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1 Introduction

Despite extensive studies during last decades, physics of the light scalar
mesons a0(980) (IG(JPC) = 1−(0++)), f0(980) and f0(600) ≡ σ (IG(JPC) =
0+(0++)) is far from complete understanding. In particular, there are doubts
whether simple quark model can explain their properties, see, e.g., the review
in [1].

The dominant decay channels of scalar mesons are known to be π+π−,
π0π0 for the f0(980) and σ meson, and π0η for the a0(980) meson. Much
experimental attention has already been paid to the radiative decays of the
φ meson: φ(1020) → γa0 → γπη [2, 3] and φ(1020) → γf0 (or γσ) → γππ
[4, 5] (see also the KLOE summary in [6] and results from Novosibirsk [7, 8,
9]). Such measurements are a good source of information about the scalar
meson properties [10]. Various models have been proposed to describe these
decays, [10, 11, 12, 13, 14], to mention a few. The calculated decay widths
turn out to be very sensitive to model ingredients, however, the experimental
data is still insufficient to unambiguously discriminate between the models.

In the case of the neutral final state (FS), i.e., π0π0γ and π0ηγ, the cross
section is determined solely by final-state radiation (FSR) mechanism, since
there is no initial-state radiation (ISR) contribution resulting in the same
final state. Despite the lower value of the cross section, compared to the
charged pion case (e+e− → π+π−γ), processes with the neutral-meson FS
are an invaluable source of information on complicated hadron dynamics.

In this paper we describe the differential cross section of the e+e− an-
nihilation to a pair of neutral pseudoscalar mesons and one photon in the
FS,

e+(p+) e
−(p−) → γ∗ → P1(p1) P2(p2) γ(k). (1)

The pseudoscalar mesons (JPC = 0−+) are denoted by P1P2 ≡ π0π0 and
π0η. In Section 2 we present a formalism for a differential cross section,
which is the main task of this paper. We provide a more general framework
in comparison with Refs. [15] and [16], namely, no integration is performed.
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It gives a convenient ground to implement the results in the Monte Carlo
generators, e.g., in FASTERD [17] (based on the general structure given in
Ref. [15]) or PHOKHARA [18].

Our framework is consistent with symmetries of the strong and electro-
magnetic interactions. It incorporates a model-dependent description of the
FSR only through the explicit form of the Lorentz-invariant functions f1,2,3
and has a model-independent tensor decomposition.

In Sections 3 and 4 we calculate the FS hadronic tensor in the frame-
work of Resonance Chiral Theory (RχT) [19]. It is the second goal of the
paper to provide such a description in terms of functions f1,2,3. The RχT is
a consistent extension of Chiral Perturbation Theory to the region of ener-
gies near 1 GeV, which introduces the explicit resonance fields and exploits
the idea of resonance saturation. One of the advantages of the RχT La-
grangian at leading order (LO) (which we essentially use) is that, having a
good predictive power, it contains very few free parameters compared with
other phenomenological models.

We consider in detail the following intermediate states with scalar and
vector resonances, which lead to the same FS P1P2γ:

scalar decay, (Section 3)

e+e− → γ∗ → Sγ → P1P2γ (2)

e+e− → γ∗ → V → Sγ → P1P2γ

vector contribution, (Section 4)

e+e− → γ∗ → V P1,2 → P1P2γ (3)

e+e− → γ∗ → Va → VbP1,2 → P1P2γ

where S (JPC = 0++) is an intermediate scalar meson (S = f0, σ for π0π0 FS
and S = a0 for π0η). Only the lowest nonet of vector mesons (V, Va, Vb = ρ,
ω and φ) is taken into account.

We are interested in the center-of-mass energy
√
s range from the thresh-

old up to Mφ. This framework may also be used in a somewhat dedicated
case of

√
s = Mφ, giving, e.g., the φ radiative decay description.

For the quantitative illustration of our approach, in Section 5 we show the
numerical results for the values of

√
s = 1 GeV and

√
s = Mφ. The meson-

pair invariant mass distributions are of interest, and for
√
s = Mφ they are

compared with available results from KLOE. We demonstrate the interplay
of the contributions (2) and (3). Conclusions follow in Section 6.
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Fig. 1. Generic scheme for electron-positron annihilation into two particles
with final state radiation

2 General structure of the FSR cross section

For a generic reaction e+e− → γP1P2 we define 4-momenta as shown in
Fig. 1:

p = p1 + p2, l = p1 − p2, (4)

Q = p+ + p− = k + p1 + p2.

The masses of pseudoscalars are m(P1) = m1, m(P2) = m2.
The cross section of the FSR process can be written as

dσF =
1

2s(2π)5
C12

×
∫

δ4(Q− p1 − p2 − k)|MFSR|2
d3p1 d

3p2 d
3k

8E1E2 ω

= C12N

∫

|MFSR|2d cos θ dφ dm2
1γ dp

2, (5)

N =
1

(2π)4
1

64s2
,

where s = Q2, θ is the azimuthal angle, φ is the polar angle of the photon
and m2

1γ = (k + p1)
2. The factor C12 = 1/2 for π0π0 in the final state and

C12 = 1 for π0η. The matrix element MFSR is

MFSR =
e

s
Mµν ū(−p+)γµu(p−)ǫ

∗
ν , (6)

where e =
√
4πα ≈

√

4π/137 ≈ 0.303 and the FSR tensor Mµν can be
decomposed into three gauge-invariant independent tensors:

Mµν(Q, k, l) ≡ −ie2(τµν1 f1 + τµν2 f2 + τµν3 f3), (7)

τµν1 = kµQν − gµνk ·Q,

τµν2 = k · l(lµQν − gµνQ · l) + lν(kµQ · l − lµk ·Q),

τµν3 = Q2(gµνk · l− kµlν) +Qµ(lνk ·Q−Qνk · l)
5



with the Lorentz-invariant functions

fi ≡ fi(Q
2, k ·Q, k · l), (8)

i = 1, 2, 3. If m1 = m2, these tensors coincide with the result of Ref. [15,
20]. One may also find a similar approach in [21]. We emphasize that the
decomposition (7) is model independent; the model dependence is contained
in an explicit form of functions fi only. Notice that the scalar products can
be written in terms of the invariant masses:

k ·Q = (s− p2)/2,

k · l = m2
1γ −m2

1 − k ·Q,

Q · l = k · l + sδ/2, (9)

where δ ≡ 2(m2
1 −m2

2)/s.
For the matrix element squared and averaged over the e+e− polarizations

we obtain

|MFSR|2 =
e6

s2

[

a11|f1|2 + 2a12Re(f1f
∗
2 ) + a22|f2|2

+ 2 a23 Re(f2f
∗
3 ) + a33|f3|2 + 2a13Re(f1f

∗
3 )

]

, (10)

with the coefficients

aik ≡ (
s

2
gµρ − p+µp−ρ − p+ρp−µ)τ

µν
i τρλk gνλ, (11)

equal to

a11 =
1

4
s
(

t21 + t22
)

,

a22 =
1

8

[

sl4(t1 + t2)
2 + 4l2

(

u1
2
(

s2 + s(t1 + t2) + t22
)

+u2
2
(

s2 + s(t1 + t2) + t21
)

+2u1u2

(

s2 + s(t1 + t2)− t1t2
))

