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Abstract 

Parabolic partial differential equations frequently arise in computational 
physics. For instance, a nonstationary heat conduction equation and diffraction one 
in a paraxial approach are of this type. A system of ordinary differential equations 
obtained from the initial equation by discretization of the Laplacian is stiff or has 
rapidly oscillating parasitic solutions, so an A-stable scheme is to be used. All these 
schemes include inversion of a huge dimension matrix, so can not be effective. In 
addition, a conventional three-node scheme provides only second approximation 
order that is also not effective.  

An effective scheme for parabolic equations is proposed and investigated in the 
paper. It is based on the second order Rosenbrock scheme for the independent 
coordinate with a special procedure of matrix pseudoinversion and a three node one 
with a Numerov's corrector for the Laplacian. 

 
Эффективная численная схема  

для параболических дифференциальных уравнений  
в частных производных 

С.В. Мигинский 
Институт ядерной физики им. Г.И. Будкера, 630090, Новосибирск, Россия 

 
Аннотация 

Параболические уравнения в частных производных достаточно часто 
встречаются в вычислительной физике, например – это нестационарное 
уравнение теплопроводности и уравнение дифракции волны в параксиальном 
приближении. Трудность численного решения такого уравнения состоит в 
том, что система обыкновенных дифференциальных уравнений, полученная 
дискретизацией лапласиана в исходном, является либо жесткой, либо имеет 
быстроосциллирующие паразитные решения. Соответственно, необходимо 
использовать А-устойчивый метод решения, который всегда требует 
обращения матрицы большого размера. Кроме того, стандартная трехточечная 
схема вычисления лапласиана имеет всего лишь второй порядок 
аппроксимации, что не весьма эффективно. 

В работе предложена и исследована эффективная численная схема 
решения таких уравнений на основе метода Розенброка второго порядка по 
независимой координате с особым алгоритмом псевдообращения матрицы и 
трехточечной схемы с корректором Нумерова для вычисления лапласиана. 
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1. Introduction 

Parabolic partial differential equations (PPDE) often arise in computational 
physics. Their general form is 

  ),(),(),( txftxDtx
t
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, (1.1) 

where φ, x, and f can be scalars of vectors. We shall consider D = const further, so 
the equation can be simplified: 
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(1.2) 

Note that D can be real, as in the diffusion equation or imaginary as in the 
paraxial diffraction one. If one discretizes the right part using, say, a conventional 
three-node scheme, he obtains a set of ordinary differential equations (SODE) to 
be solved using some numerical scheme along t. The problem is that the SODE 
obtained is stiff (if D is real) or has rapidly oscillating parasitic solutions (if D is 
imaginary). Let us demonstrate it. Consider unidimensional scalar PPDE: 
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Generating a uniform grid of a step Δx and applying a three-node approximation 
for the Laplacian 
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one obtains the SODE: 
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where i is the node index. The corresponding homogeneous equation set 
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has the following full set of solutions: 

 tikxAtx  exp),( , (1.7) 

where A is an arbitrary amplitude, and  

  
x

kxk
x

D







 0   ,1cos
)(

2
2

. (1.8) 

Thus, λ varies from 0 to -4D/(Δx)2. If one would like to improve accuracy and 
decrease Δx, the minimum λ/D ratio tends to minus infinity. We do not need these 
rapidly decreasing (if D is real) or oscillating (if D is imaginary) solutions, but 
they exist and worsen the stability of conventional numerical schemes. It forces to 

decrease the integration step  and makes the procedure very ineffective 2x [1]. 
One can use a dedicated scheme for stiff equations, but all of them need to 
calculate a Jacobian matrix and to invert some other matrix, so their efficiency for 
huge dimension system is extremely poor. 
 
2. Numerical scheme 
2.1. Basic scheme 

First of all, consider a simplest numerical scheme for the two-dimensional 
equation (1.2) 
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Next, generate a regular rectangular grid with steps Δx and Δy for x and y 
respectively and replace the continuous Laplacian by the digital one 
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(2.2) 

