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† e-mail address: fadin@inp.nsk.su
‡ e-mail address: roberto.fiore@cs.infn.it
§ e-mail address: lipatov@thd.pnpi.spb.ru
¶ e-mail address: alessandro.papa@cs.infn.it

c©Budker Institute of Nuclear Physics, SB RAS



.

1 Introduction
The BFKL equation for the Pomeron wave function in the color singlet rep-
resentation is well known [1]. In particular for the description of total cross-
sections at high energies

√
s its simple form at vanishing momentum transfers

|q| =
√
−t = 0 is used. The integral kernel of this equation was calculated

in the next-to-leading order (NLO) for QCD [2] and for N = 4 SUSY [3].
But the BFKL approach is applicable also for arbitrary t-channel color states
constructed from two gluons. The corresponding NLO kernels at momentum
transfers q 6= 0 are known both in QCD [4] and in N = 4 SUSY [5]. For
the phenomenological applications the most important cases are the color
singlet states constructed from two or several reggeized gluons. The cor-
responding Regge poles appear in the amplitudes having the antisymmetric
adjoint representation (the f -coupling) in the t-channel. The concept of gluon
reggeization was formulated on the base of the fixed-order calculations [1] and
was checked in the leading logarithmic approximation (LLA) with the use of
the so-called bootstrap equations [6], which follow from the compatibility of
the multi-Regge form of production amplitudes with the s-channel unitarity.
Later the bootstrap equations were constructed in the NLO [7]. Now the
fulfillment of the corresponding relations in the NLO is proved (see [8] and
references therein). Note that one can use the effective action for the calcula-
tion of the gluon Regge trajectory and the reggeon couplings in upper orders
of perturbation theory [9].

There are at least two other reasons for the significance of the BFKL ker-
nel in the adjoint representation. Its first application is related to the Bartels-
Kwiecinski-Praszalowicz (BKP) equation [10]. This equation describes bound
states of several reggeized gluons, in particular the Odderon which is a C-
odd three-gluon state. In the last case, the pair-wise part of the NLO BKP
kernel contains the NLO BFKL kernel for the symmetric adjoint representa-
tion (the d-coupling) [11]. Note that the difference between the symmetric
and anti-symmetric representations appears only in NLO and even in this
case the corresponding kernels coincide in the limit of large number of colors
or provided that all particles in the action belong to the adjoint representa-
tion of the gauge group, as in the N = 4 SUSY. Another application of the
BFKL approach was suggested in the framework of N = 4 SUSY to verify
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and generalize the Bern-Dixon-Smirnov (BDS) ansatz [12] for the production
amplitudes with maximal helicity violation in the limit of large number of
colors. It gave a possibility to find the high-energy behavior of the remainder
function for the BDS ansatz [13, 14, 15] and to establish the relation of this
problem with an integrable open spin chain [16].

The remainder function for the 6-point scattering amplitude in the kine-
matical regions containing the Mandelstam cut contribution was calculated
recently in NLO [17], reproducing the two-loop expression for this function
suggested by L. Dixon and collaborators [18]. It was done using the NLO
BFKL kernel for the adjoint representation of the gauge group with sub-
tracted gluon trajectory depending on the total momentum transfer ~q. The
eigenvalues of the kernel at large ~q 2 were found and the BFKL equation was
solved assuming the Möbius invariance of the modified kernel K̂ (with an
omitted factor ~q 2) in the two-dimensional transverse momentum space. The
existence of the Möbius invariant kernel K̂ follows from general arguments
related to the dual conformal invariance of the remainder function. However,
the known NLO expression for K̂ obtained in the standard approach is not
conformal invariant. In principle, this does not contradict the above assump-
tion, because the NLO kernel is scheme-dependent. But for the verification
of our assumption a similarity transformation reducing the standard kernel
to the Möbius invariant expression should exist. Below we construct such
transformation in the momentum space explicitly.

2 Standard and Möbius invariant forms of the
kernel

The modified BFKL kernel K̂ for the two-gluon composite state in the an-
tisymmetric adjoint representation is obtained by subtracting the gluon tra-
jectory depending on ~q and extracting the factor ~q 2 from its initial form:

~q 2 K(~q1, ~q
′
1 ; ~q) = δ(2)(~q1 − ~q ′1 )~q 2

1 ~q
2
2

(
ωg(−~q 2

1 ) + ωg(−~q 2
2 )− ωg(−~q 2)

