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Abstract

Parabolic partial differential equations frequently arise in computational
physics. For instance, a nonstationary heat conduction equation and diffraction one
in a paraxial approach are of this type. A system of ordinary differential equations
obtained from the initial equation by discretization of the Laplacian is stiff or has
rapidly oscillating parasitic solutions, so an A-stable scheme is to be used. All these
schemes include inversion of a huge dimension matrix, so can not be effective. In
addition, a conventional three-node scheme provides only second approximation
order that is also not effective.

An effective scheme for parabolic equations is proposed and investigated in the
paper. It is based on the second order Rosenbrock scheme for the independent
coordinate with a special procedure of matrix pseudoinversion and a three node one
with a Numerov's corrector for the Laplacian.
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AHHOTAIINA

[TapaGonuueckne ypaBHEHHS B YacTHBIX MPOW3BOAHBIX JIOCTATOYHO YacTO
BCTPEUAIOTCS B BBIUHCINTENBHON (HU3MKe, HANpUMep — O5TO HECTAI[IOHApHOE
YpaBHEHHE TEIUIONPOBOJHOCTH M yYpaBHEHHE TU(PAKIMU BOJIHBEI B NaPAKCHATEHOM
npuOIvoKeHuH. TpPyJHOCTh YHUCICHHOTO DEIICHUs TaKOTrO YPaBHEHHS COCTOHMT B
TOM, YTO CHCTEMa OOBIKHOBEHHBIX AH((PepeHIHaIbHBIX YPaBHEHHH, MOIy4eHHAS
JMCKpEeTH3allMel JariacuaHa B MCXOAHOM, SIBISIETCS JIMOO HKECTKOMH, b0 nmeer
OBICTPOOCHMIUTAPYIOIINE Tapa3uTHeIe pemeHns. COOTBETCTBEHHO, HEOOXOIUMO
HCTIONB30BaTh A-yCTOWYMBBIA METOJ pEHICHUS, KOTOPHIH Bcerma Tpedyer
oOpareHus MaTpuIbl 6osbIIoro pasmepa. Kpome Toro, crangapTHas TpexTodeqHast
CXeMa BBIUMCIEHHS JlallacCHaHa WMeEeT BCEro JIMINb BTOPOH  IOPSIOK
anmpoKCUMAIUH, YTO He BecbMa 3((QEKTHBHO.

B pabore mpemioxkeHa W wuccienoBaHa 3((GeKTUBHAS YHCICHHAs CXeMa
peILICHNUs TaKWX ypaBHEHHH Ha OCHOBEe MeToJa Po3eHOpoka BTOPOro mopsjaka Io
HE3aBHCHMOH KOOpJHMHATE C OCOOBIM JITOPUTMOM IICEBIOOOPAICHUS MAaTPHIBI U
TPEXTOYEUHOH CXEMBI ¢ KoppekTopoM HymepoBa Jiist BBIUHMCIICHHS JIalUIacHaHa.
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1. Introduction

Parabolic partial differential equations (PPDE) often arise in computational
physics. Their general form is

%p(x, 1) = V(DVo(a,0)+ f(x1), (L1

where @, x, and f'can be scalars of vectors. We shall consider D = const further, so
the equation can be simplified:

%‘P(% 1) = DAQ(x,t) + f(x,1) . 1.2)

Note that D can be real, as in the diffusion equation or imaginary as in the
paraxial diffraction one. If one discretizes the right part using, say, a conventional
three-node scheme, he obtains a set of ordinary differential equations (SODE) to
be solved using some numerical scheme along ¢. The problem is that the SODE
obtained is stiff (if D is real) or has rapidly oscillating parasitic solutions (if D is
imaginary). Let us demonstrate it. Consider unidimensional scalar PPDE:

Ecp(x )= Da—ztp(x D+ f(x,0). (1.3)
or ox? ’

Generating a uniform grid of a step Ax and applying a three-node approximation
for the Laplacian

2% @(x+ AY) + (x — Ax) - 29(x)
o) (Av)® (1.4)

ox?

one obtains the SODE:

D (xip1) +@(x; ) —20(x;) + £ (xn0), (1.5)

0
Ew(xivt)_ (Ax)2

where i is the node index. The corresponding homogeneous equation set

O(x;41) + 0(x;1) —20(x;) (1.6)
(Ax)?

0
—o(x;,t)=D
6I(P(l )



has the following full set of solutions:
o(x,1) = Aexplikx +1t), (1.7)

where A4 is an arbitrary amplitude, and

A= (2D (cos(kAx)—1), nggi' (1.8)

Ax)?