+8s(u2
1 + u2

2)(u1 + u2)
2

]

−
(

4u2
1 + 4u2

2 + l2(2s+ t1 + t2)
)s2(u1 + u2)δ

4

+
(

l2s+ 2u2
1 + 2u2

2

)s3δ2

8
,
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a33 = −s2

2

(

t1t2l
2 + 2(u1 + u2)(u2t1 + u1t2)

−δs(u2t1 + u1t2)
)

,

a12 =
1

8

[

sl2(t1 + t2)
2 + 4u2

1(s
2 + st2 + t22)

+4u2
2(s

2 + st1 + t21) + 4u1u2(2s
2 + s(t1 + t2)− 2t1t2)

+2s2 (t1u2 + t2u1 + 2s(u1 + u2)) δ + s4δ2
]

,

a13 =
s

4

[

(u1 + u2)(st1 + st2 + t1t2)− u1t
2
2 − u2t

2
1

− δ

2
(t1 + t2)s

2

]

,

a23 =
s

4

[

l2(u1t2 − u2t1)(t1 − t2)− 2s(u1 + u2)
3

+2(u1 + u2)(u1 − u2)(t2u1 − u2t1)

+δs
(

u1u2(4s+ t1 + t2) + u2
1(2s− t2) + u2

2(2s− t2)
)

−δ2

2
s3(u1 + u2)

]

, (12)

where

t1 ≡ (p− − k)2 −m2
e = −2p− · k,

t2 ≡ (p+ − k)2 −m2
e = −2p+ · k,

u1 ≡ l · p−, u2 ≡ l · p+. (13)

For numerical calculations the relation l2 = 2(m2
1 +m2

2)− p2 may be useful.
The Eqs. (5) and (10), with the explicit expressions (12) and (13), fix the

whole model-independent part of the partial differential cross section. It is
worth illustrating a relation of these formulae to the partial differential cross
section. Taking into account the corresponding factors and integrating the
coefficients aik over the angular variables of the final-meson phase space we
have

dσ

dm2
1γdp

2
=

α3C12

32s

(

A11|f1|2 + 2A12Re(f1f
∗
2 ) +A22|f2|2

+2A23Re(f2f
∗
3 ) +A33|f3|2 + 2A13Re(f1f

∗
3 )
)

, (14)
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where

A11 =
4x2

3
,

A12 =
2s

3

[

(x1 − x2)
2 + x2(σ − 1 + x)− 2δ(x1 − x2) + δ2

]

,

A13 = −4s

3
x(x1 − x2 − δ),

A23 = −2s2

3
(x1 − x2)(δ − x1 + x2)

2,

A22 =
s2

3

[

(x1 − x2)
4 + 2(x1 − x2)

2(1 − x)(σ − 1 + x)

+2x2(σ − 1 + x)2

−2δ(x1 − x2)
(

(x1 − x2)
2 + (σ − 1 + x)(x1 + x2)

)

+δ2
(

(x1 − x2)
2 + 2(σ − 1 + x)

)]

,

A33 =
2s2

3

[

(x1 − x2)
2(1 + x) − x2(σ − 1 + x)

+δ(δ − (2 + x)(x1 − x2))
]

, (15)

and

x =
s− p2

s
, x1 =

2E1√
s

=
p2 +m2

1γ −m2
2

s
,

x2 =
2E2√

s
=

s+m2
2 −m2

1γ

s
, σ =

2(m2
1 +m2

2)

s
. (16)

For the case m1 = m2 Eq. (12) reduces to Eq. (17) of Ref. [15]. Also
the results (14), (15) coincide with Eqs. (2.7), (2.8) of [16]. However, for an
MC generator, the expressions (5) and (10) with coefficients aik are more
convenient than (14).

Integrating Eq. (14) over m2
1γ one obtains the distribution of the invariant

mass
√

p2 of two pseudoscalar mesons:

dσ

d
√

p2
= 2

√

p2
∫ (m2

1γ)max

(m2
1γ)min

dm1γ

(

dσ

dm1γ dp2

)

. (17)

The bounds of integration over m2
1γ at the fixed value of p2 are determined
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by

(m2
1γ)max/min =

s(p2σ + sδ)

4p2

+
s− p2

2

(

1±
√

1− sσ

p2
+

s2δ2

4p4

)

. (18)

At the φ-meson peak (s = M2
φ) one can present the results in terms of

the branching ratio for the φ → P1P2γ decay, which is related to the cross
section as follows:

dB(φ → P1P2γ)

d
√

p2
=

M2
φ

12πB(φ → e+e−)

×dσ(e+e− → P1P2γ)

d
√

p2
, (19)

where the φ → e+e− branching ratio B(φ → e+e−) is used. In the context
of this paper, a calculation of this branching ratio is useful for comparison of
model predictions with available data.

3 Scalar contribution

In this Section we consider in detail the transition amplitudes

γ∗ → f0γ → π0π0γ,

γ∗ → σγ → π0π0γ,

γ∗ → a0γ → π0ηγ (20)

for the π0π0γ and π0ηγ final states, respectively. They contibute to
e+e− → Sγ → P1P2γ as illustrated in Fig. 2.

γ∗
γ

S

Fig. 2. Scheme of e+e− → Sγ → P1P2γ subprocess.

To describe the processes (20) we use RχT [19] at the linear-in-resonance
level, following [12, 22]. In this framework the leading contribution to the
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γ∗γS vertex comes from the one-loop diagrams. We will see that for the case
of the π0π0γ final state both the kaon and pion loops contribute (recall, in
our approach the γ∗ invariant mass

√
s is not constrained to the φ meson

mass). The mechanism of the φ meson decay via the kaon loop was first
considered in a different formalism in [10] and is consistent with the data [6].
In the current model the loop mechanism is a predicted subprocess rather
than an assumption.

The basic features of the Lagrangian framework of the RχT are sketched
in Appendix A. We emphasize that both light isoscalar scalar resonances,
f0 and σ are included in the formalism in a natural way. Throughout this
section we work in the tensor representation for spin-1 particles [19, 23].
In the present work we take into account the pseudoscalar decay constants
splitting (fπ 6= fK) which was discussed in the same context in Ref. [22].

The interaction of pseudoscalars with the photon field Bµ in RχT is iden-
tical to the scalar QED. We shall now discuss the interaction terms of the
interaction Lagrangian of (A3) relevant to the processes (20) (cf. [12]). For
the vector mesons in the even-intrinsic-parity sector one has

LγV = eFV F
µν
(1

2
ρ0µν +

1

6
ωµν − 1

3
√
2
φµν

)

, (21)

LV PP = iGV

[ 1

f2
π

(2 ρ0µν∂
µπ+∂νπ−)

+
1

f2
K

(ρ0µν + ωµν −
√
2φµν)(∂

µK+∂νK−)

+
1

f2
K

(−ρ0µν + ωµν −
√
2φµν )(∂

µK0∂νK̄0)
]

, (22)

LγV PP = −eFV

f2
π

∂µBνρ0µν π+π−

−eFV

2f2
K

∂µBν
(

ρ0µν + ωµν −
√
2φµν

)

K+K−

−2eGV

f2
π

Bνρ0µν
(

π+∂µπ− + π−∂µπ+
)

−eGV

f2
K

Bν
(

ρ0µν + ωµν −
√
2φµν

)

×
(

K+∂µK− +K−∂µK+
)

, (23)
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Table 1. The vertices from Resonance Chiral Lagrangian terms (21)-(23).
The dashed line stands for pseudoscalar meson (momentum l), double solid
— for vector meson, wavy line — for photon (momentum q).