)
+Kr(~q1, ~q

′
1 ; ~q) , (1)

where ~qi and ~q ′i for i = 1, 2 are two reggeon momenta, ~q = ~q1 + ~q2 =
~q ′1 + ~q ′2 , ωg is the trajectory and Kr is the contribution coming from real
particle production. The term ωg(−~q 2) is subtracted because the modified
kernel is used for finding the high-energy behavior of the conformal invariant
remainder function to the BDS ansatz containing the corresponding Regge
factor.
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Taken separately, the trajectories and the real part are infrared-divergent.
It is known that the divergences are canceled in the singlet (Pomeron) kernel.
It occurs that they are canceled also in Eq. (1), just due to the subtraction
of ωg(−~q 2). The cancelation takes place because of two important proper-
ties: first, the singular terms of the trajectories do not depend on reggeon
momenta, and second, the singular contribution to the real part of the kernel
for the adjoint representation is two times smaller than the similar contribu-
tion to the Pomeron kernel.

Therefore, the modified kernel can be written in the form (cf. [17])

K(~q1, ~q
′
1 ; ~q) =

~q 2
1 ~q

2
2

2~q 2
δ(2)(~q1 − ~q ′1 )

(
ωg(−~q 2

1 ) + ωg(−~q 2
2 )− 2ωg(−~q 2)

)
+Kf (~q1, ~q

′
1 ; ~q), (2)

where both terms are infrared-finite. In particular,

ωg(−~q 2
1 ) + ωg(−~q 2

2 )− 2ωg(−~q 2) = −αsNc
2π

(
1− ζ(2)

αsNc
2π

)
ln

(
~q 2
1 ~q

2
2

~q 4

)
.

(3)
Note that for the gauge coupling constant we use the dimensional reduction
instead of the dimensional regularization which violates supersymmetry. This
corresponds to the finite charge renormalization

αs(µ)→ αs(µ)

(
1− αs(µ)Nc

12π

)
. (4)

One can write αs instead of αs(µ), because in N = 4 the coupling constant is
not running. Using the results of [11] for the contribution Kf and an integral
representation for the difference of the trajectories obtained in Eq. (3), we
present the modified kernel as follows:

K(~q1, ~q
′
1 ; ~q) = KB(~q1, ~q

′
1 ; ~q)

(
1− αsNc

2π
ζ(2)

)
+δ(2)(~q1−~q ′1 )

~q 2
1 ~q

2
2

~q 2

α2
s N

2
c

4π2
3ζ(3)

+
α2
s N

2
c

32π3
R(~q1, ~q

′
1 ; ~q) , (5)

where KB is the leading order kernel. It can be written in a form which is
explicitly conformal invariant,
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KB(~q1, ~q
′
1 ; ~q) = −δ(2)(~q1 − ~q ′1 )

~q 2
1 ~q

2
2

~q 2

αsNc
4π2

∫
~q 2 d2l

(~q1 −~l)2(~q2 +~l)2

×

(
~q 2
1 (~q2 +~l)2 + ~q 2

2 (~q1 −~l)2

~q 2~l 2
− 1

)
+
αsNc
4π2

(
~q 2
1 ~q
′ 2
2 + ~q ′ 21 ~q 2

2

~q 2~k 2
− 1

)
. (6)

Furthermore, the last term in the kernel (5) is written as

R(~q1, ~q
′
1 , ~q) =

1

2

(
ln

(
~q 2
1

~q 2

)
ln

(
~q 2
2

~q 2

)
+ ln

(
~q ′ 21

~q 2

)
ln

(
~q ′22
~q 2

)
+ ln2

(
~q 2
1

~q ′ 21

))

−~q
2
1 ~q
′ 2
2 + ~q 2

2 ~q
′ 2
1

~q 2~k 2
ln2

(
~q 2
1

~q ′ 21

)
− ~q 2

1 ~q
′ 2
2 − ~q 2

2 ~q
′ 2
1

2~q 2~k 2
ln

(
~q 2
1

~q ′ 21

)
ln

(
~q 2
1 ~q
′ 2
1

~k 4

)

+4
(~k × ~q1)

~q 2~k 2

(
~k 2(~q1 × ~q2)− ~q1

2(~k × ~q2)− ~q2
2(~k × ~q1)

)
I~q1,−~k

+ (~q1 ↔ −~q2, ~q ′1 ↔ −~q ′2 ) . (7)

Here ~k = ~q1 − ~q ′1 = ~q ′2 − ~q2, (~a×~b) = axby − aybx and

I~p,~q =

∫ 1

0

dx

(~p+ x~q)2
ln

(
~p 2

x2~q 2

)
. (8)

This quantity has the symmetry properties

I~p,~q = I−~p,−~q = I~q,~p = I~p,−~p−~q , (9)

which are evident from the representation

I~p,~q =

∫ 1

0

∫ 1

0

∫ 1

0

dx1dx2dx3δ(1− x1 − x2 − x3)

