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Abstract

The process of pair creation by a photon in a constant and homoge-
neous electric field is investigated basing on the polarization operator
in the field. The total probability of the process is found in a rela-
tively simple form. At high energy the quasiclassical approximation
is valid. The corrections to the standard quasiclassical approximation
(SQA) are calculated. In the region of relatively low photon energies,
where SQA is unapplicable, the new approximation is used. It is shown
that in this energy interval the probability of pair creation by a pho-
ton in electric field exceeds essentially the corresponding probability
in a magnetic field. This approach is valid at the photon energy much
larger than the "vacuum" energy in electric field: ω � eE/m. For
smaller photon energies the low energy approximation is developed.
At ω � eE/m the found probability describes the absorption of soft
photon by the particles created by an electric field.
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1 Introduction
Pair creation by a photon in an electromagnetic field is the basic QED reac-
tion which can play the significant role in many processes.

This process was considered first in a magnetic field. Investigation of pair
creation by a photon in a strong magnetic field was started in 1952 indepen-
dently by Klepikov and Toll [1, 2]. In Klepikov’s paper [3], which was based on
the solution of the Dirac equation in a constant and homogeneous magnetic
field, the probabilities of radiation from an electron and e−e+ pair creation
by a photon were obtained for the magnetic field of arbitrary strength on
the mass shell1 (k2 = 0, k is the 4-momentum of photon). In 1971 Adler [4]
calculated the photon polarization operator in the mentioned magnetic field
using the proper-time technique developed by Schwinger [5] and Batalin and
Shabad [6] calculated the photon polarization operator in a constant and ho-
mogeneous electromagnetic field for k2 �= 0 using the Green function in this
field found by Schwinger [5]. In 1975 Strakhovenko and present authors cal-
culated the contribution of a charged-particles loop with n external photon
lines having applied the proper-time method in a constant and homogeneous
electromagnetic field [7]. For n = 2 the explicit expressions for the contri-
bution of scalar and spinor particles to the polarization operator of photon
are given. Using this polarization operator the integral probability of pair
creation by a photon in a magnetic field was analyzed by authors in [8].

The probability of pair creation by a photon in a constant and homoge-
neous electric field in the quasiclassical approximation was found by Narozhny
[9] using the solution of Dirac equation in the Sauter potential [10]. Nikishov
[11] obtained the differential cross section of this process using the solution
of Dirac equation in a constant and homogeneous electric field.

In the present paper we consider the integral probability of pair creation
in an electric field basing on the polarization operator [7]. In Sec.2 the ex-
act expression for the integral probability of pair creation by a photon was

1We use the system of units with � = c = 1 and the metric ab = aµbµ = a0b0 − ab.
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obtained for the general case k2 �= 0 starting from the polarization operator
in an electric field. In Sec.3 the standard quasiclassical approximation (SQA)
is outlined for the high-energy photons ω � m (m is the electron mass). The
corrections to SQA are calculated. These corrections define also the region
applicability of SQA. In Sec.4 the new approach is developed for relatively
low energies where SQA is not applicable. This approach is based on the
method proposed in [8]. The obtained probability is valid in the wide inter-
val of photon energies and is overlapped with SQA. In Sec.5 the case of the
very low photon energies ω � m is analyzed. In particular, in the energy re-
gion ω ≤ eE/m where the previous approach is unapplicable, the low energy
approximation is developed. In turn the found results have an overlapping
region of applicability with the previous approach. So we have three over-
lapping approximations which include all photon energies. In conclusion we
touch upon the problem connected with the vacuum instability.

2 Probability of pair creation by a photon:
exact theory

Our analysis is based on the expression for the polarization operator obtained
in [7], see Eqs.(3.19), (3.33). For pure electric field (H=0) this polarization
operation can be written in the diagonal form

Πμν = −
∑

i

κiβ
μ
i β

ν
i , βiβj = −δij , βik = 0,

∑
i

βμ
i β

ν
i =

kμkν

k2
− gμν .