Diagramm (ν)(µλ)

(µλ)

l+

l−

(ν)(µλ)

l+

l−

q

Vertex function eFV [gνλqµ − gνµqλ]
GV

2f2
P

[

l−µ l
+
λ − l+µ l

−
λ

]

eGV

2f2
P

[gνλ(l
− + l+)µ

−gνµ(l
− + l+)λ]

+ eFV

4f2
P

[gνλqµ − gνµqλ]

ρ ω φ ρ ω φ ρ ω φ
π± (fP = fπ) 2 0 0 2 0 0

K± (fP = fK) 1 1 −
√
2 1 1 −

√
2

K0 (fP = fK) −1 1 −
√
2 0 0 0

1
2

1
6

−1
3
√
2

where Fαβ stands for the electromagnetic field tensor and V µν for the vector
field in the tensor representation, FV and GV are the model parameters
(see Appendix B for numerical values). Vertex functions for Eqs. (21)–(23)
are shown in Table 1.

The Lagrangian terms for scalar and pseudoscalar meson interactions,
which follow from (A5) are

Lscalar =
∑

S

S
( 1

f2
π

gSππ

2

→
π

2
+

1

f2
π

gSηη

2
η2 +

1

f2
π

gSπηπ
0η

+
1

f2
K

gSKK

(

K+K− + (−1)ISK0K̄0
)

+
1

f2
π

(ĝSππ/2)(∂µ
→
π )2

+
1

f2
π

(ĝSηη/2)(∂µη)
2 +

1

f2
π

ĝSπ0η∂µπ
0∂µη

+
1

f2
K

ĝSKK

(

∂µK
+∂µK− + (−1)IS∂µK

0∂µK̄0
)

+
1

f2
π

gSγππeBµπ
+

↔
∂µ π− +

1

f2
K

gSγKKeBµK
+

↔
∂µ K−

+
1

f2
π

gSγγππe
2BµB

µπ+π− +
1

f2
K

gSγγKKe2BµB
µK+K−

)

. (24)

(interactions with η′ are omitted here for brevity). Here S stands for any

scalar field, a0,f0 or σ, and P – for pseudoscalar
→
π= π0, π± or K±, K0, K̄0
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and η. We have introduced the effective couplings gSππ, gSηη, etc. listed in
Table 2, IS = 0 for f0 and σ and IS = 1 for a0. Couplings are expressed
in terms of the model parameters cd, cm and θ, see also the expression (A2)

Table 2. Effective couplings for scalar mesons [22] (to be used with vertices
of Fig. 3). Model parameters are cd and cm; the scalar octet-singlet mixing
angle θ is defined in Eq. (A4); η′ couplings are omitted; singlet couplings c̃d
and c̃m are related to cd and cm in the large-Nc approximation. Notice that
the entries relevant to the η meson correct the results of Table 9 in Ref. [12].

gfππ = −2 cmm2
π(2 cos θ −

√
2 sin θ)/

√
3,

gfηη = −cm(2 (C2
s (2m

2
K −m2

π) + C2
qm

2
π) cos θ

+
√
2 (C2

s (4m
2
K − 2m2

π)− C2
qm

2
π) sin θ)/

√
3,

gfKK = −cm m2
K(4 cos θ +

√
2 sin θ)/

√
3 .

ĝfππ = 2 cd(2 cos θ −
√
2 sin θ)/

√
3,

ĝfηη = cd(2(C
2
q + C2

s ) cos θ

−
√
2(C2

q − 2C2
s ) sin θ)/

√
3 ,

ĝfKK = cd(4 cos θ +
√
2 sin θ)/

√
3.

gσππ = −2 cmm2
π(
√
2 cos θ + 2 sin θ)/

√
3,

gσηη = −cm(−
√
2 (C2

s (4m
2
K − 2m2

π)− C2
qm

2
π) cos θ

+2 (C2
s (2m

2
K −m2

π) + C2
qm

2
π) sin θ)/

√
3,

gσKK = −cm m2
K(−

√
2 cos θ + 4 sin θ)/

√
3 .

ĝσππ = 2 cd(
√
2 cos θ + 2 sin θ)/

√
3,

ĝσηη = cd(
√
2(C2

q − 2C2
s ) cos θ

+2(C2
q + C2

s ) sin θ)/
√
3 ,

ĝσKK = cd(−
√
2 cos θ + 4 sin θ)/

√
3.

gaKK = −
√
2 cmm2

K ,

gaπη = −2
√
2Cq cm m2

π ,

ĝaKK =
√
2 cd ,

ĝaπη = 2
√
2Cq cd .

gfπη = ĝfπη = gσπη = ĝσπη = 0 ,
gaππ = ĝaππ = gaηη = ĝaηη = 0 .

gSγππ = −iĝSππ, gSγKK = −iĝSKK ,
gSγγππ = ĝSππ, gSγγKK = ĝSKK

12



l+

l−

l+

l−

(ν) (µ)

(ν)

ı gSPP

f2
P

−

ı ĝSPP

f2
P

2e2ı gSPP

f2
P

ı e ĝSPP

f2
P

l+ ·l− (l+ − l−)ν gµν

Fig. 3. The vertices corresponding to the Lagrangian (24). The dotted line
stands for a scalar meson S, the dashed one — for a pseudoscalar P . Cou-
plings are shown in Table 2.

for the Cq,s coefficients. The Lagrangian (24) leads to the vertices shown in
Fig. 3.

When working with the three-point vertex functions γ∗γS we factorize
the kaon-loop part in the a0 case and separately the pion-loop and kaon-loop
part for f0 and σ, as illustrated in Fig. 4.

γ∗
γ

f0

+

(V = ρ, ω, φ)

γ∗
γ

f0

+
V

γ∗
γ

γ∗
γ

f0
=

γ∗
γ

f0

+
ρ

f0

π+π− π+π−

γ∗
γ

=

f0

γ∗
γ

f0

+

π+π−

K+K− K+K− K+K−FF

FF

{ {
γ∗

γ
γ∗

γ

a0

=

(V = ρ, ω, φ)

γ∗
γ

a0

+
V

a0

K+K− =
γ∗

γ

a0

FF K+K−K+K−

Fig. 4. Scheme for the γ∗γf0 and γ∗γσ (top) and γ∗γa0 (bottom) transition.