(~p 2x1 + ~q 2x2 + (~p+ ~q)2x3)(x1x2 + x1x3 + x2x3)
. (10)

Other useful representations are

I~p,~q =

∫ 1

0

dx

~p 2(1− x) + ~q 2x− (~p+ ~q)2x(1− x)
ln

(
~p 2(1− x) + ~q 2x

(~p+ ~q)2x(1− x)

)

=

∫ 1

0

dx

∫ 1

0

dz
1

(~p+ ~q)2x(1− x)z + (~q 2(1− x) + ~p 2x)(1− z)
. (11)
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In the kernel (5) the first two terms are conformal invariant (we remind
that in our normalization the integration measure ~q 2d~k/(~q ′ 21 ~q ′ 22 ) is Möbius
invariant), but the contribution R(~q1, ~q

′
1 , ~q) violates this invariance. In [17] it

was assumed that there is a conformal invariant representation of the kernel.
Since its eigenvalues do not depend on the representation and on the total
momentum transfer, they were found using the limit

|~q1| ∼ |~q ′1 | � |~q| ≈ |~q2| ≈ |~q ′2 | . (12)

In this limit the kernel (5) can be written as

K(z) = KB(z)

(
1− αsNc

2π
ζ(2)

)
+δ(2)(1−z)α

2
s N

2
c

4π2
3ζ(3)+

α2
s N

2
c

32π3
R(z) , (13)

where z = q1/q
′
1,

KB(z) =
αsNc
8π2

(
z + z∗

|1− z|2
− δ(2)(1− z)

∫
d~l

|l|2
l + l∗

|1− l|2

)
,

and

R(z) =

(
1

2
− 1 + |z|2

|1− z|2

)
ln2 |z|2 − 1− |z|2

2|1− z|2
ln |z|2 ln

|1− z|4

|z|2

+

(
1

1− z
− 1

1− z∗

)
(z − z∗)

∫ 1

0

dx

|x− z|2
ln
|z|2

x2
. (14)

Above we used the complex notations r = x+ iy and r∗ = x− iy for the two-
dimensional vectors ~r = (x, y). Vice versa, two complex numbers z and z∗ are
equivalent to the vector ~z with the components (z+ z∗)/2 and (z− z∗)/(2i).
Furthermore, d~r = dxdy ≡ drdr∗/2 , δ(2)(~r) = 2δ(r)δ(r∗) and we define
δ(2)(z) in such a way that δ(2)(z) = δ(z)δ(z∗)/2 = δ(2)(~z).

Note that K(z) = K(1/z). This property is evident for KB(z) and for
the term with ζ(3). In the case of R(z) it can be proved using the equality∫ 1

0

dx

|x− z|2
ln
|z|2

x2
=

1

z − z∗

(
2

∫ 1

0

dx

x
ln

1− xz∗

1− xz
− ln |z|2 ln

1− z∗

1− z

)
(15)

and the relation

Li2(z) = −Li2

(
1

z

)
− ζ(2)− 1

2
ln2 (−z) . (16)
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The function K(z) can be expanded in series over the complete set of
functions

fνn(z) =
1√
2π2
|z|2iνeinφ , z = |z|eiφ , (17)

with the orthogonality properties∫
d2z

|z|2
f∗µm(z) fνn(z) = δ(µ− ν) δmn . (18)

This expansion looks as follows:

K(z) =

+∞∑
n=−∞

∫ +∞

−∞
dν ω(ν, n)fνn(z) , (19)

where the eigenvalues ω(ν, n) of the kernel are given by∫
d2z

|z|2
K(z)f∗νn(z) = ω(ν, n) . (20)

They were calculated in [17]. It was mentioned already that for the confor-
mal invariant kernel the eigenvalues do not depend on the total momentum
transfer. Therefore, the eigenvalues are known also for an arbitrary momen-
tum transfer. As it is well known, an operator is completely defined by its
eigenvalues and eigenfunctions. Formally, one can write

K̂ =
∑
n

λn|n〉〈n|,

where λn are the eigenvalues and |n〉 are the eigenfunctions normalized as

〈n|n′〉 = δnn′ .