Thus, A varies from 0 to -4D/(Ax)>. If one would like to improve accuracy and
decrease Ax, the minimum A/D ratio tends to minus infinity. We do not need these
rapidly decreasing (if D is real) or oscillating (if D is imaginary) solutions, but
they exist and worsen the stability of conventional numerical schemes. It forces to

decrease the integration step oc Ax” and makes the procedure very ineffective [1].
One can use a dedicated scheme for stiff equations, but all of them need to
calculate a Jacobian matrix and to invert some other matrix, so their efficiency for
huge dimension system is extremely poor.

2. Numerical scheme
2.1. Basic scheme

First of all, consider a simplest numerical scheme for the two-dimensional
equation (1.2)

B o> o? @D
[E_D[&T+@Tjjlm(x’y’t) = f(x,y,t).

Next, generate a regular rectangular grid with steps Ax and Ay for x and y
respectively and replace the continuous Laplacian by the digital one

d A, AL (2.2)
{E_D(sz +vﬂ(\°(l) =10,

where ¢ and f are vectors, while A, and A, are basis matrices of the digital

Laplacian. The forms of the matrices depend on the method of numeration of
nodes in the grid. All their diagonal elements are —2, and they have not more than
two offdiagonal elements 4; = 1, where j is the number of a neighbour by x and y
respectively. For example, if one numbers nodes consequently within each raw
(y = const) and then rows (also consequently), A, will be tridiagonal. Each A, and
Ay can be reduced to the tridiagonal form by simultaneous permutation of rows
and columns (that is change of numeration of grid nodes), but not simultaneously.
Both are always sparse.



Next choose a step t for ¢ and apply an A-stable one-stage Rosenbrock scheme
of the second order [2]

A 2.3)

-1
- _ A A, Ay L
P+1) =)+ I-=D S| D= —5 o) +

2 A&7 Ay A Ay
+1f(t+1/2).

The part f(f) not depending on @ does not affect the stability, so the Rosenbrock

. . T A A
scheme does not have to cover it. One needs to factorize | [ —— D] —%+ —_
2 (Ax? Ay2
to make a step by this scheme. Although the matrix is sparse, it corresponds to a
flat graph, and the procedure seems to be too expensive. Let us try to find a more
effective way to solve (2.3). Decompose Rosenbrock corrector into two parts:

P+ 1) = p(0) + 2.4)
-1 -1
A A
+r[l—lD szj 1--D—%| D sz + 2 () + T (1 +1/2).
2 Ax 2 Ay Ax® Ay

Check stability properties first. f(#) does not affect stability, so we omit it. As
usually, regard the grid as infinite by both coordinates. Consider a space harmonic
(kx )i (ky )j , where |k|=1k|=1, and i and j are indices of nodes by x and y
respectively. Then a step (2.4) is equivalent to multiplication of ¢ by

(ky = D2 [k, Ax?) + (k, ~1)* (K, Ap?) )
(1 Dr(k, —1)? 120k, Ax®) L= Dr(k, — D)2 /2(k, Av%))
_(-D)(1-D,))
~(1+D)(1+D,)’

a=1+D1

where D, , = Dt(1-Rek, ,)/(Ax, y)2 . Then

(1-D,)(1-D,) (2.6)

(1+D,)1+D,)

Jof =

Note that (2.6) consists of two multipliers depending on k, or k,, so we can analyze
them separately and similarly.




0-D)|_ & -g+ni+l @7
|1+ D,) VJET+E+m? +1

where £ =ReD, and n=1ImD, . It is obvious that the numerator is always less
than or equal to the denominator if £>0<> ReD >0. In other case the initial

equation (2.1) has infinitely increasing solutions. Thus |o| <1 and the modified
scheme (2.4) is A-stable.

Let us check the approximation order of (2.4).

T - T T 2 B (2.8)
[I—E(Jl—sz)j :((I—EJI](I—EJZJ—TJIJZJ =
-1 -1
;(1-%sz [I—%JIJ ,

where J; =DA/ Ay* and J , =DA,/Ax* are the Jacobian matrices of the

spitted right part. The neglected term has the order ©° (together with © combined
with the right part in the scheme), and does not affect the approximation order.

This is true only if J; and J, have equal eigenvectors, (k)r )[ (ky )j in our case.
Than also J,J, =J,J,. If J; and J, have eigenvalues g, and g, for some

eigenvector than the residual part of the scheme is ©° ( g]3 + gg )/12.

2.2. Factorization of infinite matrices

Suppose that the matrices in (2.8) are infinite, namely the area in xy-plane is
infinite. Let us apply Gaussian elimination method by rows top-down to the each
of them. If the initial matrix is

2.9)

and the stationary state after elimination of some part of upper rows is



Lo (2.10)
0 ¢c b 00
0 b abdb O

where the third row is to be eliminated in this step. The condition
a-b*/c=c (2.11)

is equivalent to the process stationarity. (2.11) has two solutions
2.12
c=1/2(ai\/a2—4b2), ( )

and only one with "+" sign gives a stable process. In our case

2.13
a=1+T—D2,b:— TDZ, (2.13)
A& 2AE

where & is x or y.