The scalar meson contribution relevant to the π0π0 final state is

fS,π0π0

1 =
∑

S=f0, σ

DS(p
2)GSππ(p

2)
(

G
(π)
Sγγ(p

2, Q2)Fπ
em(Q2)

+G
(K)
Sγγ(p

2, Q2)FK
em(Q2)

)

, (25)

and in the π0η case one has

fS,π0η
1 = Da0

(p2)Ga0πη(p
2)G(K)

a0γγ(p
2, Q2)FK

em(Q2), (26)

The pion and kaon electromagnetic form factors (FF’s) in the above formulae
are discussed in Appendix C.
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We use the scalar meson propagator DS(p
2) in the form [22]

D−1
S (p2) = p2 −M2

S +MS ℑm
(

Γ̃S, tot(M
2
S)
)

+i
√

p2 Γ̃S, tot(p
2) (27)

with

Γ̃tot,S(p
2) = Γ̃S→ππ(p

2) + Γ̃S→KK̄(p2), S = f0, σ

Γ̃tot,a0
(p2) = Γa0→πη(p

2) + Γ̃a0→KK̄(p2). (28)

Modified widths Γ̃ in the above expressions are defined similarly to the tree-
level decay widths given in Appendix B, see Eqs. (B10), but the analytic
continuation is used:

√

f(p2) = ei Arg(f(p2))/2
√

|f(p2)|, (29)

see Ref. [22]. We do not include contributions of heavy particles to the total
widths, e.g., the Γf0→ηη(p

2) is neglected.
By construction, the functions f1 in (25), (26) are of the chiral order

O(p6): the diagrams of Fig. 4 are O(p4) and SPP transition is O(p2). In
Eqs. (26), (25) the γ∗(Q2) → γS(p2) transition FF’s are defined as

G
(π)
Sγγ(p

2,Q2) =
GSππ(p

2)

2π2 m2
π

I

(

Q2

m2
π

,
p2

m2
π

)

, S = f0, σ

G
(K)
Sγγ(p

2,Q2) =
GSKK(p2)

2π2 m2
K

I

(

Q2

m2
K

,
p2

m2
K

)

, S = f0, σ

G(K)
a0γγ(p

2,Q2) =
Ga0KK(p2)

2π2 m2
K

I

(

Q2

m2
K

,
p2

m2
K

)

(30)

in terms of momentum-dependent SPP vertices

GSKK(p2) ≡ 1/f2
K

(

ĝSKK(m2
K−p2/2)

+gSKK) ,

GSππ(p
2) ≡ 1/f2

π

(

ĝSππ(m
2
π − p2/2) + gSππ

)

, (31)

for S = f0, σ and

Ga0KK(p2) ≡ 1/f2
K

(

ĝa0KK(m2
K − p2/2) + ga0KK

)

,

Ga0πη(p
2) ≡ 1/f2

π

(

ĝaπη(m
2
η +m2

π − p2)/2 + gaπη
)

. (32)

For a definition of the loop integral I(a, b) one can see, e.g., Eqs. (3.4), (3.5)
in [11].
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Table 3. Mechanisms of the vector contribution

Dominant Suppressed

in γ∗ → (· · · ) → π0π0γ :

1-vector (ρ0π0), (ωπ0) (φπ0)
2-vector (ω→ρ0π0), (ρ0→ωπ0) (φ → ρ0π0), (φ→ωπ0)

(ρ0→φπ0)

in γ∗ → (· · · ) → π0ηγ :

1-vector (ρπ0), (ωπ0) (φπ0)
(ρη), (ωη) (φη)

2-vector (ρ → ωπ0), (ω → ρπ0) (ρ → φπ0), (φ → ρπ0)
(ρ → ρη), (ω → ωη) (φ → φη), (φ → ωη)

Va

Vb

γ
∗V

γ
∗

Fig. 5. The vector, γ∗ → V P1 → P1P2γ, and double vector, γ∗ → Va →
VbP1 → P1P2γ, contributions

4 Vector contribution

For γ∗ → (· · · ) → π0π0γ the vector contribution mechanisms are listed in
Table 3 and the corresponding diagrams are shown in Fig. 5.

For the odd-intrinsic-parity vector-vector-pseudoscalar and vector-
photon-pseudoscalar interactions we use the chiral Lagrangian in the vector
formulation for spin-1 fields. As shown in [25], the use of vector formulation
for 1− fields ensures the correct behavior of Green functions to order O(p6),
while the tensor formulation would require additional local terms (see also
discussion in the Appendix F of [15]). We choose Lagrangians of Ref. [25, 26],
that are O(p2) and O(p3), for construction of the vector γV P and double-
vector V V P contribution to fi. General Lagrangian terms are given in Ap-
pendix A.

Assuming exact SU(3) case, the γV interaction can be written as

LγV = −efV ∂
µBν

(

ρ̃0µν +
1

3
ω̃µν −

√
2

3
φ̃µν

)

(33)

with Ṽµν ≡ ∂µVν − ∂νVµ and fV = FV /Mρ is the coupling for the vector
representation of the spin-1 fields [23].
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The interactions of vector mesons in the odd-intrinsic-parity sector read

LV γP = −4
√
2ehV

3fπ
ǫµναβ∂

αBβ

[

(ρ0µ + 3ωµ + 3εωφφ
µ)∂νπ0

+
[

(3ρ0µ + ωµ)Cq + 2φµCs

]

∂νη

]

, (34)

LV V P = −4σV

fπ
ǫµναβ

[

π0∂µων∂αρ0β

+π0εωφ∂
µφν∂αρ0β + π0ε′∂µων∂αφβ

+η
[

(∂µρ0ν∂αρ0β + ∂µων∂αωβ)
1

2
Cq

−∂µφν∂αφβ 1√
2
Cs + εωφ∂

µφν∂αωβ(Cq + Cs)
]

]

, (35)

where ǫµναβ is the totally antisymmetric Levi-Civita tensor. As before, we
omit the η′ meson.

As it is also seen from (34) and (35), the transitions γφπ0, φρ0π0 and φωη
are related to a small parameter εωφ, responsible for the uū+ dd̄ component
in the physical φ meson. The parameter ε′ is responsible for the G-parity-
violating φωπ0 vertex, caused by isospin breaking. The coupling constants
fV , hV and θV are model parameters. Numerical values for all parameters
are given in Appendix B.

Due to a similar structure of the LV Pγ and LV V P interactions, the pro-
cesses γ∗ → V P1,2 → P1P2γ (one-vector-meson exchange) and γ∗ → Va →
VbP1,2 → P1P2γ (double-vector-meson exchange) can be described together.
For this purpose it is convenient to introduce the form factors Fγ∗V P (Q

2)
which describe the transitions γ∗(Q2) → V P including both these mecha-
nisms. Of course, the vector resonance enters off-mass-shell.

For the γ∗ → V π0 transition we obtain

Fγ∗ρπ(Q
2) =

4

3fπ

[
√
2hV − σV fV Q

2Dω(Q
2)

+εωφ

√
2σV fV Q

2Dφ(Q
2)
]

, (36)

Fγ∗ωπ(Q
2) =

4

fπ

[
√
2hV − σV fV Q

2Dρ(Q
2)

+ε′
√
2

3
σV fV Q

2Dφ(Q
2)
]

,

Fγ∗φπ(Q
2) = εωφ

4

fπ

[
√
2hV − σV fV Q

2Dρ(Q
2)
]

.
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The vector meson V = ρ, ω, φ propagators are

DV (Q
2) = [Q2 −M2

V + i
√

Q2Γtot,V (Q
2)]−1. (37)

with an energy-dependent width for the ρ meson

Γtot,ρ(Q
2) =

G2
V M

2
ρ

48πf4
πQ

2

[

(

Q2 − 4m2
π

)3/2
θ
(

Q2 − 4m2
π

)

+
1

2

(

Q2 − 4m2
K

)3/2
θ
(

Q2 − 4m2
K

)

]