Since we know that the eigenfunctions of the conformal invariant kernel [17]
are

φνn(q1, q2) =
1√
2π2

(
q1
q2

)n
2 +iν (

q∗1
q∗2

)−n
2 +iν

, q2 = q − q1 , (21)

with the normalization∫
~q 2d~q1
~q 2
1 ~q

2
2

(φνn(q1, q2))
∗
φµm(q1, q2) =

∫
d2z

|z|2
f∗µm(z) fνn(z) = δ(µ− ν) δmn ,

(22)
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then, denoting the conformal kernel K̂c, we can present it as follows:

Kc(~q1, ~q
′
1 ; ~q) =

n=+∞∑
n=−∞

∫
dν ω(ν, n)φνn (q1, q2) (φνn(q′1, q

′
2))
∗
. (23)

But in fact there is no need to calculate this complicated expression. The
matter is that, due to the Möbius invariance, the kernel Kc(~q1, ~q

′
1 ; ~q) can be

written as K(z) given in Eq. (13) with the argument z = q1q
′
2/(q2q

′
1).

Furthermore, if we denote

K(~q1, ~q
′
1 ; ~q)−Kc(~q1, ~q

′
1 ; ~q) =

α2
sN

2
c

32π3
∆(~q1, ~q

′
1 ; ~q) , (24)

then, using the conformal symmetry of KB and the term with ζ(3) in Eq. (5),
one obtains from Eqs. (5) and (13)

∆(~q1, ~q
′
1 ; ~q) = R(~q1, ~q

′
1 ; ~q)−R(z) , (25)

where R(~q1, ~q
′
1 ; ~q) is given in Eq. (7) and R(z) in Eq. (14) with

z = q1q
′
2/(q2q

′
1). Since R(~q1, ~q

′
1 ; ~q) is not conformal invariant, it

cannot be written using the single variable z. Let us define the variables
zi = q1/q

′
1 , i = 1, 2 , z1/z2 = z. Then from Eqs. (7) and (14) one has

∆(~q1, ~q
′
1 ; ~q) = 2 ln

(
|1− z|2|z1|
|1− z1|2|z|

)
ln

(
|1− z|2|z2|
|1− z2|2|z|

)

+6 ln |z1| ln |z2| − 8
1 + |z|2

|1− z|2
ln |z1| ln |z2|

+2
1− |z|2

|1− z|2

(
ln |z1| ln

|z1|
|1− z1|2

− ln |z2| ln
|z2|

|1− z2|2
− ln |z| ln |z|

|1− z|2

)
+2

z − z∗

|1− z|2

[
Li2(z1)− Li2(z∗1)− Li2(z2) + Li2(z∗2)− Li2(z) + Li2(z∗)

+ ln |z1| ln
1− z1
1− z∗1

− ln |z2| ln
1− z2
1− z∗2

− ln |z| ln 1− z
1− z∗

]
. (26)

Note that ∆ is symmetric with respect to the exchange 1 ↔ 2, i.e. z1 ↔
z2, z ↔ 1/z.

The dilogarithms entering Eq. (26) are not independent. Their number
can be reduced using the relation
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Li2(z1/z2) = Li2(z1) + Li2(1/z2) + Li2

(
z1 − 1

z2 − 1

)
+Li2

(
z1(z2 − 1)

z2(z1 − 1)

)
+

1

2
ln2

(
(z2 − 1)

z2(1− z1)

)
. (27)

This gives

∆(~q1, ~q
′
1 ; ~q) = 2 ln

(
|1− z|2|z1|
|1− z1|2|z|

)
ln

(
|1− z|2|z2|
|1− z2|2|z|

)

+6 ln |z1| ln |z2| − 8
1 + |z|2

|1− z|2
ln |z1| ln |z2|

+2
1− |z|2

|1− z|2

(
ln |z1| ln

|z1|
|1− z1|2

− ln |z2| ln
|z2|

|1− z2|2
− ln |z| ln |z|

|1− z|2

)
+2

z − z∗

|1− z|2

[
−Li2

(
(1− z1)

(1− z2)

)
+ Li∗2

(
(1− z1)

(1− z2)

)
− Li2

(
(1− z2)z

(1− z1)

)
+Li∗2

(
(1− z2)z

(1− z1)

)
− ln

∣∣∣∣ (1− z1)

(1− z2)

∣∣∣∣ ln( (1− z)z2(1− z∗2)

(1− z∗)z∗2(1− z2)

)
− ln

∣∣∣∣ (1− z2)z

(1− z1)

∣∣∣∣ ln( (1− z)(1− z∗1)

(1− z∗)(1− z1)

)]
. (28)

Note that

(1− z1)

(1− z2)
= −q

′
2

q′1
,

(1− z2)z

(1− z1)
= −q1

q2
,

(1− z)z2
(1− z2)

= − q

q′1
,

(1− z)
(1− z1)

=
q

q2
.

(29)
The symmetry with respect to the exchange 1 ↔ 2, i.e. z1 ↔ z2, z ↔ 1/z,
holds also here, although it is not so obvious as before.

