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Abstract

We take into account the quantum lower limit on a scattering angle
in calculation of the Intra-Beam Scattering (IBS) affecting the beam
sizes and energy spread in the storage rings. The aim is to compare the
classical and quantum approaches. Numerical examples for the CLIC
and VEPP-4M machines are presented.
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1 Introduction
As is known [1], there are two definitions in plasma physics for minimal
scattering angle (θmin) at interaction between two charged particles. One of
them is of a classic origin and is used in Rutherford formulas; particularly,
in scattering of the particles with equal charges (e) and masses (m):

θclass =
2e2

ΛmV 2
.

The other one is connected with a quantum uncertainty relation of particle
momentum and coordinate:

θquant ≈
~

ΛmV
.

In these formulas Λ is maximal impact parameter scale (applied to plasma
– Debye radius); m is particle mass reduced to a center-of-mass system; V
is relative velocity; ~ is Planck constant. The condition of violation of the
classical definition is written as

θclass
θquant

=
2e2

~V
< 1. (1)

At electron-electron or electron-positron scattering, and also in e−p+ and
e+p− processes, condition (1) is fulfilled at relative movement energy
mV 2/2 > 50 eV (for p−p+ over 40 keV).

It is interesting to consider ratio (1) with respect to the calculation of elec-
tron and positron beam sizes in the storage rings of colliders and SR sources.
Under certain conditions the beam sizes in storage rings depend on the pro-
cesses of intra-beam scattering (multiple Touschek effect) in the presence of
radiation friction and quantum excitation of betatron and phase oscillations.
In typical machines, at a GeV-order energy, the particle transverse momen-
tum is up to 10−4 and over with respect to the value of longitudinal one; and,
consequently, the characteristic energy of relative movement in collisions ex-
ceeds by several orders of magnitude the critical level of 50 eV.
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Nevertheless, the quantum limit on a minimal scattering angle is not met
in the widespread approach providing the calculation of beam size increase
due to Touschek effect; the classical formula (see, e.g. [2, 3]) is used for θmin.

When the intra-beam scattering effect on the sizes is insignificant t his
impropriety is unnoted due to the weak dependence of the calculation results
on the parameter θmin introduced under the logarithm sign. The question
of classical approach validity may arise in the design of modern storage rings
with ultra-small beam emittance of a nanometer-order, in which the role
of Touschek effect and, therefore, the required calculation accuracy increase
significantly. One must show in what conditions a quantum lower limit on
scattering angle is important. If a minimal scattering angle determined by a
quantum limit is much larger than the classical one, can this fact lead to a
significant increase of the IBS diffusion (in beam sizes and energy spread) in
comparison with a classical consideration?

The aim of the work is to try to fill the mentioned gap and to compare
the both approaches using particular numerical examples 1.

2 Intra-beam scattering parameters
In intra-beam scattering theory the maximal impact parameter scale Λ is
denoted by bmax and is defined as

bmax = min

{
σy,

(
γVb
N

)1/3
}
. (2)

Here σy is a beam vertical size; γ is relativistic factor; N is a number of
particles in a bunch; Vb = 8π3/2σxσyσz is the volume of a bunch with the
Gaussian density distribution in laboratory coordinate system. The second
argument in braces characterizes the average distance between particles in a
co-moving inertial reference system.

An average square of momemtum increment across the original direction
of the movement in a scattering plane is found using the Moeller cross section
σ [2, 3]:

σ < p2
⊥ >=

∫
p2
⊥dσ = 2π

(
r0p

2
0

p

)2

ln
(
p⊥max
p⊥min

)
.