(38)

and the constant widths for the ω and φ mesons.
In terms of these FF’s we find the contribution to the functions fi (see

Eq. (7)) coming from the processes (3). For the π0π0γ final state one obtains:

fV
1 = −1

4

∑

V=ρ,ω

Fγ∗V π(Q
2)Fγ∗V π(0)

×
[

(k ·Q+ l2)
(

DV (R
2
+) +DV (R

2
−)
)

(39)

+2k · l
(

DV (R
2
+)−DV (R

2
−)
)]

,

fV
2 =

1

4

∑

V =ρ,ω

Fγ∗V π(Q
2)Fγ∗V π(0)

[

DV (R
2
+) +DV (R

2
−)
]

,

fV
3 = −1

4

∑

V=ρ,ω

Fγ∗V π(Q
2)Fγ∗V π(0)

[

DV (R
2
+)−DV (R

2
−)
]

,

where the contribution proportional to Fγ∗φπ(Q
2)Fγ∗φπ(0) ∝ ε2ωφ has been

neglected. The momenta are defined as

R2
± = (1/4)(Q2 + l2 + 2k ·Q± 2(k · l +Q · l)), (40)

or equivalently R2
+ = (k + p1)

2 and R2
− = (k + p2)

2.
Similarly, for the γ∗ → V η transition we obtain FF’s

Fγ∗ρη(Q
2) = CqFγ∗ωπ(Q

2), (41)

Fγ∗ωη(Q
2) = CqFγ∗ρπ(Q

2),

Fγ∗φη(Q
2) = 2 Cs

4

3fπ

[
√
2hV − σV fV Q

2Dφ(Q
2)
]

−εωφ(Cq + Cs)
4

3fπ
σV fV Q

2Dω(Q
2).
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Correspondingly, the contribution to the functions fi for the π0ηγ final
state is

fV
1 = −1

4

∑

V =ρ,ω,φ

{

Fγ∗V π(0)Fγ∗V η(Q
2)

×
[

(k ·Q+ l2)DV (R
2
+) + 2k · lDV (R

2
+)
]

+Fγ∗V η(0)Fγ∗V π(Q
2)

×
[

(k ·Q+ l2)DV (R
2
−)− 2k · lDV (R

2
−)
]

}

,

fV
2 =

1

4

∑

V =ρ,ω,φ

{

Fγ∗V π(0)Fγ∗V η(Q
2)DV (R

2
+)

+Fγ∗V η(0)Fγ∗V π(Q
2)DV (R

2
−)
}

,

fV
3 = −1

4

∑

V =ρ,ω,φ

{

Fγ∗V π(0)Fγ∗V η(Q
2)DV (R

2
+)

−Fγ∗V η(0)Fγ∗V π(Q
2)DV (R

2
−)
}

. (42)

5 Numerical results

In this section we present the numerical results obtained in our framework.
The model-dependent ingredients, namely, the functions f1,2,3 are given in
Sections 3 and 4.

The values of the model parameters, which we used in our numerical
results, are listed in Appendix B. The masses of vector and pseudoscalar
mesons are taken from [1]. The coupling of vector mesons to a pseudoscalar
and photon hV is estimated from the tree-level decay width. The scalar
meson couplings and masses were found from the fit [22].

5.1 Scalar mesons and φ radiative decay

As we discussed in this paper, in e+e− annihilation to π0π0γ and π0ηγ both
scalar (2) and vector decays (3) contribute to the observed events. The KLOE
Collaboration has reported data on the invariant mass distributions [2, 4] at√
s = Mφ, in which the vector meson contribution has been subtracted.

In [22] we performed a combined fit of dB(φ → a0γ → π0ηγ)/d
√

p2 and

dB(φ → (f0, σ)γ → π0π0γ)/d
√

p2 to the KLOE 2002 data [2, 4], considering
only scalar meson contributions. We have found the inclusion of the σ meson
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into the framework important, and have fixed the numerical values of scalar
meson couplings and pole masses within the model, for more detail see [22]. In

Fig. 6 we show our model results for dB(φ → Sγ → P1P2γ)/d
√

p2, eq. (19),
at

√
s = Mφ. In this and subsequent plots we use the notation mπ0π0 and

mηπ0 for
√

p2. Note that only the scalar meson contribution to the P1P2γ
final state is plotted in this Figure. The plot for the π0π0γ final state shows
a rather good fit [22] to the KLOE 2002 data [4], where both f0 and σ are
taken into account.

In 2009 the new KLOE data [3] on the π0ηγ channel appeared. A com-
parison of the model prediction for φ → a0γ → π0ηγ with these new data
is also shown in Fig. 6 (bottom). We leave a refined fit of these new data
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Fig. 6. Invariant mass distributions in the e+e− annihilation to π0π0γ (top
panel) and π0ηγ (middle and bottom panel) for

√
s = Mφ. Data are from [4]

(top), [2] (middle) and [3] (bottom).
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Fig. 7. Invariant mass distributions in the e+e− annihilation to π0ηγ for√
s = Mφ, where the total contribution (vector and scalar) is taken into

account (cf. Fig. 6 (bottom)). Data are from [3].

for the future. Notice, if one adds vector contributions to σ(e+e− → ηπ0γ)
according to Table 3, then the shape of the invariant mass distribution, cal-
culated from eq. (19), changes: cf. Fig. 6 (bottom) and Fig. 7. It turns out
that the 2009 KLOE data [3] are better described by the total contribution
rather than by the scalar part alone. Note that in Refs. [3, 8] it was claimed
that the φ → π0ηγ decay is dominated by the φ → a0γ mechanism and the
vector contribution is very small: B(e+e− → V P → ηπ0γ)<∼ 10−6.

5.2 The γ∗ → ρ → ωπ and γ∗ → φ → ωπ contribution

For the moment, to follow KLOE analysis [5] we neglect the G-parity-
violating vertex φωπ0, i.e., we set ε′ = 0. For illustration we introduce
the constant Cρ

ωπ [5, 17]. This constant can be obtained in terms of form
factors (36)

Cρ
ωπ(s)

16πα
= −1

4
Fγ∗ωπ(s) Fγ∗ωπ(0), (43)

leading to

Cρ
ωπ = −16πα

4
√
2hV

f2
π

(√
2hV − σV fV sDρ(s)

)

≈ (0.597− 0.542 i) GeV−2 (44)

at
√
s = Mφ. The KLOE result [5] for the same constant is Cρ

ωπ = 0.850
GeV−2 (

√
s = Mφ). Thus our prediction for the absolute value, |Cρ

ωπ| = 0.751
GeV−2, which includes only the γ∗(→ ρ) → ωπ mechanism, is smaller than
that of KLOE by about 15%.
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Fig. 8. Partial differential cross section of e+e− annihilation to π0π0γ for√
s = Mφ due to the γ∗ → ρ → ωπ mechanism compared to γ∗ → (ρ, φ) →

ωπ.