3 Similarity transformation to the conformal
form

If the kernels K̂ and K̂c coincide in the leading order and are related by
a similarity transformation, there must exist an operator Ô satisfying the
commutation relation

[K̂B , Ô] =
(αs

2π

)2 1

8π
∆̂ . (30)
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One can find a formal expression for this operator allowing to construct the
similarity transformation in perturbation theory. Indeed, it is enough to
calculate the matrix element of the above commutation relation between the
eigenfunctions (21) of the Born kernel with the corresponding eigenvalues
ωBνn in the form(

ωBν′n′ − ωBνn
)
〈ν′n′|Ô|νn〉 =

(αs
2π

)2 1

8π
〈ν′n′|∆̂|νn〉. (31)

It can be seen from this equation that the solution Ô exists only if the op-
erator ∆̂ has vanishing matrix elements between states with the same eigen-
values. In this case, using the completeness of the functions |νn〉, we obtain

Ô =
(αs

2π

)2 1

8π

∑
n,n′

∫
dν

∫
dν′
|ν′n′〉〈ν′n′|∆̂|νn〉〈νn|

ωBν′n′ − ωBνn
(32)

and

〈~q1, ~q2|Ô|~q ′1 , ~q ′2 〉=
(αs

2π

)2 1

8π

∑
n,n′

∫
dν

∫
dν′
〈~q1, ~q2|ν′n′〉〈ν′n′|∆̂|νn〉〈νn|~q ′1 , ~q ′2 〉

ωBν′n′ − ωBνn
.

(33)
Since the kernel ∆̂ is known in the momentum space (see (26)), we can
transform it into the (n, ν) representation,

〈νn|∆̂|ν′n′〉=
∫

~q 2d~q1
~q 2
1 (~q − ~q1)2

∫
~q 2d~q ′1

~q ′ 21 (~q − ~q ′1 )2
〈ν′n′|~q ′1 , ~q ′2 〉∆(~q1, ~q

′
1 ; ~q)〈~q1, ~q2|νn〉

(34)
using the known eigenfunctions in the momentum space (21), which allows
to find the matrix element 〈~q1, ~q2|Ô|~q ′1 , ~q ′2 〉.

The eigenfunctions (21) entering in (34) depend on r = q1/q2 and
r′ = q′1/q

′
2 ; therefore it is convenient to express ∆(~q1, ~q

′
1 ; ~q) (28) in terms of

r, r′ and z = r/r′ . In these variables we have

∆ = 2 ln2 |1 + r|2

|r|
+ 2 ln2 |1 + r′|2

|r′|
− 2 ln

|1 + r|2

|r|
ln
|1 + r′|2

|r′|

−2 ln2 |r| − 2 ln2 |r′|+ 2 ln |r| ln |r′|

−2
1 + |z|2

|1− z|2

(
ln2 |1 + r|2

|r|
+ ln2 |1 + r′|2

|r′|
− 2 ln

|1 + r|2

|r|
ln
|1 + r′|2

|r′|
− ln2 |z|

)
+2

1− |z|2

|1− z|2

(
ln |r| ln |1 + r′|2

|r′|
− ln |r′| ln |1 + r|2

|r|

)
11



+2
z − z∗

|1− z|2

[
−Li2(−r) + Li∗2(−r) + Li2(−r′)− Li∗2(−r′)

− ln |r| ln
(

1 + r

1 + r∗

)
+ ln |r′| ln

(
1 + r′

1 + r′∗

)]
. (35)

In terms of the variables r, r′ the symmetry with respect to the exchange
1 ↔ 2 is equivalent to the symmetry of the above expression under the
transformations r ↔ 1/r, r′ ↔ 1/r′, z ↔ 1/z.

Note that

2 ln2 |1 + r|2

|r|
+ 2 ln2 |1 + r′|2

|r′|
− 2 ln

|1 + r|2

|r|
ln
|1 + r′|2

|r′|

−2 ln2 |r|+ 2 ln2 |r′| − 2 ln |r| ln |r′|

= 2 ln
|1 + r|2

|1 + r′|
ln
|1 + r|2

|r|2
+ 2 ln

|1 + r′|2

|1 + r|
ln
|1 + r′|2

|r′|2
, (36)

which demonstrates the absence of singularities at r = 0. Analogously,

ln2 |1 + r|2

|r|
+ ln2 |1 + r′|2

|r′|
− 2 ln

|1 + r|2

|r|
ln
|1 + r′|2

|r′|
− ln2 |z|

= ln
|1 + r|2

|1 + r′|2
ln
|1 + r|2r′2

|1 + r′|2r2
. (37)

In order to obtain 〈~q1, ~q2|Ô|~q ′1 , ~q ′2 〉 by this method one has to perform
complicated calculations. The first difficulty appears in calculating the ma-
trix elements 〈ν′n′|∆̂|νn〉. Here the main problem arises from the term in ∆
proportional to the expression