1The results of this work were presented at the IBS Mini Workshop (Daresbury, The
Cockcroft Institute of Accelerator Sciencies and Technologies, 28-29 August 2007)
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The Coulomb logarithm

ln
(
p⊥max
p⊥min

)
= ln

(
θmax
θmin

)
is determined by the ratio of maximal and minimal values of the transverse
momenta of a scattering particle (i.e. the ratio of corresponding values of
a scattering angle) in center-of-mass system (CMS). In non-relativistic ap-
proximation, p⊥max = p = p0γξ where p0 = mc and ξ = V/(2c) is an initial
particle velocity in CMS in the light speed units. It is convenient to introduce
the characteristic of a transverse momentum spread in a beam (correspond-
ing to p value), which is, for a flat beam case, equal to σp = p0γσX′ , σX′ is
spread of trajectory angles in radial plane. In the classical limit

ln
(
p⊥max
p⊥min

)
= ln

(
p

pm

)2

= ln
χ

χcm
, (3)

where the following notations are used:

p⊥min =
r0p

2
0

bmaxp
, pm = p0

√
r0
bmax

,

χ =
p2

σ2
p

, χcm =
r0p

2
0

bmaxσ2
p

.

In the quantum limit on a minimal scattering angle

ln
(
p⊥max
p⊥min

)
= ln

(
pbmax

~

)
=

1
2

ln
χ

χqm
, (4)

p⊥min =
~

bmax
.

In (4) the classic parameter χcm is substituted by a quantum analog

χqm =
(

~
bmaxσp

)2

.

and, besides, in comparison with (3), there appeared coefficient 1/2 before
the logarithm. In addition,

p⊥min =
~

bmax
,

p⊥max
p⊥min

=
χ

χqm
.
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It can be shown that in practically interesting cases χcm/χqm >> 1. In fact,

χcm
χqm

=
m2c2r0bmax

~2
≈ 2 · 108bmax,

where bmax -in centimeters. For example, in case bmax ∼ σy ∼ 10−4 cm
parameter χcm exceeds parameter χqm by four orders of magnitude. Actually,
the values of parameters χcm and χqm approach each other under the beam
compression. Nevertheless, it is almost impossible for the ratio χcm/χqm to
reach the value close to unity as it requires non-realistic ultra-thin/superdense
beams (bmax ∼ 10−8 cm!).

3 Touschek effect calculation in 2D collision
approach

Below we describe the method that was developed and is used to calculate
the sizes and life-time of a beam [4, 5, 6].

Based on the theory given in [2], the method expands a "flat beam"
approximation into a theory, which takes into account the two-dimensional
character of particle relative motion in CMS.

With the aim to describe the two-dimensional character of motion the
parameter of transverse oscillation coupling in velocity space k = σX′/σY ′ is
introduced, where σY ′ is the spread of trajectory angles in a vertical plane. In
the so-called "round" beam k → 1 and in the flat one k → ∞. Momentum(p)
distribution function in the center-of-mass system (CMS) has the following
form [4]:

f(k, p)dp =
2kp
σ2
p

· S(w, k)dp, (p > 0),

S(w, k) = exp
[
−w

2
(1 + k2)

]
I0

[w
2

(1− k2)
]
. (1)

Here p = mν/2; the relative velocity and the momentum spread depend
on the contribution of the velocity vertical projection V 2 = V 2

X + V 2
Y ;

σp = mcγ
√
σ2
X′ + σ2

Y ′ ; I0(x) is the modified zero-order Bessel function.
At k → ∞ the distribution function approaches the form corresponding

to the one-dimensional collision case (see Fig.1) [4]:

f(p)dp =
2√
πσp

exp
(
− p

2

σ2
p

)
dp, (p > 0).
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Figure 1: Distribution function f(k, x), x = p/σp.
At k → 1 (the strong betatron coupling case) the distribution becomes the
two-dimensional Maxwell one with a characteristic dip near zero:

f(p) ∝ p · exp (−p2/σp).

Since the Møller cross section is proportional to 1/V 4, the shift of the
distribution function maximum to the area of larger p’s at smaller k’s should
affect the intensity of the IBS processes.