(1)
Here

βμ
1 =

k2kμ
⊥ + k2

⊥k
μ

k⊥
√
k2(ω2 − k2

3)
, βμ

2 =
Fμνkν

E
√
ω2 − k2

3

, βμ
3 =

F ∗μνkν

Ek⊥
,

κ1 = Ω1(r − q), κ2 = κ1 + rΩ2, κ3 = κ1 − qΩ3,

r =
ω2 − k2

3

4m2
, q =

k2
⊥

4m2
, r − q =

k2

4m2
, (2)

where the axis 3 directed along the electric field E, k⊥E = 0, k⊥ =
√

k2
⊥, ω

is the photon energy, Fμν is the tensor of electromagnetic field, F ∗μν is the
dual tensor of electromagnetic field, and

Ωi = −αm
2

π

1∫
−1

dv

∞−i0∫
0

fi(v, x) exp(iψ(v, x))dx. (3)
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Here

f1(v, x) =
cosh vx
sinhx

− v
coshx sinh vx

sinh2 x
,

f2(v, x) = 2
coshx− cosh vx

sinh3 x
− f1(v, x),

f3(v, x) = (1 − v2) cothx− f1(v, x),

ψ(v, x) =
1
ν

(
2r

coshx− cosh vx
sinhx

− x(1 + q(1 − v2))
)
, ν =

E

E0
. (4)

Let us note that the integration contour in Eq.(3) is turned slightly down,
and in the function Ω1 in the integral over x the subtraction at ν = 0 is
implied.

It should be noted that the probability of pair creation in an electric
field (see Eqs.(1)-(4)) can be obtained from the probability of pair creation
in a magnetic field (Eqs.(2.1)-(2.5) in [8]) using the formal substitutions
μ→ iν, x→ ix, q ↔ −r.

The imaginary part of the polarization operator determines the total prob-
ability of e−e+ pair creation per unit length Wi by a photon with a given
polarization

W =
1
ω

Imeμeν∗ Πμν . (5)

Using the photon polarization vector eμ
i = βμ

i we get the expressions for
Wi (i = 1, 2, 3) at k2 �= 0:

Wi = − Imκi

ω
(6)

On the mass shell (k2 = 0) one has to put r = q in Eq.(3). In this caseW1 = 0
and only two photon polarizations i = 2 and i = 3 contribute. In this case
the total probability of pair creation averaged over the photon polarizations
is

W =
W2 +W3

2
. (7)

The corresponding analysis in a magnetic field (E=0) was performed in
[8]. There are essential differences between the pair creation process in mag-
netic and electric field.

1. The probabilities of pair creation Wi(r) (for each photon polarization)
in a magnetic field contain the factor 1/

√
g and g = 0 at each threshold

when electrons and positrons are created on the Landau levels. Because
of this the functions Wi(r) have the saw-tooth form. Rather laborious
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transformations of the imaginary part of the polarization operator are
performed in [8] to obtain the form allowing the direct calculation of
the pair creation probabilities. It’s more than difficult to use for this
purpose directly the expression Im(eμeν∗ Πμν). In an electric field
there are no levels and Im(eμeν∗ Πμν) is a smooth function of r and
can be calculated directly using the above equation taking into account
that the integration contour in Eq.(3) is turned slightly down. The
result for ν = 0.01, 0.001, 0.0001 is shown in Fig.1. Here and below
in all figures the frame k3 = 0 is used. In general case κi(ω/2m) in
Eg.(6)→ κi(k⊥/2m) = κi(

√
r).

Fig. 1. The total probability of pair creation by a photon averaged over the
photon polarizations W (r) (in units cm−1) Eqs.(6), (7) in an electric field for
ν = 0.01 (curve 1), ν = 0.001 (curve 2), ν = 0.0001(curve 3) vs ω/2m.