Thus we do not need to factorize the matrix in (2.3) explicitly. We only are to
apply the following procedure for x and y coordinates consequently instead:

10 0, < ¢, /¢ (2.14)

0 } i=1.N
27 @iy < 0y — DOy )

30 ¢, <@, —b/c-@y; i=N..1

where ¢, and ¢,,; means the function values in the neighboring nodes spaced by

Ax or Ay. "«" means "set the value to the storage cell". The procedure is applied
to each line of the grid by x and y independently. Steps 1° and 2° are executed in
one direction, while 3° in the opposite. The order of x- and y-stages effects on the
result, but not on the approximation order.

In the long run, we obtained the algorithm of N time complexity, where N is
the number of nodes in the grid. The method can be easily extended to any spatial
dimension, and the time complexity remains N. Compare to the most effective
algorithms for sparse matrices [3]: the factorization time complexities of sparse
matrices are N°* for 2D grids, N* for 3D grids, etc. (Table 4.1). Note that boundary
conditions can not be applied reasonably in our algorithm, as even a huge finite
matrix being factorized differs from infinite one at the edges.



2.3. Boost of the approximation order

The approximation order of our algorithm is two that seems not so good. Let
us try to improve this feature using the Numerov's formula [4] Chapter 111 (10.8)

u(x — Ax) —2u(x) + u(x + Ax) (2.15)
Ax? '

%u”(x - Ax) +%u"(x) +%u"(x + Ax) ~

The formula permits to calculate the second derivative of a function and has fourth
approximation order. Its drawback is that it is implicit. In our case this drawback
does not matter at all, as application of (2.15) to (2.1) means change of matrices
coefficients in (2.4) only.

Let us define two Numerov's matrices A" and Alyv similar to Ay and Ay

above: all their diagonal elements are 5/6, and they have not more than two
offdiagonal elements 4; = 1/12, where j is the number of a neighbour by x and y
respectively. Then a forth order approximation of the second derivative is

ﬂN (AN)_l Aé (216)
8&2 3 Aéz ’
where & is x or y. Substituting (2.12) into (2.1) one obtains
2.17)
d Ny A vy Ay (
—-D| (A X +lA — ||o() =f(¢
[dt [( o) e =ro
instead of (2.2). The Rosenbrock scheme transforms it into
(2.18)

-1
(f)(t—i—r):(p(t)—i-‘c[l—%D[(Af)l % +(av)! Ay D x

Ay2
vyl A v Ay -
xD((Ax J' s lay) Ayz}ow
+1f(t+t/2).

and



) i AL ) LA -1 (2.19)
(p(t+T)=(p(t)+’C(I—%D(Aiv) szj (I—%D(Alyv) _yJ X

0] A1) 2t 12 -
\y

-1 -1
- A A
=o()+q AY —Ip=x | AV Zp—L| &
2 sz 2 Ay2

A Ay L
xDl AY =2+ AY —S (1) + T (1 +7/2).
Ax Ay

after decomposition. Commutativity of x- and y- matrices was used above. The
coefficients are now

2 ) (2.20)
A2 120 A8

5
=+
6
Two additional products by A f:/ and A zyv are to be calculated in this case.

In comparison with (2.4), we only improved the approximation order for
spatial coordinates, so we do not need to check those of the whole scheme once
more. However, we should analyze its stability properties. Let us make a similar
formula manipulation as (2.4) — (2.5).

Dt (k2 +10k,, + 1)k, — )2 /(kk Ax?) + (2.21)
*= +E((k§ +10k, +1)/12k, — Dr(k, —1)* /(2k,Ax?) x ”
+(ky +10k, +1)(k, —1)* /(k Kk, Ay®)
g ((k§ +10k, +1)/12k, — D1(k, —1)? /(2kyAy2))
_ WV, -D)N,-D,)
(N, +D)(N,+D,)’

where D, , were defined above, and N,, =5/6+1/6Rek, ,. Substituting
d.=D./N,and d,= D,/ N, we find

(1-d . )1-d)) (2.22)
of - [ XAZ )}
(I+d,)(1+d,)
Red,, 20 for the same reason as ReD,, 20, so the new scheme is also
A-stable.



