 5 hl il

lqG+1y L — T1Lllq+1)L — Toil -
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2
kiL

’ k7,
lqi+1)L — "1l

w(ru w(ru ‘
|qi+1)L — T2L |21

+

+ K§A> |JiRi1)” (4.13)

<g1gz|J_¢Ri+1>A = 5L(Q(i+1) + ki —r—rg) X
X Z/ (751R1+1F53J - 752R1+1F33J) d¢J HH(A - (Zl - y7))a (414)
J l
and
ki

|Qu - 7”u||q7¢ - 7”2L|

2
(iRi| = (JiRi|® — (J:R;|P <w(‘12u) n

W(@L) ku_

2 lgii — 71 |f21

2 lgin — 711 |f10

+ KEA) . (4.15)

(JiRi|G1G2)™ = 6 (r1 4+ 1o —qi + ki) x

7 !

And finally, the operators J; for production of jets J; are defined as
Gi= G5~ (RGP + FERE) A
(G162 T1G1Gh) = 0% (r1 + 2 — ki — 1] — 1)

J; 1 ! 2 Ji 1 / 2
X [nggﬁ (r2 = 12)7157 06,65 +7G,,07 (11 — 11)m 1 06,6 +

N Z llHrAdzig( {J,G} g2g2+ G ngz) (4.17)
— Jyi—a 202m)P Yo, Yo TVGe Ve ) |- :

Here the last term appears only in the case when J; = G; is a single gluon,
the sum in this term goes over quantum numbers of the intermediate gluon G

and the vertices must be taken in the Born approximation. At that 'yé‘]g,;} is

the vertex for production of the jet consisting of the gluons G; and G, 7g292

is the vertex for absorption of gluon G and production of gluon G; in the
G2 — G5 transition; it can be obtained from 'Yéfgf} by crossing with respect

to the gluon G.
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4.2 Bootstrap conditions

In QCD, it was proved in [29] that an infinite number of the bootstrap rela-
tions (4.3) providing the validity of the multi-Regge form (2.1) in the NLLA
is fulfilled if several bootstrap conditions are performed. This statement
remains correct for Yang-Mills theories containing fermions and scalars in
arbitrary representations of the colour group with any Yukawa-type interac-
tion, because formally all components of the discontinuities entering in the
bootstrap relations (4.3) differ from corresponding components in QCD only
by appearance of new Reggeon vertices and by the changes of the gluon tra-
jectory and of the QCD Reggeon vertices due to dependence of the fermion
contributions on representation of the colour group and emergence of scalar
contributions. Moreover, the bootstrap conditions have the same form as in
QCD. They ere the following.

The particle-jet impact factors are proportional to their Reggeon vertices:

(A'Al = g(Ru(qa) T 4, |B'B) = g% gl Ru(as)) . (4.18)

where T, , and T'%, 5 are the Reggeon vertices, g4 = pa — par, qp =
pp —pB, and |R,(q)) are the universal (process independent) states.
The states |R.(¢q)) are the eigenstate of the kernel IC with the eigenvalues

w(q)

(K — w(@))|Ru(9)) =0, (Ru(@)|(K —w(q) =0. (4.19)
Moreover, they satisfy the orthonormality relations
2
gt ’or 1 N\ sRR'
S » = — — . 4.2
22m)D1 (R, (¢)|Rw(q)) = —w(t)d (g —q')d (4.20)

The Reggeon-particle impact factors and the jet production vertices sat-
isfy the conditions

941 (Ro(@)|Ti + (TiRi| = g7 g, (Ru(@it)],

QQ(2¢+1)J_ji|Rw(Qi+l)> +|JTiRit1) = QV%ERHJRw(Qi» . (4.21)
The summation over Reggeon colour index R in the right-hand sides of Eqgs.
(4.18) and (4.21) is assumed.

5 Proof of fulfilment of the bootstrap
conditions

In QCD, the bootstrap conditions (4.18)-(4.20) were formulated in [61, 62,
63, 64, 65, 67] and their fulfilment was proved in [68, 62, 51, 49, 64, 69, 65,
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66, 70, 56]. The bootstrap conditions (4.21) were derived in [67] and their
fulfilment was proved in |71, 72, 73|.

To extend the proof to Yang-Mills theories of general form one has to take
three steps. First, one needs to generalize the proof of the QCD bootstrap
conditions to the case of fermions in arbitrary representation of the colour
group. Second, one has to prove that contributions of scalars in these condi-
tions don’t violate their fulfilment. And third, one has to prove fulfilment of
new bootstrap conditions.