2. In a magnetic field the pair creation is the result of conversion of a
photon into pair. The constant and homogeneous magnetic field itself
doesn’t create a pair. The vacuum is stable. For this reason Eq.(5)
gives not only imaginary part of the photon energy but else the overall
probability of pair creation. The expression for the polarization opera-
tor is valid for the field strength B > B0 = m2/e = 4.41 · 1013G (one
of possible applications of the theory are processes in magnetars with
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B > B0). In an electric field, generally speaking, pairs can be created
by field itself, without a photon presence. The vacuum is unstable.
Then Eq.(5) gives the partial probability of pair creation. In the limit
E � E0 = m2/e (ν � 1) the instability of vacuum is negligible. But
at E ∼ E0 the vacuum pair creation becomes essential. Even in this
situation for ω � m (r � 1) the photon create high-energy particles,
while the electric field create low-energy particles (ε ∼ m) and the pairs
are easy distinguishable.

3. In a magnetic field there is the threshold Im(eμeν∗ Πμν) = 0 for r < 1.
Strictly speaking there is no such requirement in an electric field (see
below).

3 Probability of pair creation by a photon in
quasiclassical approximation

The standard quasiclassical approximation is valid for ultrarelativistic created
particles (r � 1) and can be derived from Eqs.(3), (4) by expanding the
functions f2(v, x), f3(v, x), ψ(v, x) over x powers. Taking into account the
higher powers of x one gets

f2(v, x) =
1 − v2

12

[
−(3 + v2)x+

1
15

(15 − 6v2 − v4)x3

]

f3(v, x) =
1 − v2

6

[
(3 − v2)x− 1

60
(15 − 2v2 + 3v4)x3

]

ψ(v, x) = −r(1 − v2)2

12ν

(
x3 − 3 − v2

30
x5

)
− x

ν
. (8)

Here the first terms in the brackets give the known probability of the process
in the standard quasiclassical approximation, while the second terms are
the corrections.Expanding the term with x5 in exp(iψ(v, x)) and making
substitution x = νt one finds

ImΩi = i
αm2ν

2π

1∫
−1

dv

∞∫
−∞

gi(v, t) exp
[
−i

(
t+ ξ

t3

3

)]
dx,

g2(v, t) =
1 − v2

12
νt

[
−(3 + v2) − i

9 − v4

90
ξν2t5 +

ν2t2

15
(15 − 6v2 − v4)

]
,

g3(v, t) =
1 − v2

6
νt

[
(3 − v2) + i

(3 − v2)2

90
ξν2t5 − ν2t2

60
(15 − 2v2 + 3v4)

]
, (9)
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where

ξ =
(1 − v2)2κ2

16
, κ2 = 4rν2. (10)

We will use the known integrals
∞∫

−∞
cos

(
t+ ξ

t3

3

)
=

√
3zK1/3(z), z =

2
3
√
ξ

=
8

3(1 − v2)κ
,

∞∫
−∞

t sin
(
t+ ξ

t3

3

)
=

3
√

3
2
z2K2/3(z). (11)

Conserving the main(first) terms of functions gn(v, t) in the integrals Eq.(9)
and taking into account Eqs.(10)-(11), we obtain the probabilities of pair
creation in the standard quasiclassical approximation

W (SQA)
n = −Im

κn

ω
=

αm2

3
√

3πω

1∫
−1

sn

1 − v2
K2/3(z)dv, s2 = 3+v2, s3 = 2(3−v2).

(12)
Here Eq.(12) coincides with the probability obtained in Appendix C [8] for
the case of magnetic field. This is because the expression for the probability
in the quasiclassical approximation depends on an electromagnetic field via
parameter κ2 = 4(rν2 + qμ2) (in the frame where electric and magnetic fields
are parallel).

Below we will see that at lower energy the probabilities of pair photopro-
duction are very different in electric and in magnetic fields.

The probability of pair creation by a photon averaged over the photon
polarizations Eq.(7) calculated in this approximation Eq.(12) coincides with
the curves found in the calculation of exact expressions Eqs.(6)-(7) given in
Fig.1. Near maximum of the curves the the difference is less than ∼ 10−5.

The corrections to the standard approximation can be found from the
mentioned Appendix C (see Eqs.(C7)-(C12)) by the substitution μ2 → −ν2

W
(1)
i = − αm2ν2

30
√

3πωκ

1∫
0

Gi(v, z)
dv

1 − v2
, (13)

where

G2(v, z) = (36 + 4v2 − 18z2)K1/3(z) + (3v2 − 57)zK2/3(z),

G3(v, z) = −(34 + 2v2 + 36z2)K1/3(z) + (78 − 6v2)zK2/3(z). (14)
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The asymptotic at κ� 1 are

W
(1)
i = − αm2ν2

30
√

3πωκ
wi, w2 = 12Aκ1/3 − 90π,

w3 = −11Aκ1/3 + 84π, A = 31/3 2
5

Γ3(1/3)
Γ(2/3)

= 8.191...