1 + |z|2

|1− z|2
ln
|1 + r|2

|r|
ln
|1 + r′|2

|r′|
,

because the corresponding integral is not factorized. It leads to infinite double
sums over poles in the complex planes with positions depending on n, ν and
n′, ν′. At the end one should calculate the complicated double sum and
double integral in Eq. (33). But the final result turns out to be quite simple.
Moreover, it can be guessed, as it is shown in the next section.
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4 Explicit form of the similarity transformation
To diminish the search area we have to use all possible restrictions implied on
Ô. Important restrictions follow from symmetries and the gauge invariance
of ∆̂ and K̂Br . Due to the symmetries of ∆̂ and K̂B we should look for Ô
among operators symmetric under the interchange 1↔ 2 and antisymmetric
under transposition. The last property excludes diagonal terms (proportional
to δ(~q1−~q ′1 ) in momentum space). The non-diagonal part can be taken gauge
invariant.

There is only one possibility (up to a coefficient) for such operator without
logarithms, and it is just K̂Br . However, the operator which we are looking
for must contain logarithms, as it follows from Eqs. (31) and (35). This en-
larges the number of such operators drastically. But there is one additional
argument. It seems quite natural that the conformal kernel can be obtained
by modification of the subtraction procedure used in the definition of the
standard kernel [19] for separation of leading and next-to-leading contribu-
tions. In this case the operator Ô must be proportional to K̂Br . Using the
requirement of antisymmetry under transposition, we come to the conclusion
that the most attractive candidate for Ô is

Ô = C
[
ln
(
~̂q 2
1 ~̂q

2
2

)
, K̂Br

]
, (38)

where C is some coefficient.
Let us show that indeed the required operator has the form (38) with

C = 1/4. In the momentum space it looks as

O(~q1, ~q
′
1 ; ~q) =

αsNc
16π2

(
~q 2
1 ~q
′ 2
2 + ~q ′ 21 ~q 2

2

~k 2
− ~q 2

)
ln

(
~q 2
1 ~q

2
2

~q ′ 21 ~q ′ 22

)
. (39)

To obtain ∆(~q1, ~q
′
1 ; ~q) in vector denotations from Eq. (35) the following rela-

tions are useful:

2

[
−Li2(−r) + Li∗2(−r) + Li2(−r′)− Li∗2(−r′)

− ln |r| ln
(

1 + r

1 + r∗

)
+ ln |r′| ln

(
1 + r′

1 + r′∗

)]
= (q1q

∗
2 − q∗1q2)I~q1,~q2 + (q′2q

′∗
1 − q

′∗
2 q
′
1)I~q ′

1 ,~q
′
2
, ab∗ − a∗b = −2i[~a×~b] , (40)

z − z∗

|1− z|2
=

2i

~k 2~q 2

(
~k 2[~q1 × ~q2]− ~q 2

1 [~k × ~q2]− ~q 2
2 [~k × ~q1]

)
13



=
−2i

~k 2~q 2

(
~k 2[~q ′1 × ~q ′2 ] + ~q ′ 21 [~k × ~q ′2 ] + ~q ′ 22 [~k × ~q ′1 ]

)
. (41)

The last equality follows from antisymmetry with respect to ~qi ↔ −~q ′i .
Using these relations, it is easy to obtain

∆(~q1, ~q
′
1 ; ~q) = ln

~q 2
1

~q 2
ln
~q 2
2

~q 2
+ ln

~q ′ 21

~q 2
ln
~q ′ 22

~q 2
+ ln

~q 2
1

~q ′ 21

ln
~q 2
2

~q ′ 22

−2
~q 2
1 ~q
′ 2
2 + ~q 2

2 ~q
′ 2
1

~k 2~q 2
ln

~q 2
1

~q ′ 21

ln
~q 2
2

~q ′ 22

+
~q 2
1 ~q
′ 2
2 − ~q 2

2 ~q
′ 2
1

~k 2~q 2

(
ln
~q 2
1

~q 2
ln
~q ′ 22

~q 2
− ln

~q 2
2

~q 2
ln
~q ′ 21

~q 2

)
+

4

~q 2~k 2

(
~k 2[~q1 × ~q2]− ~q 2

1 [~k × ~q2]− ~q 2
2 [~k × ~q1]

)
×
(
[~q1 × ~q2]I~q1,~q2 − [~q ′1 × ~q ′2 ]I~q ′

1 ,~q
′
2

)
. (42)

Important properties of ∆ are its symmetries with respect to the exchanges
~q1 ↔ −~q2 , ~q ′1 ↔ −~q ′2 and ~qi ↔ −~qi , as well as the gauge invariance (van-
ishing at zero momentum of each reggeon), which are easily seen from this
representation.