5.1 Impact-factors for particle-jet transitions

We have to separate consideration of one-particle and two-particle jets. Cor-
responding impact factors we will call particle — particle and particle
— jet ones. In the NLLA the first ones must be taken in the NLO, while
for the second ones the Born approximation is sufficient. Let us start with
particle-particle impact factors.

5.1.1 Particle — particle impact-factors

In QCD they are the gluon and quark ones. The first of them was obtained in
[51]. The derivation presented there permits to generalize the quark contri-
bution to this impact factor to any representation of the colour group. Using
also the results of [42] for the scalar contribution, we obtain

(G'G|G1G2) = 61 (q — 11 — 12)g%e(pc) Lpe(per) 1, TE GTH 6, %

2 . )
X {—QTI [1 - 92%(—(11)6 [K1 +

((at) + () 1)z o204 04 i)
220 1+ v+ 29 - gt i

2 2(14 €)2(1 + 2¢)(3 + 2¢)
ng qltql/ _ F2(1 + 6) e 2a
(- 0Ll ) p Sy s (5.1

where ¢ = r1 + 5 and

23



-~ (4m)2r (1 + 26 (—q?) " [ AP q?
4r(1—e)r2(1+e)L /(277)]3‘1 m( ]

1= —
1 r2\° r2 0\ € TP re
1 (s- 1_L> _(2_L>)+_1n<1_L>1n(2_>_4€2 3) 4+ O(e)
26( <CJE q? 2\ ¢? q? (@) +0t)
(5.2)
Remind that

a1 =11+ 7e—4(1 + €)&f — &, ag = 1+€e— 265 + &, (5.3)

and the coefficients a; and as vanish in N = 4 SYM in the dimensional
reduction.

Comparing (5.1) with gluon-gluon-Reggeon vertex (3.10) we see that the
bootstrap relation (4.18) is fulfilled if

LI (1+e€
<Rw(Q)|gng> = 5l(q -7 = 7“2)ng2 <1 - QQM

R 2\ € 2\ €
><|:K1+ <(n—§> + (%) —1> X
qr qy

x{%e (14 26) — (1 +e) + 2(1+23)1(3+26)}—

(—q7) %

U@ - v k0] ) 6a)

The quark impact factor in QCD was obtained in [49]. The calculations
presented there can be easily generalized to any quark representation of the
colour group. Scalars give contributions to the quark impact factors due to
their gauge and Yukawa-type interactions. The first ones come from vacuum
polarization diagrams only and are obtained from corresponding quark con-
tributions by the replacement £y — &s/(4(1 + €)). As for the second ones,
fulfilment of the bootstrap conditions (4.18) for them was proved recently [42]
in the general form, for all impact factors, using the analytic properties of
the amplitudes whose imaginary parts are associated with the impact factors
and the vertices in the bootstrap conditions (4.18). Using these results, we
obtain
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(Q}QilG:1Ga) =

, L, 21+ =
=6 (qg—r1—12)0pig% Uy (p )tf%ui(p) Tgpigz 1—92ﬁ(—ﬁ) {KH—
rﬁ ¢ 7"22L ¢ 1 ay
* <<Z) * <Z) 1) (geret 200+t gt )¢
1 ar — 3(3 + 2¢)
e T 2000) = (149 = Y1420 + 5 S

2C% 1 3 — 2 N RY) R
" ( Ne 1) (6 2(]— +2€)>:|‘| u (q 1 TQ)PQ}-Qi ng1g2 : (55)

Fulfilment of the bootstrap condition (4.18) for the quark impact factor fol-
lows from comparison of this result with (3.12) and (5.4).

To obtain the impact factors for scalar particles we use the results of [42].
In this paper they were calculated in SYM and in the special scheme which
simplifies check of the bootstrap conditions (we call it bootstrap scheme).
Generalization of the results of [42] to any representations of the colour group
for quarks and scalars is carried out in the same way as for the quark impact
factors. Going well to the standard scheme with the help of the equality

_ r2(1
(RE@ILIG10) = 540 — i~ ra) T, 0% i g (a2
~ 2\ r2 \© 1
x{—Kl—l—((l—é) + (2—§) ) (——w(1)—w(1+e)+¢(1—e)+w(1+2e)>—
q; q; 2€
LERERERE))
<qf> ln(qf 22 In )] (5.6)
where
(G1G5UK|G1Ga) =