W (1) =
W

(1)
1 +W

(1)
2

2
= − αm2ν2

60
√

3πωκ

(
Aκ1/3 − 6π + ...

)
,

W (1)

W (SQA)
= −3−7/3 7

125
Γ4(1/3)
Γ4(2/3)

ν2

κ4/3

(
1 − 6π

Aκ1/3
+ ...

)
. (15)

At κ� 1 one has

W
(1)
2 =

αm2ν2

ωκ2

2
√

2
5
√

3
exp

(
− 8

3κ

)
, W

(1)
3 = 2W (1)

2 ,
W (1)

W (SQA)
=

32ν2

15κ3
.

(16)
The curves in Fig.2 characterize the applicability of SQA at energies which
are lower than shown in Fig.1. It is seen that for small ν the applicability
of SQA is broken. For curves 3 and 4, where parameter κ � 1, the value
R(10)− 1 agrees with the last correction in Eq.(16).

Fig. 2. The ratio of total probabilities of pair creation by a photon averaged
over the photon polarizations Eq.(7) R = W (ex)/W (SQA) vs ω/2m, where
W (ex) is given by Eqs.(6)-(7), W (SQA) is given by Eqs.(12),(7). The curve 1
is for ν = 1, the curve 2 is for ν = 0.1, the curve 3 is for ν = 0.01, the curve
4 is for ν = 0.001.
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4 Region of low photon energies
In the field which is weak comparing with the critical field E/E0 = ν � 1 and
at relatively low photon energy (r ≤ ν−2/3) the standard SQA [12, 13, 14] is
nonapplicable. This follows from the last equality in Eq.(16). In this case,
if the condition r � ν2 is fulfilled, the method of stationary phase can be
applied at calculation of the imaginary part of the integral over x in Eq.(3).
To this end we present the imaginary part of Ωi in the form

ImΩi = i
αm2

2π

1∫
−1

dv

∞∫
−∞

fi(v, x) exp [iψ(v, x)] dx. (17)

Granting that the large parameter 1/ν is the common factor in the phase
ψ(x), it is not contained in the equation ψ′(x) = 0 which defines the sta-
tionary phase point x0(r ∼ 1) ∼ 1. In this case the small values of variable
v contribute to the integral over v, so that one can extend the integration
limits to the infinity. So we get

ImΩi � i
αm2

2π

∞∫
−∞

dv

∞∫
−∞

fi(v = 0, x) exp
{
− i

ν

[
ϕ(x) + v2χ(x)

]}
dx, (18)

where

ϕ(x) = 2r tanh
(x

2

)
+ (r + 1)x, χ(x) = rx

(
−1 +

x

sinhx

)
. (19)

From the equation ϕ′(x) = 0 we find

tanh
(x0

2

)
= − i√

r
,

x0(r)
2

= −ia(r)
2

= −i arctan
1√
r
. (20)

Substituting these results in the expressions which defines the integral in
Eq.(18) we have

iϕ(x0) = 2
(

(r + 1) arctan
1√
r
−√

r

)
≡ b(r),

iϕ′′(x0) =
r + 1√
r
, iχ(x0) =

√
ra(r)b(r),

if2(v = 0, x0(r)) = − r + 1
2r3/2

, if3(v = 0, x0(r)) =
1√
r
. (21)
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Performing the standard procedure of the method of stationary phase one
obtains for the probability of pair creation in an electric field by a polarized
photon

W
(th)
2 =

αm2ν

2ω

√
r + 1

ra(r)b(r)
exp

(
−b(r)

ν

)
, W

(th)
3 =

2r
r + 1

(
1 +

ν

4πr

)
W

(th)
2 ,

(22)
where the term ν/4πr in W (th)

3 is valid at r � 1 and appears as the contribu-
tion of the second term in f1(v, x)(∝ v2) in Eq.(4). These probabilities can be
found from the probabilities of pair creation in a magnetic field (see Eqs.(B3)-
(B5) (Appendix B in [8] by substitutions μ → iν, r → −r, √−r = −i√r.
At this substitution l(r) → l(−r) = ia(r) and β(r) → β(−r) = ib(r) and
from Eq.(B5) in [8] one obtains Eq.(22) (without the correction term ν/4πr,
which was not taken into account in [8]).