This difference can be attributed to the ρ′ = ρ(1450) meson which is not
included in the present calculation. To estimate the role of the ρ′ in the
constant Cρ

ωπ , we follow Ref. [27] (Eqs. (32), (33)):

Cρ
ωπ = −16πα

4
√
2hV

f2
π

(
√
2hV (45)

− σV fV
s

1 + βρ′

(Dρ(s) + βρ′Dρ′(s)))

≈ (1.06− 0.69 i) GeV−2

for βρ′ = −0.25, Mρ′ = 1.465 GeV, Γρ′(M2
ρ′) = 400 MeV and obtain

|Cρ
ωπ| = 1.27 GeV−2.
Next we turn on the parameter ε′ responsible for the G-parity-violating

φπω vertex and check how the Cρ
ωπ value changes. Omitting ρ′ we have

Cρ
ωπ = −16πα

4
√
2hV

f2
π

(
√
2hV − σV fV sDρ(s) (46)

+

√
2

3
σV fV sε

′Dφ(s)) ≈ (0.52− 0.72 i) GeV−2

and obtain |Cρ
ωπ| = 0.892 GeV−2. While making this estimation the value

ε′ = −0.0026 has been chosen 1. Apparently, the present model with the low-
est nonet of vector mesons, supplemented with the G-parity-violating effect,
allows one to obtain the value for Cρ

ωπ close to the KLOE value 0.850 GeV−2.
Influence of the ε′ parameter on the cross section is presented in Fig. 8.

1Of course the experimental decay width φ → ωπ determines only the absolute value
of this parameter.
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Therefore, the difference between the Cρ
ωπ value originating from the

γ∗(→ ρ) → ωπ mechanism, and the value measured by KLOE may be ex-
plained by the ρ′ meson and/or G-parity-violating contribution. To clarify
further this issue, an analysis of data at s = 1 GeV2 will be essential 2.

5.3 The γ∗ → φ → ρπ and γ∗ → ω → ρπ

In a similar manner one can define Cρπ(s):

−16πα
1

4
Fγ∗ρπ(s) Fγ∗ρπ(0) = Cρπ(s) (47)

= Cres
ρπ Dφ(s) + Cω

ρπ ,

where

Cω
ρπ = −16πα

4
√
2hV

9f2
π

(
√
2hV − σV fV sDω(s))

≈ (0.091− 0.002 i) GeV−2 (48)

and

Cres
ρπ = −16πα

4
√
2hV

9f2
π

√
2 σV εωφ fV s

≈ −0.0052. (49)

The KLOE values for these constants are Cres
ρπ ≈ −0.0057 and

Cω
ρπ = 0.26 GeV−2. However, in the experiment, they are entangled and

one has to compare the total contributions. Using the values (48) and (49)
we have |Cρπ(M

2
φ)| ≈ 1.2, which is in a reasonable agreement with KLOE fit

|Cρπ(M
2
φ)| ≈ 1.3.

5.4 Full model prediction for the cross section

Interference of leading vector resonance contributions (ρπ) and (ωπ) is pre-
sented in Fig. 9. One can see a destructive interference.

The interplay of the scalar (2) and vector decay (3) contributions to

dσ/d
√

p2 is shown in Fig. 10 (for
√
s = Mφ). One observes a complicated

2At s = 1 GeV2 the G-parity-violating vertex is suppressed, whereas the ρ′ mechanism
survives. Therefore, any difference in the values of Cρ

ωπ at two energies, s = 1 GeV2 and
s = M2

φ
, would indicate sizeable G-parity-violating effects.
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(φπ) channel is negligible and not shown in the plot.
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Fig. 10. Differential cross section dσ/d
√

p2 of the e+e− annihilation to π0π0γ
(top panel) and π0ηγ (bottom panel) for

√
s = Mφ.

interference between vector and scalar contributions. We see that in the case
of the π0π0γ final state the vector contribution has the same size as the scalar
meson one and is much smaller than the scalar one for the π0ηγ final state.

Notice that there exist the off-peak (
√
s = 1 GeV) data collected by

KLOE. The φ meson decays get strongly suppressed and the total cross sec-
tion is determined by the vector contribution only. In order to support the
related activity and provide the important model estimates, we include this
case into our numerical calculation. The corresponding results are presented
in Fig. 11.
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6 Conclusions

We presented a general framework for the model-independent decomposition
of the differential cross section for the final-state radiation in the reactions
e+e− → π0π0γ and e+e− → π0ηγ, for which the ISR contribution is absent
and the leading-order cross section is determined solely by the FSR mecha-
nism.

We calculated the explicit form of the functions fi, which carry the model-
dependent information about the processes, in the Resonance Chiral Theory
with the lowest nonet of vector and scalar mesons [19]. Scalar resonance, vec-
tor and double vector meson exchange contributions are considered. Notice
that all the relative phases are fixed from the Lagrangian. The only exception
is the sign of the ε′ parameter, which is related to a rare φ → ωπ decay.

The Lagrangian is taken at the linear-in-resonance level in the even-
intrinsic-parity sector and at the bilinear-in-resonance level in the odd-
intrinsic-parity sector. We try to keep the number of model parameters
small by imposing flavor SU(3) symmetry for couplings. Thus, it is pos-
sible to generalize our formulae to the case of broken flavor SU(3) symmetry,
though it will require a phenomenological tuning of more parameters than in
a symmetric case.

The model parameters for the scalar sector were obtained from the fit [22]
to the KLOE data [2, 4].

The numerical results for the differential cross section dσ/d
√

p2 are given
for two cases:

√
s = 1 GeV and

√
s = Mφ and demonstrate an interplay of

the scalar and vector decay contributions. The influence of the scalar and
vector contributions on the cross section is studied in detail.
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The main conclusions of the numerical studies are the following:

• for the π0ηγ final state the vector contribution is much smaller than
the scalar one at

√
s = Mφ whereas for the π0π0γ channel the vector

and scalar contributions are of the same size;

• among the vector contributions to the π0π0γ channel the leading one
comes from the γ∗(→ (ρ;φ)) → ωπ mechanism; comparing to the
KLOE fit [5] we have concluded that about 85% of this contribution is
caused by the ρ intermediate state, and the rest can be explained ei-
ther by the ρ(1450) or by the G-parity-violating process: γ∗ → φ → ωπ.
New experimental data at

√
s = 1 GeV can help to clarify which of these

two mechanisms is responsible for the rest;

• at
√
s = 1 GeV the scalar contribution is suppressed and the total

cross section is determined only by the vector contribution both for the
π0π0γ and π0ηγ channels.

At the end, we would like to emphasize that the developed approach
allows one to obtain the cross section and branching fraction close to the
experimental results. The main advantage of this approach is a small number
of model parameters.

The proposed framework can be implemented in a Monte Carlo generator,
for the inspection of the completely differential characteristics of the reaction,
and thus is useful for a data analysis and a detailed comparison of various
models.
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Appendix A : Pseudoscalar mesons, scalar mul-

tiplet and the RχT Lagrangian

In chiral theory, the pseudoscalar mesons π, K, η can be treated as
pseudo-Nambu-Goldstone bosons of spontaneous G = SU(3)L × SU(3)R to
H = SU(3)V broken symmetry. The physical states η, η′ can be introduced
using the scheme with two mixing angles (θ0, θ8), for a review see [28]. The
adopted scheme is consistent with chiral theory and takes into account the
effects of U(1) axial anomaly and SU(3) flavor breaking (ms ≫ mu,d). In
our notation [22] the pseudoscalar nonet reads

u = exp















i√
2fπ









π0+Cqη+C′
qη

′

√
2

π+ fπ
fK

K+

π− −π0+Cqη+C′
qη

′

√
2

fπ
fK

K0

fπ
fK

K− fπ
fK

K̄0 −Csη + C′
sη

′























, (A1)

where

Cq ≡ fπ√
3 cos(θ8 − θ0)

(

1

f0
cos θ0 −

1

f8

√
2 sin θ8

)

, (A2)

C′
q ≡ fπ√

3 cos(θ8 − θ0)

(

1

f8

√
2 cos θ8 +

1

f0
sin θ0

)

,

Cs ≡ fπ√
3 cos(θ8 − θ0)

(

1

f0

√
2 cos θ0 +

1

f8
sin θ8

)

,

C′
s ≡ fπ√

3 cos(θ8 − θ0)

(

1

f8
cos θ8 −

1

f0

√
2 sin θ0

)

.