2.2 "o I\«
2l / a o Tt (md | (m—r)e
=g 0o (rp+ry—mr — TQ)ngnggggé (— - =X

(27-[-)D71 2 2

ro (=)l
TIQLa (742 - Té)la Ki 1 Ki 1 A1 1B
7 1 =_In|——— K
x ( oy + (ro —1h)2 ) " [(r’l — rl)i} 2 n{(rl — r’l)i} (G1G21K:161G2)
(5.7)
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and K is defined in (5.2), we obtain

1-g2 (1 +¢)
el'(1 + 2¢)

* ((qf)* <q_f)> (5 + v +20 —v01 49+ graSrag )

F20(1) — 20(2 + 2€) + (2§5> G - ﬁ)]ﬁ-

—Hsl(q A T'Q)PS’(YS) nglg2 : (5.8)

(S1:8:1G1G2) = 6" (q—r1=72)0rr6* (T )51, 5, T4,

()|t

Fulfilment of the bootstrap condition (4.18) for scalar scattering follows from
comparison of this result with (3.13) and (5.4).

5.1.2 particle — jet impact factors

For particle — jet transitions A — A’ = {P; Py} the bootstrap condition
(4.18) takes the form

({P1P2}A|G1Ga) = gT {5, pyy 4 (Ru(9)|G1G2) , (5.9)
where
({PLP}A|G1Go) = 6 (k — k1 — kg — 11 — 7”2)(2 F%2P1P }A,FilfA—i—
{A"}
+ 3 TG T D T Db ) }A) —{G1 & G} (5.10)
{P/} {P;}

As it was already pointed out we need to consider Egs. (5.9) and (5.10) in
the LO only. In this approximation fulfilment of the bootstrap conditions
(5.9) can be proved without explicit forms of the impact factors [42]. Indeed,
using the old-fashioned perturbation theory we can write

e _ Z V{CD}B’Pg/B Z Fgch{C'D}B
{CD}B o 2€Bl(€c+€D—GB/) o 2€B(€B_€D_€C’)
+3 op Viepys (5.11)
I 2eplep —epr — o)’ )
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where Vipcy 4 is the vertex of the A — BC' transition in which all particle
momenta are on the mass shell and all particle polarizations are physical. It
is easy to see that in the impact factor (5.10) the contributions resulting from
use for I‘%Dl Py A/ the last two terms in the representation (5.11) cancel the

contributions resulting from use for Fflgl, PatA and F%},l Pi}A the first term in

(5.11). Further, the sum of the contributions coming from use for F%}){ PatA

the third term in (5.11) and for Pf}l P}A the second term cancel each other

with account of the antisymmetrization {G; <> Ga}. After these cancellation,
it’s easy to see that fulfilment of (5.9) follows from the relation

> T5uTE, —{G1 < Go} = gT4 6, TE 4, (5.12)
B

which is the LO bootstrap condition for the particle-particle impact factors.

5.2 Bootstrap conditions for the eigenfunction of the
BFKL kernel

Fulfilment of the bootstrap conditions (4.19) and (4.20) were proved in QCD
in [68, 62, 63, 69, 70]. In fact, the proof can be applied to Yang-Mills theories
with quarks and scalars in any representations of the colour group and with
any Yukawa-type interactions. First, the kernel K, the eigenstate |R,(q))
and the eigenvalue w(q) don’t depend on the Yukawa-type interactions at all.
For the kernel it follows from its definition (4.5) — (4.7) and from the explicit
form of the Reggeon production vertices presented in Sections 3.2 and 3.3; for
the trajectory and for the eigenstate |R,) it is seen from their explicit forms
presented in (3.1) — (3.3) and (5.4). Second, it’s seen also from these equa-
tions that the quark contributions to the trajectory and to the eigenfunction
depend on the quark representation only through £y and the scalar contribu-
tions is obtained from the quark one by the replacement &5 — & /(4(1 + ¢)).
The same is true for the BFKL kernel in the antisymmetric adjoint represen-
tation of the colour group [31, 74] which enters into the bootstrap condition
(4.19). Therefore generalization of the proof of fulfilment of the bootstrap
conditions (4.19) and (4.20) presented to Yang-Mills theories with quarks and
scalars in any representations of the colour group is trivial.
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5.3 Bootstrap conditions for particle production in the
central rapidity region
In the NLLA, the bootstrap conditions (4.21) has to be fulfilled both for the

production of a single gluon and for the production of a two-particle jet. In
the last case it has to be considered in the LO. Let’s start with this case.