Fig. 3. The exponent β(r) in Eq.(B5) (Appendix B in [8]) for pair creation in
a magnetic field (curve 1) and the exponent b(r) in Eq.(22) for pair creation
in an electric field (curve 2).

The comparison of the exponent b(r) with the exponent β(r) = 2
√
r −

(r − 1)l(r), l(r) = ln[(
√
r + 1)/(

√
r − 1)] in the mentioned probability of

pair creation in a magnetic field is given in Fig.3. Since the exponent b(r)
enters with very large factor 1/ν and the exponent β(r) with the factor 1/μ
the probability of pair creation in an electric field is much larger than the
probability of pair creation in a magnetic field at ν = μ� 1.

In spite of the assumption r ∼ 1 made above, Eq.(22) is valid also at r � 1
if the condition b(r) � ν is fulfilled. This can be traced in the derivation of
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Eq.(22). The first two term of the decomposition of the function b(r) over
power of 1/r are

b(r)
ν

� 4
3ν

√
r
− 4

15νr3/2
(23)

It follows from this formula that applicability of Eq.(22) is limited by the
condition r � ν−2. If the second term much smaller than unity the exponent
with it can be expanded. As a result we have from Eq.(22) at ν−2/3 � r �
ν−2 the following expression

W3 =
αm2ν

2ω

√
3r
2

exp
(
− 4

3ν
√
r

) (
1 +

4
15νr3/2

)
, W2 =

1
2
W3 (24)

The main term in the above expression coincides with the probability of pair
creation by a photon in the standard quasiclassical theory at κ = 2ν

√
r � 1.

The correction in Eq.(24) determines the lower energy limit of the standard
approach applicability (κ3 � ν2) and coincide with Eq.(16). So the overlap-
ping region exists where both the formulated here and the standard approach
for high energy are valid.

In Fig.4 the ratio of the probabilities of pair creation by a photon averaged
over the photon polarizations Eq.(7) R = W (th)/W (SQA) (see Eqs.(22),(12))
are given for an electric field (curves 1,3) and a magnetic field (see Eqs.(B3)-
(B5) in [8]) (curves 2,4). It is seen that the probabilities in an electric field at
low r values are many order of magnitude higher then in the same magnetic
field. The probability in an electric field aims at the standard quasiclassical
one with r increase from above while the probability in a magnetic field aims
at the standard quasiclassical value from below. According to Eq.(24), in the
interval ν−2/3 � r � ν−2 the ratio R is close to unity for both electric and
magnetic fields and for a given ν(μ) the curves have been merged, since in
SQA the exponential form of the probabilities coincide with Eq.(24) (without
the correction term which has opposite sign for a magnetic field). It is valid
when κ � 1. At κ = 1 (

√
r = 1/2ν) the value R � 1.13 and with further r

increase the value R smoothly grows. At very high values of κ the probability
W (SQA) = αmνCκ−1/3, C = 0.37961 (see [7], Eq.(3.60)). When this equation
is valid the value R ∝ r1/6.

At low photon energy (ν2 � r � ν2/3) the probability Eq.(22) has a form

W2 � αm2ν

2πω
√
r

(
1 +

3
√
r

π

)
exp

(
−π
ν

(1 + r) +
4
√
r

ν

)
, W3 =

(
2r +

ν

2π

)
W2.

(25)
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Fig. 4. The ratio of the total probabilities of pair creation by a photon
averaged over the photon polarizations Eq.(7) R = W (th)/W (SQA) (see
Eqs.(22),(12)) is shown for electric field ν = 0.01 (curve 1), magnetic field
μ = 0.01 (curve 2) and for electric field ν = 0.001 (curve 3) and magnetic
field μ = 0.001 (curve 4) vs ω/2m.