The vielbein field which represents the pseudoscalar mesons is
uµ = iu+Dµu

+ and χ+ = u+χu+ + uχu is the explicit symmetry-breaking
term, χ ≈ diag(m2

π, m2
π, 2m2

K −m2
π) in the isospin symmetry limit.

The electromagnetic field Bµ is included as an external source,
Fµν = ∂µBν−∂νBµ is the electromagnetic field tensor. It appears in the chiral
covariant derivative, which in our case is reduced to DµU = ∂µU+ieBµ[U,Q]
and in the tensor fµν

+ = eFµν(uQu++u+Qu), where the quark charge matrix
Q = diag(2/3,−1/3,−1/3).

For calculations in the even-intrinsic-parity sector we use the leading-order
RχT Lagrangian for pseudoscalar, scalar, vector mesons and photons derived
by Ecker et al. [19]. The spin-1 mesons are described by antisymmetric matrix
tensor fields V νµ and this Lagrangian is equivalent to the ChPT Lagrangian
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at order O(p4) (see [19, 23] for details). In our application we have somewhat
released the rigor of RχT and use different masses of resonances (Mρ 6= Mω 6=
Mφ and Mσ 6= Ma0

6= Mf0) without specifying a pattern of flavor symmetry
breaking (cf. Ref. [29]). Interaction terms for the pseudoscalar and vector
mesons read

Lvector =
f2

4
〈uµu

µ + χ+〉

+
FV

2
√
2

〈

Vµνf
µν
+

〉

+
iGV√

2
〈Vµνu

µuν〉 , (A3)

here 〈· · · 〉 stands for the trace in flavor space.
For scalar mesons we assume the nonet symmetry of the interaction terms

and multiplet decomposition











a0 =S3,

f0 =S0 cos θ − S8 sin θ,

σ =S0 sin θ + S8 cos θ,

(A4)

where S3 is the neutral isospin-one, S8 is the isospin-zero member of the flavor
octet. The angle θ is the octet-singlet mixing parameter, and σ ≡ f0(600).
The interaction Lagrangian for scalars takes the form

Lscalar = cd 〈Suµu
µ〉+ cm 〈Sχ+〉 . (A5)

There are known problems with a rigorous inclusion of σ and f0(980) into
any RχT multiplet [29]. However, there is also a number of successfull appli-
cations [30, 31] of a scheme similar to (A4). In studies of φ radiative decays
this scheme was also applied in [22, 24].

Due to nonet symmetry, the relation for scalar singlet S0 and octet Soct

coupling constants holds, cm,dS = cm,d

(

Soct + S0/
√
3
)

. In nomenclature of

Ref. [19] this relation implies c̃m,d = cm,d/
√
3.

In the odd-intrinsic-parity sector we apply the Lagrangian [25, 26]

Lodd = hV ǫµναβ

〈

V µ(uνfαβ
+ + fαβ

+ uν)
〉

(A6)

+ σV ǫµναβ
〈

V µ(uν∂αV β + ∂αV βuν)
〉

.
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Appendix B : Model parameters

Masses

The following values for the meson masses are used in our numerical calcu-
lations [1]: Mρ = 775.49 MeV, Mω = 782.65 MeV, Mφ = 1019.456 MeV,
mπ = mπ± = 139.57 MeV, mπ0 = 134.98 MeV, mK = 493.68 MeV,
mη = 547.75 MeV.

Mixing parameters

The values of the η mixing angles θ0 = −9.2◦ ± 1.7◦ and θ8 = −21.2◦ ± 1.6◦

are used [33], thus f8 = (1.26 ± 0.04)fπ and f0 = (1.17 ± 0.03)fπ, where
fπ ≈ 92.4 MeV. Thus, one obtains Cq ≈ 0.738 and Cs ≈ 0.535.

The ωφ mixing is given by one parameter εωφ = 0.058 [34]. The states
of “ideal mixing” ωid = (uū+ dd̄)/

√
2 and φid = ss̄ are expressed in terms of

the physical ones (mass eigenstates) as

ωid = ω + εωφφ, (B1)

φid = φ− εωφω.

In order to include a G-parity-violating φωπ0 vertex we determine the pa-
rameter ε′ from the φ → ωπ decay width:

Γ(φ → ωπ) =
|gφωπ|2p3π

12π
, (B2)

where pπ =
√

(M2
φ +m2

π −M2
ω)

2/(4 M2
φ)−m2

π, the effective coupling in our

formalism is gφωπ = 4σV ε
′/fπ. Using the experimental value for the φ → ωπ

decay branching ratio B = (4.4± 0.6)× 10−5 [32] and σV = 0.34 one obtains
|ε′| = 0.0026.

Couplings in the even-intrinsic-parity sector

The condition FV = 2 GV for the model couplings is used in our calculation
to make the one-loop amplitude finite [12] without use of counter-terms.
This relation has been addressed in [23] in a different context, namely it
has been shown that the constraints imposed by the high-energy behavior
of the vector and axial-vector FF’s lead to it, in addition to the relation
FV GV = f2

π . Note that FV = 2 GV also appears in alternative models,
e.g., Hidden Local Gauge Symmetry Model and massive Yang-Mills theory

28



for vector mesons, see a discussion in [23]. For numerical calculations we use
GV = fπ/

√
2 = 65.34 MeV, FV = 2 GV = 130.68 MeV.

Alternatively, respecting phenomenology, one may fix FV and GV by
means of fitting the measured partial decay widths of the vector mesons
(see, e.g., [19]) at tree level. In particular, for ρ → e+e− one has

Γρ→e+e− =
e4F 2

V

12πMρ
(B3)

and for the ρ → ππ the tree level width is given by

Γρ→π+π− =
G2

V

48πf4
π

(

m2
ρ − 4m2

π

)3/2
. (B4)

The experimental data are the following [1]: Γ(ρ → π+π−) = 146.2±0.7 MeV
and Γρ→e+e− = 7.04 ± 0.06 keV. Values obtained in this way are GV =
65.14±0.16 MeV and FV = 156.41±0.67 MeV. The estimated values support
the FV ≈ 2 GV conjecture.

Couplings in the odd-intrinsic-parity sector

The coupling constant fV is given by fV = FV /Mρ ≈ 0.17. The parameter
hV can be fixed from the V → Pγ decay width, in particular, the ρ → πγ
width

Γ(ρ → πγ) =
4αM3

ρh
2
V

27f2
π

(

1− m2
π

M2
ρ

)3

(B5)

leads to hV = 0.041± 0.003.
One can use a special short-distance constraint of RχT in order to relate

σV to fV and hV . Namely, one can require the form factors (41) to vanish
at Q2 → −∞ as expected from QCD. In this connection we refer to [35, 36],
where in the framework of RχT high-energy behavior of three-point Green
functions V V P , V AP , AAP has been studied.