5.3.1 Two-particle jet production

The jets can be two-gluon, quark-antiquark and two-scalar ones. Let us
denote the particles in the jet P; and P». The impact factor for transition of
the Reggeon R; into the jet has the form

{P1P}R1|G1G2) =

=0"(qu—li—la—r1—12) (Z {V}zlflg? }F%P, + Wi{%lfg?}r%fpf}+
{r'}

iy rf;lpzwglgl) (G oG (5.13)

{G"}
where ¢; is the Reggeon momentum, [y, l5 are the particle P; and P, mo-
menta respectively, r1 and o are momenta of the Reggeized gluons G, and
Go. The vertices T'Et, , are defined in (3.10)—(3.13) (remind that here we need
them in the Born approximation only), Fgl R, 18 given by (3.16), the vertices
P?Png}G and 71{21;#:2} are defined in (3.22) and (3.34). The matrix element

of the jet production operator entering in the bootstrap condition (4.21) can
be written as

7 1 Py P.
(Ruo(q1)| TP p,1G1G2) = g6 (q1 — 1y — I — 11 — 13) (Tﬁbémﬁ;éfﬁ
1
e e, ) — {61 Ga} 5.14
e (I +7m1)3 (2 + 7“2)3_79191’79292) {G1 < G2} (5.14)

The second term here exists only when P, and P are gluons.

The impact factor (5.13) and the matrix element (5.14) contain six in-
dependent colour structures. The can be chosen as {T*T*T¢}g,s,, where
T are the colour group generators for produced particles and a, b, ¢ are per-
mutations of Rq,G1,Gs. Equating the coefficients at these structures in the
left and right sides of the bootstrap condition one obtains six equation. How-
ever, due to symmetry of the bootstrap condition with respect to interchange
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P < P, and antisymmetry with respect to interchange G; <+ G, only two
of these equations are independent. The structure T T91T92 gives

—Bp,p,(qu3l1, 12 +120) + Cru(r1, q) Al p, (@1 —11)—

2
_@qlq_lit.l)QBP1P2(Q1 - rlL;h,lQ) = —BP1P2(q1;l17l2) . (515)
1

Here Bp, p, are defined in equations (3.35), (3.37), and (3.38). Quantities
A’;;l Pz(k) are defined for quark-antiquark, two gluons, and two scalars in
Eqgs. (3.23), (3.27), (3.29) correspondingly. And lastly,

2
Cru(ri,q1) = =2 (Qu - (qlq_lijﬁl)g(ql - 7‘1)¢> . (5.16)
L Iz

Direct substitution of these expressions shows that the condition (5.15) holds.
The second equation can be obtained using the colour structure
T9 TR T%, It looks as

— Bp,p,(qu;li +111,12) — Bp,p (qusla + 121, 11)—
= Cru(r, @) A p (@1 — 1) = CLu(r2, 1) A, p (@1 — 72)+
2, (BPng(QI —ri115l1,l2)  Bpyp (g1 — 7”1¢;l2,l1)) _
(fh - 7”1)3_ (Q1 - 7”2)3_
(ejlﬂicl-u(rl’ b+ 7'1)) (GZiCLH(TQ’ Iy + 7'2))
- (L +7”1)2¢(l2 +T2)3_ -

(5.17)

Here, the last term in the left-hand side appears only in the case of two-
gluon jet production. Check of fulfilment of (5.17) can be performed by
direct substitution of the expressions (3.35)-(3.38), and (3.22)—(5.16). The
check can be simplified by taking the sum of (5.17), (5.15) and (5.15) with
the substitution P <> P», 11 <> 72, that gives

—Bp,p(qi;10 + 711, 12) — Bpyp (g1 12, L +710) — Bpyp, (g1 L, lo + 1210 )—

11 Coulri,li + 1)) (€31 Crp(ra, la +12)
SOt - e (I + r11))2) ((l;i rz)uz( ) =
1 1

= —Bpp,(q1;11,12) = Bpyp (152, 1h) - (5.18)
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5.3.2 Bootstrap conditions for the Reggeon-gluon impact factor

In QCD, the bootstrap conditions (4.21) were proved in Refs. [71, 72|. The
proof was generalized for SYM theories in [42]. Here we extend the proof to
Yang-Mills theories with fermions and scalars in any representations of the
gauge group.