where 


 and f are vectors, while Ax and Ay are basis matrices of the digital 

Laplacian. The forms of the matrices depend on the method of numeration of 
nodes in the grid. All their diagonal elements are –2, and they have not more than 
two offdiagonal elements Aij = 1, where j is the number of a neighbour by x and y 
respectively. For example, if one numbers nodes consequently within each raw 
(y = const) and then rows (also consequently), Ax will be tridiagonal. Each Ax and 
Ay can be reduced to the tridiagonal form by simultaneous permutation of rows 
and columns (that is change of numeration of grid nodes), but not simultaneously. 
Both are always sparse. 
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Next choose a step τ for t and apply an A-stable one-stage Rosenbrock scheme 
of the second order [2] 
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The part f(t) not depending on 
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 does not affect the stability, so the  Rosenbrock 

scheme does not have to cover it. One needs to factorize 
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to make a step by this scheme. Although the matrix is sparse, it corresponds to a 
flat graph, and the procedure seems to be too expensive. Let us try to find a more 
effective way to solve (2.3). Decompose Rosenbrock corrector into two parts: 
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(2.4) 

Check stability properties first.  does not affect stability, so we omit it. As 

usually, regard the grid as infinite by both coordinates. Consider a space harmonic 

, where |kx| = |ky| = 1, and i and j are indices of nodes by x and y 

respectively. Then a step 
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where . Then 2
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Note that (2.6) consists of two multipliers depending on kx or ky, so we can analyze 
them separately and similarly. 
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where  and xDRe xDIm . It is obvious that the numerator is always less 

than or equal to the denominator if 0Re0  D . In other case the initial 

equation (2.1) has infinitely increasing solutions. Thus |α| ≤ 1 and the modified 
scheme (2.4) is A-stable. 

Let us check the approximation order of (2.4). 
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(2.8) 

where  and  are the Jacobian matrices of the 

spitted right part. The neglected term has the order τ3 (together with τ combined 
with the right part in the scheme), and does not affect the approximation order. 

This is true only if J1 and J2 have equal eigenvectors,  
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Than also . If J1 and J2 have eigenvalues g1 and g2 for some 

eigenvector than the residual part of the scheme is . 
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2.2. Factorization of infinite matrices 

Suppose that the matrices in (2.8) are infinite, namely the area in xy-plane is 
infinite. Let us apply Gaussian elimination method by rows top-down to the each 
of them. If the initial matrix is 
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and the stationary state after elimination of some part of upper rows is 
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where the third row is to be eliminated in this step. The condition 
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is equivalent to the process stationarity. (2.11) has two solutions 
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and only one with "+" sign gives a stable process. In our case 
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where ξ is x or y. 

Thus we do not need to factorize the matrix in (2.3) explicitly. We only are to 
apply the following procedure for x and y coordinates consequently instead: 
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where  and  means the function values in the neighboring nodes spaced by 

Δx or Δy. "←" means "set the value to the storage cell". The procedure is applied 
to each line of the grid by x and y independently. Steps 10 and 20 are executed in 
one direction, while 30 in the opposite. The order of x- and y-stages effects on the 
result, but not on the approximation order. 

i 1i

In the long run, we obtained the algorithm of N time complexity, where N is 
the number of nodes in the grid. The method can be easily extended to any spatial 
dimension, and the time complexity remains N. Compare to the most effective 
algorithms for sparse matrices [3]: the factorization time complexities of sparse 
matrices are N3/2 for 2D grids, N2 for 3D grids, etc. (Table 4.1). Note that boundary 
conditions can not be applied reasonably in our algorithm, as even a huge finite 
matrix being factorized differs from infinite one at the edges. 
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2.3.  Boost of the approximation order 

The approximation order of our algorithm is two that seems not so good. Let 
us try to improve this feature using the Numerov's formula [4] Chapter III (10.8) 
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The formula permits to calculate the second derivative of a function and has fourth 
approximation order. Its drawback is that it is implicit. In our case this drawback 
does not matter at all, as application of (2.15) to (2.1) means change of matrices 
coefficients in (2.4) only.  

Let us define two Numerov's matrices  and  similar to Ax and Ay 

above: all their diagonal elements are 5/6, and they have not more than two 
offdiagonal elements Aij = 1/12, where j is the number of a neighbour by x and y 
respectively. Then a forth order approximation of the second derivative is 
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where ξ is x or y. Substituting (2.12) into (2.1) one obtains 
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instead of (2.2). The Rosenbrock scheme transforms it into  
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and 
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(2.19) 

after decomposition. Commutativity of x- and y- matrices was used above. The 
coefficients are now 
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Two additional products by  and are to be calculated in this case. N
xA N
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In comparison with (2.4), we only improved the approximation order for 
spatial coordinates, so we do not need to check those of the whole scheme once 
more. However, we should analyze its stability properties. Let us make a similar 
formula manipulation as (2.4) → (2.5). 
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where Dx, y were defined above, and . Substituting 
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3. Numerical test 

Let us use the well-known equation for paraxial wave propagation [5] (2.21) 

02
2

2

2

2



































yxz
ik . 