3. Numerical test

Let us use the well-known equation for paraxial wave propagation [5] (2.21)

8 52 52 3.1
|:21k5+(ax—2+$]:|q) =0.

in free space without sources. This equation has an analytical solution for the
fundamental Gaussian mode, so we can easily evaluate the accuracy. The exact
solution is

\ 3.2
|u|:u0—exp(—r2/w2), (3-2)
Wo

where u, is the initial amplitude, w is the initial size, rr=x?+ y2 ,and

, 2 (3.3)
w? = wg 1+[—ZJ .
kw,

2
0

The radius of curvature of the wavefront is

2 (3.49)
R=z 1+(ngJ .

2z

In the one-dimensional case the equation is

2 3.5
(zikiﬁ_z}p:o,

0z  ox

and its exact solution

(3.6)
|u| =u, wl exp(—x? /w?).
0

Every time numerical simulation was conducted in the interval z =[0, kwg /2] and

the grid half-size was 4.5w,. The purpose of the numerical test was not detailed
investigation of the algorithm properties for various equations, but only a proof of
its workability and stability, and an estimation of its accuracy. The results for the
basic scheme and the improved one are collected in Table 3.1 and Table 3.2
respectively.

10



Table 3.1. Accuracy of the basic scheme.

Nodes per grid half-size | Steps by z
One dimension
60 32 810
60 25 8.3:10™
60 16 1:10°
60 8 2:107
60 4 6:107
60 2 1.8:107
60 1 4.6:107
15 32 1.1:107
30 32 3107
120 32 2.5:10™
Two dimensions
60 32 1:10°
60 16 1.2:10°
60 8 1.9:10°
42 32 2:107
30 32 4107
15 8 1.7-107
84 32 5.6:10™

It is clear from Table 3.1 that the basic scheme is stable for all the reasonable

ratios Az/Ax. For example, Az/kAx* ~ 90 for one step by z and 60 nodes per grid
half-size, and the scheme still gives quite reasonable solution in this case. For

reference, the Euler method applied to (3.5) — (1.6) is unstable for any Az/ kAax?,
as in this case

max(o] = |1+ 21z kAX?| > 1. (3.7)

For the most well-known Kutta scheme [4] Chapter II Table 1.2

8 6
1| s Az of Az
of=— -8 —| +576,
i 24\/C (kszj C(kmzj

where ¢ €[0,2] . In this case max|0c| >1if Az/kAx® > 2.

(3.8)

The dependence of the relative accuracy of the basic scheme on the number of
steps is placed in Fig. 3.1. The data from Table 3.1 were used. One can see the
error decreases a little more slowly than the number of steps to the minus two. It
means the "practical" approximation order in this case is a little less than two. The

11



dependence of the accuracy on the number of nodes is represented in Fig. 3.2. The
"practical" approximation order here is exactly four.

1x10™
.\
] 3
2 N
8 1x107% < h\\‘
3 |
5] 3 I'\
© ] \\
2 1 \\t\
3 1x10° — e
@ E N ——+
] AN
] N
1x10™
1 10
Steps by Z

Fig. 3.1. Basic scheme accuracy vs number of integration steps (solid).
0.1/N? (dashed).

1x10™
~
3 2 \-Il
g 2 _| e
g 1x10 E \ ~
é ]
Q i
B 1x10° - N
Q: | ‘\
7 \\
] N
] N+
1x10™
10 100
Steps by X

Fig. 3.2. Basic scheme accuracy vs number of nodes per grid half-size (solid).
3/N? (dashed).

The results for the improved scheme are placed in Table 3.2 and Fig. 3.3. One

can see that the "practical" approximation for xy is four and the accuracy is limited
by Az.
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Table 3.2. Accuracy of the improved scheme

. Two dimensions.

Nodes per grid half-size Steps by z |Au/u]
60 32 8.8:107
30 32 1.2-10"
15 32 6.5-10"
8 32 8.3:10°
1x10™" 3
N
-, 1x107 =
g g N
g -3 1 \
g 1107 = \
T 7
° i \\
® 1x10* = N
3 N
i N
1x10°®
10 100
Steps by X

Fig. 3.3. Improved scheme accuracy vs number of nodes per grid half-size (solid).

30/N* (dashed).

4. Discussion and conclusions

Thus we obtained an effective numerical scheme for parabolic partial
differential equations of arbitrary dimension and no boundary condition. Its spatial
approximation order is four and the temporal one is two. It is stable for arbitrary
ratio of spatial and temporal steps. The scheme has been numerically tested, and

the tests proved its operability.

The spatial approximation order can be enhanced using, say, five-node
numerical Laplacian approximation with a Numerov-like corrector. Hardly it
makes any practical sense. The temporal order can be easily raised using a higher
order Rosenbrock scheme. In this case it is not clear how to include the part f(¢)
not depending on ¢ with the same order.
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