First,we note that in the NLO the Yukawa-type interaction does not play
any role in the conditions (4.21). Then, the basic colour structures can be
chosen in the same way as in QCD:

Te[T9 7T TR, %TR;%T%'G, %TR;%TQC';'G. (5.19)
The first structure is symmetric with respect to the replacement G; < Go.
The second and third structures, which are referred to as the tree structures,
are chosen to be identical to those in the Born impact-factors. Convenience
of the choice (5.19) is caused by that the virtual corrections appear only
at the tree structures and that the coefficients at the symmetric structure
are antisymmetric with respect to the replacement r; <> 9 of the Reggeon
momenta because the total antisymmetry of the components of the bootstrap
condition (4.21) (see (4.13) (4.17)).

As well as in [72, 42], consideration of the bootstrap condition (4.21) can
be simplified by using of the bootstrap scheme, where

(GRi|. = (GRi(A-Th), (Ru(@)l = (Rul@)|(1=Th), G- = 1+U)G(1—Th),

(5.20)
where Uy is defined in (5.7), k is the momentum of the gluon G. Use of this
scheme permits to avoid the calculation of the most complicated integrals
both in the Reggeon-gluon impact-factor and in the matrix elements of the
gluon production operator. In this scheme the transformed eigenfunction is
calculated exactly in D = 4 + 2e:

(Ro(q1)1G1G2)s = (Ru(q)|(1 = Uy)[G1Ga) =

=6 (g1 — 1 —r2)TH, (1 — G R (r1, r2)> ; (5.21)
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Ry (r1,7m2) =

2 € r2 € r r9)2 T €
:(_(“+r2>2i)eerr((11:22){[(r1 ﬁ@)’j} m[( 1;};)% - [(n ﬁ@)’j} .

X In [(rl +2r2)l}+({(7"1 2#2)3_}6—’— {(7”1 2#2)3T - 1)(% o {ﬁ} "

a1
ai
Y1 =€) = (1) + 201 +20) = 201+ )+ 5o 26)> } . (5.22)
With O(e) accuracy
=R 1 otk ()t iy 5,
By(ri,ma) = 2 —§ln [ r2 ri }—l—ln [(rl —|—r2)i} In [(rl +T2)i:|+
1 4

Using the results of [71]-[73], [42], we obtain for the part of the trans-
formed impact-factor with the tree color structure:

(q1—r1)7 qi,

2 (] CANRNEA NP
Xll ’ <ln[<mfi>ﬂln[ri i [T

(GR11G1G2) stree = J\/,,,Tgl’nggG{ (u — ‘h—L) X (5.24)

+

_ k# s _ 2 _ 2 T2 ’1"2
0|3 (- 3) (nf 2 o] -l [ ]) +
L q1—k 0 (kyq1—k
(o 2 BB ) 1 )
N —7,T i (ra,k
—((ar = o) lmmamale — it L2 Y gy — g k) —
_(qﬁ% — (¢ — 7”1)’1%)1(Qu,7‘u) -

Y EH
- (E:ﬁri;?i - ﬁ)R’“(rl’% —r1) = Vi@ —ri,r2) +

m ©w ’ ’
+({11_L - :%)Rk(rla"ﬁ) + VIL(Q17Q1 - k)] } _M‘Tg1nggCiG{T1 < TQ} ’

2
a7

where

Ny=6 (g1 —k—r1—r2) 2g2qﬁejlt(l€) , (5.25)
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VH(q1,q2) and Rg(r1,72) are defined in (3.17) and (5.23) respectively,

1 2 3
dx zqr, + (1 —x)g
Hqii,q01) = / In | T B
(q11,921) o (zq + (1 —2)g)? (1 —z)(q1 — q2)%
Hqii,q20) =11, q1r — q21) = I(g21, G20 — qu1) - (5.26)

Corresponding part of the matrix element of the gluon production operator
is

a1 (a1 7"1)L

_ i r3 i (q1—r1)
1l [ g mf22])
_ EAY EAY 2 2
) ll B §<1H[(qlq%f)ﬂ m{(qlkim} —ln[(qu;l)i} ln[’f_i})] .