(3.1) 

in free space without sources. This equation has an analytical solution for the 
fundamental Gaussian mode, so we can easily evaluate the accuracy. The exact 
solution is 
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The radius of curvature of the wavefront is 
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In the one-dimensional case the equation is 
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













xz
ik , 

(3.5) 

and its exact solution 

)/exp( 22

0
0 wx

w

w
uu  . 

(3.6) 

Every time numerical simulation was conducted in the interval  and 

the grid half-size was 4.5w0. The purpose of the numerical test was not detailed 
investigation of the algorithm properties for various equations, but only a proof of 
its workability and stability, and an estimation of its accuracy. The results for the 
basic scheme and the improved one are collected in 

]2/,0[ 2
0kwz 

Table 3.1 and Table 3.2 
respectively.  
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Table 3.1. Accuracy of the basic scheme. 

Nodes per grid half-size Steps by z |Δu/u| 
One dimension 

60 32 8·10-4 
60 25 8.3·10-4 
60 16 1·10-3 
60 8 2·10-3 
60 4 6·10-3 
60 2 1.8·10-2 
60 1 4.6·10-2 
15 32 1.1·10-2 
30 32 3·10-3 
120 32 2.5·10-4 

Two dimensions 
60 32 1·10-3 
60 16 1.2·10-3 
60 8 1.9·10-3 
42 32 2·10-3 
30 32 4·10-3 
15 8 1.7·10-2 
84 32 5.6·10-4 

It is clear from Table 3.1 that the basic scheme is stable for all the reasonable 

ratios Δz/Δx. For example,  for one step by z and 60 nodes per grid 
half-size, and the scheme still gives quite reasonable solution in this case. For 

reference, the Euler method applied to 

90/ 2  xkz

(3.5) → (1.6) is unstable for any , 
as in this case 

2/ xkz 

1/21max 2  xkzi . (3.7) 

For the most well-known Kutta scheme [4] Chapter II Table 1.2 

5768
24

1
6

2
6

8

2
8 

























xk

z

xk

z
, 

(3.8) 

where ]2,0[ . In this case 1max   if 2/ 2  xkz . 

The dependence of the relative accuracy of the basic scheme on the number of 
steps is placed in Fig. 3.1. The data from Table 3.1 were used. One can see the 
error decreases a little more slowly than the number of steps to the minus two. It 
means the "practical" approximation order in this case is a little less than two. The 
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dependence of the accuracy on the number of nodes is represented in Fig. 3.2. The 
"practical" approximation order here is exactly four. 
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Fig. 3.1. Basic scheme accuracy vs number of integration steps (solid). 
0.1/N2 (dashed). 
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Fig. 3.2. Basic scheme accuracy vs number of nodes per grid half-size (solid). 
3/N2 (dashed). 

 
The results for the improved scheme are placed in Table 3.2 and Fig. 3.3. One 

can see that the "practical" approximation for xy is four and the accuracy is limited 
by Δz. 
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Table 3.2. Accuracy of the improved scheme. Two dimensions. 

Nodes per grid half-size Steps by z |Δu/u| 
60 32 8.8·10-5 
30 32 1.2·10-4 
15 32 6.5·10-4 
8 32 8.3·10-3 
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Fig. 3.3. Improved scheme accuracy vs number of nodes per grid half-size (solid). 
30/N 4 (dashed). 

4. Discussion and conclusions 

Thus we obtained an effective numerical scheme for parabolic partial 
differential equations of arbitrary dimension and no boundary condition. Its spatial 
approximation order is four and the temporal one is two. It is stable for arbitrary 
ratio of spatial and temporal steps. The scheme has been numerically tested, and 
the tests proved its operability. 

The spatial approximation order can be enhanced using, say, five-node 
numerical Laplacian approximation with a Numerov-like corrector. Hardly it 
makes any practical sense. The temporal order can be easily raised using a higher 
order Rosenbrock scheme. In this case it is not clear how to include the part f(t) 
not depending on 


 with the same order. 
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