At Q2 → −∞ the propagators (37) DV (Q
2) → 1/Q2 and we obtain the

following relation (neglecting mixing)

√
2hV − σV fV = 0. (B6)

This constraint reduces the number of independent parameters in the model,
in particular, expresses the poorly known parameter σV via hV and fV , which
can be fixed from data. Thus we obtain σV ≈ 0.34.
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Notice, an additional constraint on the parameters σV , hV and fV follows
from the short-distance behavior of the γ∗γ∗π0 form factor (see a discussion
in Ref. [36]):

− Nc

4π2
+ 16

√
2hV fV − 8σV f

2
V = 0. (B7)

It allows to further reduce the number of independent parameters. For ex-
ample, one can leave fV to be the only independent parameter and deduce
from (B6) and (B7)

σV =
Nc

32 π2 f2
V

,

hV =
Nc

32
√
2 π2 fV

, (B8)

which results in the numerical values σV = 0.329 and hV = 0.0395 — fairly
close to those obtained with the use of Eq. (B5).

In favor of broken flavor SU(3) symmetry, one may introduce separate
couplings for each vector meson, i.e. replace fV by fρ, fω, fφ, and further
hV by hγρπ, hγωπ, hγρη, . . . (γV P transition) , and also σV by σωρπ , σρρη , . . .

Parameters for scalar mesons

The widths for a0 → γγ and f0 → γγ decays are expressed in terms of (30),
for example:

Γa0→γγ =
e4p4

64π
√

p2
|G(K)

a0γγ(p
2, 0)|2. (B9)

The strong decay widths of the scalar mesons in the lowest order (tree level)
are

Γa0→πη(p
2) =

|Ga0πη(p
2)|2

8πp2

√

(p2+m2
π−m2

η)
2

4p2
−m2

π, (B10)

Γf0→ππ(p
2) = (1 +

1

2
)
|Gf0ππ(p

2)|2
8πp2

√

p2/4−m2
π,

Γa0→KK̄(p2) = 2
|Ga0KK(p2)|2

8πp2

√

p2/4−m2
K ,

Γf0→KK̄(p2) = 2
|Gf0KK(p2)|2

8πp2

√

p2/4−m2
K ,
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Table 4. Scalar meson parameters [22]. Couplings and masses are given in
MeV.

cd cm Ma0
Mf0 Mσ θ

93+11

−5 46+9

−2 1150+50

−23 986.1+0.4
−0.5 504+242

−53 36o ± 2o

where p2 is the invariant mass squared of the scalar meson; see also defini-
tion (31), (32). For discussion of momentum-dependent couplings GSPP (p

2)
and constant SPP couplings of other models (e.g., [10]) see Ref. [24].

The finite-width effects for scalar resonances are very important and
expressions (B9), (B10) do not have physical meaning of decay width,
when evaluated at the resonance peak value of p2. Nevertheless, in sev-
eral papers, e.g., [12, 19, 37], these tree-level expressions were used to find
the model parameters (cd, cm and θ) from measured widths. It was ob-
served [22, 24, 38] that the coupling constants could be better determined
from fitting the ππ and πη invariant mass distributions in e+e− → φ → γππ
and e+e− → φ → γπη reactions. The fit results [22] are shown in Table 4
and these values are used in our numerical calculations. Notice that for this
fit we used data from [4] (π0π0γ) and [2] (π0ηγ). Recently, a new KLOE
result for the latter appeared [3], and we find reasonable agreement with it
without refitting, see a discussion in Section 5.

Appendix C : Example of the factorization of

the γ∗ → γf0 → γπ0π0 transition

amplitude

In this Appendix we sketch the general structure of the scalar meson con-
tribution fS

1 giving emphasis on the appearance of the electromagnetic form
factors of the pseudoscalars in the formula.

Consider the part of the Mµν amplitude (7) of γ∗ → γf0 → γπ0π0 with a
pion loop transition, Mµν

π loop. Figure 4 is of help and one observes two terms

Mµν
π loop = Mµν

γ→π loop +Mµν
γ→V→π loop, (C1)

the former with the contact γ∗ → π+π− coupling and the latter with an
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intermediate vector resonance. They read

Mµν
γ→πloop =

−4e2i

(4π)2
τµν1 Gf0ππ(p

2)
2

m2
π

I

(

Q2

m2
π

,
p2

m2
π

)

×Df0(p
2)Gf0ππ(p

2) (C2)

Mµν
γ→V→πloop =

−4e2i

(4π)2
τµν1 Gf0ππ(p

2)
2

m2
π

I

(

Q2

m2
π

,
p2

m2
π

)

×Df0(p
2)Gf0ππ(p

2)
1

f2
π

FV GV Q
2Dρ(Q

2). (C3)

The momentum-dependent form factors Gf0ππ(p
2) are given by (31), (32)

and the loop integral I(a, b) can be found, e.g., in [11]. For a reference, we
remind the alternative notation of [12]:

Ψ(m2, p2, Q2) = (a− b)I(a, b),

1/(Q · k) = 2/(Q2 − p2), (C4)

with a = Q2/m2 and b = p2/m2. The ρ meson propagator Dρ(Q
2) is defined

in (37).
Combining (C2) and (C3), one finds

Mµν
πloop =

−4e2i

(4π)2
τµν1 Gf0ππ(p

2)
2

m2
π

I

(

Q2

m2
π

,
p2

m2
π

)

×Df0(p
2)Gf0ππ(p

2)Fπ
em(Q2)

≡ −ie2Df0(p
2)Gf0ππ(p

2)Fπ
em(Q2)G

(π)
f0γγ

(p2, Q2),

where the two-photon form factor of a scalar meson G
(π)
f0γγ

(p2, Q2) is given

in (30). The pion electromagnetic form factor Fπ
em(Q2) in RχT is given by

Fπ
em(Q2) = 1− FV GV

f2
π

Q2Dρ(Q
2), (C5)

Generalization to the kaon case is straightforward. The kaon form factor
in RχT is

FK
em(Q2) = 1− FV GV

f2
K

Q2

(

1

2
Dρ(Q

2)

+
1

6
Dω(Q

2) +
1

3
Dφ(Q

2)

)

, (C6)
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= ΣFF +
V

V

Fig. 12. The O(p2) electromagnetic vertex of a (off-mass-shell) pseudoscalar
meson in RχT. All possible intermediate vector resonances V = ρ0, ω, φ, ...
in general contribute. For real photons only the first term on the r.h.s. is
non-zero.

The vector meson V = ρ, ω, φ propagators are given by (37). The form
factors in form (C5) and (C6) include contributions from the photon–vector
transition (vector meson dominance, VMD) and the direct γPP interaction,
see Fig. 12. The detailed discussion of two versions of VMD (VMD1 and
VMD2) is given in the review [39]. It turns out that the RχT corresponds to
the VMD1 version.

For discussion of the one-loop modification of the electromagnetic vertex
and RχT-motivated calculation of the kaon form factor see [40].
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