Since the kernel K̂B contains real and virtual parts, the commutator

D̂ = [K̂B , Ô] =
1

4

[
K̂B ,

[
ln
(
~̂q 2
1 ~̂q

2
2

)
, K̂Br

]]
(43)

is naturally separated into two pieces. One is D̂v = [ω̂g1 + ω̂g2 , Ô] and gives
in the momentum space

Dv(~q1, ~q2; ~k) =
(
ωg(−~q 2

1 ) + ωg(−~q 2
2 )− ωg(−~q ′ 21 )− ωg(−~q ′ 22 )

)
O(~q1, ~q

′
1 ; ~q)

= −α
2
sN

2
c

32π3

(
~q 2
1 ~q
′ 2
2 + ~q ′ 21 ~q 2

2

~k 2
− ~q 2

)
ln2

(
~q 2
1 ~q

2
2

~q ′ 21 ~q ′ 22

)
. (44)

The piece D̂r = [K̂Br , Ô] can be written in the momentum space as

Dr(~q1, ~q2; ~k) = frac~q 2
1 ~q

2
2 4

∫
d~p

Kr(~q1, ~q2; ~q1 − ~p)
~q 2
1 ~q

2
2

Kr(~p, ~q − ~p; ~p− ~q ′1 )

~p 2(~q − ~p)2

× ln

(
(~p 2)2

~q 2
1 ~q
′ 2
1

((~q − ~p)2)2

~q 2
2 ~q
′ 2
2

)
. (45)
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A convenient way to calculate this integral is to use complex variables for the
two-dimensional vectors and to perform the pole expansion of the integrand.
We have

Kr(~q1, ~q2; ~q1 − ~p)
~q 2
1 ~q

2
2

Kr(~p, ~q − ~p; ~p− ~q ′1 )

~p 2(~q − ~p)2

=

(
αsNc
4π2

)2 [(
1

(~q ′1 − ~p)2
+

1

(~q1 − ~p)2

)(
~q 2
1 ~q
′ 2
2 + ~q ′ 21 ~q 2

2

~k 2~q 2
1 ~q

2
2

− ~q 2

~q 2
1 ~q

2
2

)

− 1

(q1 − p)(q′∗1 − p∗)
q′1q
∗

~q 2
1 kq

∗
2

− 1

(q1 − p)p∗
q′2q
∗

~q 2
2 kq

∗
1

+
1

(q′1 − p)(q∗ − p∗)
q′2q
∗

~q 2
2 kq

∗
1

+
1

(q′1 − p)p∗
q′1q
∗

~q 2
1 kq

∗
2

− 1

(q1 − p)(q′∗1 − p∗)
1

~k 2

∣∣∣∣q′1q1 +
q′2
q2

∣∣∣∣2+ 1

p(q∗ − p∗)
~q 2

~q 2
2 ~q

2
2

+c.c.

]
.

(46)
Taken separately, each term in this expansion gives an ultraviolet-divergent
integral. Of course, the divergences cancel in their sum. Introducing the
intermediate cutoff ~p 2 ≤ Λ2, one has∫
d~p

π
ln

(
(~p 2)2

~q 2
1 ~q
′ 2
1

)(
1

(~q ′1 − ~p)2
+

1

(~q1 − ~p)2

)
θ(Λ2−~p 2)= ln2

(
Λ2

~q 2
1

)
+ln2

(
Λ2

~q ′ 21

)
,

∫
d~p

π

2

(a− p)(b∗ − p∗)
ln

(
~p 2

µ2

)
θ(Λ2−~p 2) = ln

(
Λ2

(~a−~b)2

)
ln

(
Λ2(~a−~b)2

µ4

)

+ ln

(
(~a−~b)2
~b 2

)
ln

(
(~a−~b)2

~a 2

)
+ (ab∗ − a∗b)I~a,−~b . (47)

Using also equalities

q′1q
∗

~q 2
1 kq

∗
2

+ c.c. =
~q 2
1 ~q
′ 2
2 − ~q 2

2 ~q
′ 2
1 − ~q 2~k 2

~q 2
1 ~q

2
2
~k 2

,

q′2q
∗

~q 2
2 kq

∗
1

+ c.c. =
~q 2
1 ~q
′ 2
2 − ~q 2

2 ~q
′ 2
1 + ~q 2~k 2

~q 2
1 ~q

2
2
~k 2

,

1

~k 2

∣∣∣∣q′1q1 +
q′2
q2

∣∣∣∣2 =
2(~q 2

1 ~q
′ 2
2 + ~q 2

2 ~q
′ 2
1 )− ~q 2~k 2

~q 2
1 ~q

2
2
~k 2

, (48)