Fig. 5. The ratio of the total probabilities of pair creation by a pho-
ton averaged over the photon polarizations Eq.(7) R = W (th)/W (ex) (see
Eqs.(22),(6)), for ν = 0.01 (curve 1), for ν = 0.03 (curve 2) and for ν = 0.1
(curve 3) vs ω/2m.

The curves in Fig.5 characterize the applicability of Eq.(22) for different
values of parameter ν � 1 in wide interval of ω/2m. The region of applica-
bility of the probability W (th) Eq.(22) is extended with ν decrease.
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5 Approximation at very low photon energy
In the case r � ν2/(1+ν) one can expand the exponent in Eq.(17) in powers
of the term ∝ r/ν. Conserving the main term exp(−ix/ν), independent of
variable v, performing the integration over v of the functions fi(v, x) we find

ImΩi = −iαm
2

π

∞∫
−∞

ϕi(x) exp(−ix/ν)dx, (26)

where

ϕ2(x) =
2 coshx
sinh3 x

− 1
x sinh2 x

− cothx
x2

,

ϕ3(x) =
(

2
3
− 1
x2

)
cothx+

1
x sinh2 x

. (27)

The integrals in Eq.(26) can be evaluated closing the integration contour
in the lower half-plane and summing the residues in the points x = −inπ.
Substituting the results into Eq.(2) and then into Eq.(6) we obtain the pair
creation probabilities in an electric field in the case r � ν2/(1 + ν)

W2 =
2αm2r

ω

[
1

ν2(eπ/ν − 1)
− 1
πν

ln
(
1 − e−

π
ν

)]
,

W3 =
2αm2r

ω

[
2

3(eπ/ν − 1)
+

2
π2

Li2
(
e−

π
ν

)
− 1
πν

ln
(
1 − e−

π
ν

)]
,(28)

where Li2(x) = −
x∫
0

ln(1−t)
t dt =

∞∑
n=1

xn

n2 is the Euler dilogarithm.

In the case ν � 1 one has

W2 =
2αm2r

ων2
e−

π
ν

(
1 +

ν

π

)
, W3 =

2αm2r

ων2
e−

π
ν

(
ν

π
+ 2ν2

(
1
3

+
1
π2

))
.

(29)
At ν � 1 the photon energy region r ∼ ν2 remains unexplained only.

We close the integration contour in the lower half-plane in Eq.(17) in the
following way

ImΩi = i
αm2

2π

1∫
−1

dv

∞∑
n=1

∮
fi(v, x) exp [iψ(v, x)] dx, (30)
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where the path of integration is any simple closed contour around the points
−iπn. Expanding the function entering in Eq.(4) over variables ξn = x +
iπn (|ξn| ∼ √

r ∼ ν) and keeping the main terms of decomposition we find

f2(v, x) � − 2
ξ3n

[
1 + (−1)n+1 cos(vnπ)

] − f3(v, x),

f3(v, x) � (−1)n iv

ξ2n
sin(vnπ);

ψ(v, x) � 2r
ξnν

[
1 + (−1)n+1 cos(vnπ)

] − ξn
ν

+
iπn

ν

(
1 + r(1 − v2)

)
+

2ir
ν

(−1)nv sin(vnπ). (31)

Because of appearance of the factor exp(−πn/ν), in the case ν � 1 the main
contribution to the sum in Eq.(30) gives the term n = 1, then

f2(v, x) = −4 cos2(vπ/2)
ξ3

− f3(v, x), ψ(v, x) =
4r cos2(vπ/2)

ξν
− ξ

ν

+
iπ

ν

(
1 + r(1 − v2)

) − 2ir
ν
v sin(vπ), f3(v, x) = − iv

ξ2
sin(vπ), ξ = ξ1. (32)

Using the integrals Eq.(7.3.1) and Eq.(7.7.1)(11) in [15] and substituting the
result in Eq.(2) and then in Eq.(6) we find