3 [(qﬁ il L ) (g k)

QQQ%l <Rw (q1)|é|g192>*t1'ee - MLTgl,nggG;/G{ (q%_L - (lZl:Tl)j) X

KM qu
(- 5) <

i

—((ql — 1)l (@) K (Tzk’éju )I(Qu —ri1,k) —

(111 Tl)J_

(qﬁ% — (¢ — Tl)’i%)ﬂ%bﬁl) -

_<§,q]1_:3? ]1:2 >Rk(rl"h —r1) = VHaq —7“1,7‘2)] } -

_NHTgQQTgﬁ’G{n “ 7"2} . (5.27)

The forms (5.24) and (5.27) are suitable to check the bootstrap condition
(4.21). It’s easy to see using them that
(5 ).
kL gy

X (1 — 37 Ry (r1, 7“2)) +3V* (. — k)] = 97, ry (Rw(q2)1G1G2)« . (5.28)

<GR1 |g1g2>*tree+92q%¢ < (Q1) |g |glg2>*t1ee - I glgz T}% Ry

The last equality follows from (3.15), (3.16) and (5.21).
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For N=4 SYM in the dimensional reduction scheme (5.24) gives the result

27]
<GR1|g1g2>*tree - (529)

, , (g1 —r1)" w =2 —r)?2 k2
:NMTglngQQG{((Zi_;)Qi — 8 [1- 97<1n[<q1kim] In| 5] +
2 2 2 g2
i o o)+
_ s L r k2 k2
o ) sl ()

+(Qf ((“’Zlukh K (ka1 — k)*)l Qi k1) —

((fh - 7‘1)/1 (q(lql Tlrjlr)Z)L k“ (Tz’k)L)I QL —7ri,kl) —

( polanple (Ch—rl)lj_%)I(qlLvrll)]}_

N1 g2
_MLT}%nggCiG{Tl <~ 7”2} s

and (5.27) becomes
QQq%J_ <Rw (q1)|é|g1g2>*t1'ee - (530)

[ el ' (ga=r1)" g2 [ 4 (=K
M‘TR1Q1T92G{ (ﬁ - (qifri)i) [1 -5 (4 e

2 Cp)2 o2
ql_L} 1n|:(f11 (k%))é(Iu} _ 6<(2)>

—|—ln[(q1 kr:lh ln[fz—i} + 1n{rz
L 21 1L

L

|
1 (vl ] vl ]

+ 4R —6C(2)>1 -
| (s -t ) )
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—((Ch _ rl)li ((11—7“1,7’22)J_ k“ (r2,k)¢)1(qll — i, kl) -

(111*T1)J_
. qu (q1,m1) 0 ( —7‘) w(r,q—r1)1 I( r ) .
W R q1 U1l -m)3 qii,T1L
_/\/HTgllgngCi,G{Tl <~ 7"2} .

The part of the Reggeon-gluon impact factor with the symmetric colour
structure comes from real gluon production only. It has the form [72]

—2 1 —r M F2 1+e
(GR1|G1Go) wsym = —NuFE T[T B=TCTH TR [y dxl{%m(ée; x

X2(_1]i1226 I ( z1 k' + (=) (r2 —x1k? )) %

ex; (rotz1k)? (g1—r1)%2 (ratz1k)?

« 1n |:(7’1+372k)i(f11—h)i} (q1—r1)" %

PR (‘h Tl)J_ 1

Xl |:(T1+I1k)L(T2+I1k)L(T2+I2k)L:| + kQ wl 1 |:(’I"1+$1k)) :| o (5.31)

azry 3, (k+r2)? T

ai, T (ri+k)3 i,

qu 1 [(Tlﬂzk) (T1+$1k)i}}+
./\/NTVLTr[ngTGTngRl fol dxl{rl VRS 7“2} (5.32)

and equal to —g%¢? | (R, (¢1)|G|G1G2) sym, that means fulfilment of the boot-
strap conditions (4.21). Note that the symmetric colour structure is nonpla-
nar and therefore vanishes in the limit of a large number of colours.

6 Conclusion

In this paper we have presented the proof of the multi-Regge form of multi-
ple production amplitudes in the next-to-leading logarithmic approximation.
The proof is carried out for Yang-Mills theories with fermions and scalars
in arbitrary representations of the colour group and with any Yukawa-type
interaction. It is based on the bootstrap relations which follow from compat-
ibility of the multi-Regge form with the s-channel unitarity and connect the
discontinuities of the multiple production amplitudes in invariant masses of
various combinations of produced particles with amplitude derivatives with

34



respect to rapidities of these particles. The discontinuities are constructed
from several blocks which, in turn, are expressed in terms of the gauge boson
(gluon) trajectory and the Reggeon (Reggeized gluon) vertices. It turns out
that performing an infinite number of these relations is sufficient to fulfill
several bootstrap conditions imposed on these building blocks. We have pre-
sented explicit expressions for the gluon trajectory, all the Reggeon vertices
and all the blocks entering into the discontinuities of the multiple production
amplitudes, and have demonstrated fulfilment of the bootstrap conditions.
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