15



we obtain

Dr(~q1, ~q2; ~k) =
α2
sN

2
c

32π3
~q 2

[
ln
~q 2
1

~q 2
ln
~q 2
2

~q 2
+ ln

~q ′ 21

~q 2
ln
~q ′ 22

~q 2
− ln

~q 2
1

~q ′ 21

ln
~q 2
2

~q ′ 22

+

(
~q 2
1 ~q
′ 2
2 + ~q 2

2 ~q
′ 2
1

~k 2~q 2
− 1

)(
ln2 ~q 2

1

~q ′ 21

+ ln2 ~q 2
2

~q ′ 22

)
+
~q 2
1 ~q
′ 2
2 − ~q 2

2 ~q
′ 2
1

~k 2~q 2

(
ln
~q 2
1

~q 2
ln
~q ′ 22

~q 2
− ln

~q 2
2

~q 2
ln
~q ′ 21

~q 2

)
+

4

~q 2~k 2

(
~k 2[~q1 × ~q2]− ~q 2

1 [~k × ~q2]− ~q 2
2 [~k × ~q1]

)
×
(
[~q1 × ~q2]I~q1,~q2 − [~q ′1 × ~q ′2 ]I~q ′

1 ,~q
′
2

)]
. (49)

The total commutator D̂ = [K̂B , Ôt] is defined in the momentum space by
the sum of the two pieces given in Eqs. (44) and (49):

D(~q1, ~q2; ~k) =
α2
sN

2
c

32π3
C~q 2

[
ln
~q 2
1

~q 2
ln
~q 2
2

~q 2
+ ln

~q ′ 21

~q 2
ln
~q ′ 22

~q 2
+ ln

~q 2
1

~q ′ 21

ln
~q 2
2

~q ′ 22

−2
~q 2
1 ~q
′ 2
2 + ~q 2

2 ~q
′ 2
1

~k 2~q 2
ln

~q 2
1

~q ′ 21

ln
~q 2
2

~q ′ 22

+
~q 2
1 ~q
′ 2
2 − ~q 2

2 ~q
′ 2
1

~k 2~q 2

(
ln
~q 2
1

~q 2
ln
~q ′ 22

~q 2
− ln

~q 2
2

~q 2
ln
~q ′ 21

~q 2

)
+

4

~q 2~k 2

(
~k 2[~q1 × ~q2]− ~q 2

1 [~k × ~q2]− ~q 2
2 [~k × ~q1]

)
×
(
[~q1 × ~q2]I~q1,~q2 − [~q ′1 × ~q ′2 ]I~q ′

1 ,~q
′
2

)]
. (50)

Comparing Eq. (50) with Eq. (42) and taking into account Eq. (43), one sees
that indeed Eq. (30) is fulfilled, if Ô is given by (38) with C = 1/4. Using
(24), we conclude that

K̂ − K̂c =
1

4

[
K̂B ,

[
ln
(
~̂q 2
1 ~̂q

2
2

)
, K̂Br

]]
. (51)

It means that indeed conformal and standard forms of the kernel are con-
nected by a similarity transformation. Moreover, this transformation is equiv-
alent to the change of the subtraction procedure in the definition of the NLO
kernel [19].
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5 Conclusion
In this paper, we have shown that the standard form of the modified BFKL
kernel (i.e. the BFKL kernel in N = 4 SUSY for the adjoint representation of
the gauge group with subtracted gluon trajectory depending on total momen-
tum transfer) can be reduced by a similarity transformation to a form which
is Möbius invariant in the momentum space. The transformation is given by
Eq. (51). This transformation is equivalent to the change of the subtraction
procedure for separation of leading and next-to-leading contributions used in
the definition of the NLO kernel [19].

The Möbius invariant kernel was used for calculation of the NLO remain-
der function in [17] with the Möbius invariant convolution of the NLO BFKL
impact factors (which was called for brevity simply impact factor) obtained
in [14] from direct two-loop calculations and with the energy scale s0 cho-
sen in such a way that the ratio s/s0 = 1/

√
u2u3 is Möbius invariant. In

principle, one can use different definitions of s0 with Möbius invariant ratio
s/s0. The definition used in [17] is natural because of t-channel factorization
of the amplitude in the Regge theory and is matched to the definition of the
NLO BFKL kernel and impact factors [19]. But for complete assurance in
the Möbius invariance of the remainder function, one should check that the
convolution of the last impact factors is reduced to the impact factor used in
[17] by the same similarity transformation as the kernel.
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