W2 = 2
αm2

ω
e−

π(1+r)
ν

[
I2
1

(
2
√
r

ν

)
− ν

π

(
I2
0

(
2
√
r

ν

)
− 1

)

+
3
√
r

π
I1

(
2
√
r

ν

)
I0

(
2
√
r

ν

) ]
,

W3 =
αm2

ω

ν

π
e−

π(1+r)
ν

(
I2
0

(
2
√
r

ν

)
− 1

)
, (33)

where In(z) is the Bessel function of imaginary argument. At calculation of
the correction terms ∝ ν,

√
r the integration by parts in the integral over v

was performed. The found probability Eq.(33) is applicable for r ≤ ν. The
first term of decomposition of probabilities in Eq.(33) in powers of r coincides
with Eq.(29) if in expression for W3 the terms ∝ ν2 are omitted.

For r � ν2 the asymptotic representation In(z) � ez/
√

2πz can be used.
As a result one obtains the probability Eq.(25). If in Eq.(33) one omits the
correction terms ∝ ν,

√
r, r/ν, than one gets the result found in [16] using a

completely different approach.
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The curves in Fig.6 characterize the applicability of Eq.(33) for different
values of parameter ν in the region of very low energies. It is seen that at
r > ν Eq.(33) is broken.

Fig. 6. The ratio of the total probabilities of pair creation by a photon
averaged over the photon polarizations Eq.(7) R = W (l)/W (ex), where W (l)

is given by Eqs.(33), W (ex) is given by Eq.(6), for ν = 0.01 (curve 1), for
ν = 0.03 (curve 2) and for ν = 0.1 (curve 3) vs ω/2m.

6 Conclusion
We considered the process of pair creation by a photon in an electric field.
The probability of the process is calculated using the different approaches.
In the case ν � 1 the standard quasiclassical approximation is applicable for
the energy parameter r � ν−2/3. For ν = 0.01 the averaged over photon
polarization probability of pair creation W Eq.(7) coincides with the stan-
dard quasiclassic probability W (SQA) Eq.(12) within accuracy better than
1% starting from r = 160. For ν = 0.001 W coincides with W (SQA) within
accuracy better than 1% starting from r = 700 and for ν = 0.0001 W coin-
cides with W (SQA) within accuracy better than 1% starting from r = 3200.
These estimates are in a good agreement with the values of correction term
in Eq.(24). Note that always W > W (SQA).

Similar situation was observed for the process of pair creation by a photon
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in a magnetic field [8] where the standard quasiclassical approximation is
applicable even in the case μ > 1 at r � μ. From Fig.2 it is seen that in
an electric field for ν = 1 the quasiclassical approximation is valid beginning
from values r very close to 1.

The result is universal and the same in electric and magnetic fields if
ν = μ. However the corrections to SQA (see Eqs.(14)-(16)) change sign at
μ2 → −ν2.

It should be noted that the consideration based on the polarization opera-
tor gives only the total probability of pair creation by a polarized photon (real
or virtual). The standard quasiclassical method permits to obtain also the
spectral, the angular distributions as well as the polarization of the particles
of created pair (see [14]).

For lower values of r the probability of pair creation in an electric field is
much higher than in a magnetic field. Besides the pair creation in an electric
field is possible also at r < 1 (although the probability is exponentially small).
This phenomenon can be interpreted that an electric field helps to draw out
the pair from the vacuum. At r � 1(ω � m) the inverse situation occurs:
a photon helps to an electric field to do this work (the factor exp(4

√
r/ν)

Eq.(29)) and for r � ν2 this aid becomes negligible.
The above analysis is not complete if the probability of direct pair cre-

ation by an electric field (vacuum probability) is essential. Then Eq.(6) gives
the partial contribution to the probability under consideration and defines
the photon lifetime. At ν � 1 (E � E0) the vacuum contribution is neg-
ligible. But even in this case for very low photon energies in the region
r ∼ ν2 (ω ∼ eE/m) the probability Eq.(29) becomes comparable with the
vacuum probability.

For lower energies r � ν2 Eq.(29) defines the probability of photon ab-
sorption by the particles created by an electric field.
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