The determinative process in the integrated Touschek effect is the multi-
ple scattering provided that the latter contributes significantly to the energy
diffusion in comparison with the synchrotron radiation (SR). Losses of par-
ticles (beam lifetime) due to a single intra-beam scattering depend on the
steady beam dimensions determined by the total (SR + IBS) diffusion rate,
radiative damping and betatron coupling. The betatron coupling in a tradi-
tional storage ring is so weak that the beam cross section tilt in relation to
ideal axes can be neglected. In this case the coupling is characterized by the
ratio of a vertical emittance to a radial one: æ = EY /EX .

Let denote
u = (σγ/γ)2 = uQ + uT

– the square of relative energy dispersion;

v = EX = vQ + vT

– the radial phase volume;

k =
√

(1 + α2
X)βY /(æ(1 + α2

Y )βX);

7



H = [η2
X + (βXη′X + αXηX)2]/βX

– the function describing the excitation of radial betatron oscillations due to
an instant change in a particle energy; σS = Rα

√
u/QS – the longitudinal

beam size, QS – the synchrotron tune, α – the momentum compaction, R –
the machine radius; βY , αY , βX , αX , ηX , η′X are the amplitude and dispersion
functions; the prime denotes the derivative with respect to the azimuthal
coordinate. Here the indexes Q and T mark the contribution of synchrotron
radiation (quantum diffusion) and Touschek effect, respectively. The diffusion
coefficients of energy and radial emittance are found through the following
sums:

Du = DQ
u +DT

u ,

Dv = DQ
v +DT

v ,

where DQ
u and DQ

v are determined, for example, in [2]. The Touschek diffu-
sion coefficients may be written as [6]

DT
u =

Nr20cQS
8πγ3Rα

√
uv

〈
βXB(k, χm)

(βXv + η2
Xu)

√
æβY (1 + α2

X)

〉
,

DT
v =

Nr20cQS
8πγ3Rα

√
uv

〈
βXB(k, χm)H

(βXv + η2
Xu)

√
æβY (1 + α2

X)

〉
.

The angle brackets mean the averaging over the machine azimuth (ϑ);
N is the number of particles in a bunch. The factor B(k, χm) is a modified
diffusion rate function [4], which in contrast to the analogous one of the one-
dimensional collision theory [2] depends on the coupling parameter k. In
approximation of the classical lower limit on a scattering angle (χm = χcm)
is expressed as follows:

B(k, χcm) =
√
πk

∞∫
χc

m

√
1
χ
· ln
(
χ

χcm

)
· S(χ, k)dχ; (6)

The steady values of u and v are determined from the system of equations

u = uQ +
τE
2
DT
u , (3.1)

v = vQ +
τX
2
DT
v , (3.2)
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Figure 2: Diffusion factor vs χm in the approximation of classic lower limit
on the scattering angle at some values of the coupling parameter k.

τE and τX are the damping times for synchrotron and radial betatron oscil-
lations, respectively.

The loss rate (the inverse beam lifetime) due to Touschek processes may
be found from [4]:

1
τ

= 2
√
πr20m

3c4N

〈
C(k, ε)
σpA2

pV

〉
. (8)

Here

C(k, ε) =
√
πkε

∞∫
ε

χ−
3
2

[
χ

ε
− 1

2
ln
χ

ε
− 1
]
· S(χ, k)dχ,

the modified "loss function", which depends on the parameters k and
ε = A2

p/γσ
2
p. Ap is the "energy aperture" limiting the deviation of the longi-

tudinal momentum value from the equilibrium one.
At k → ∞ the functions B(k, χm) and C(k, ε) take the form of the cor-

responding functions of the one-dimensional approximation [4].
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4 Account of the quantum lower limit
on scattering angle

Diffusion rate of particle energy in the process of multiple Touschek scattering
is proportional to a quantity

{σV < p2
⊥ >}cm =

∞∫
p∗

σV < p2
⊥ > f(k, p)dp,

where p∗ = pm, χm = χcm or p∗ = σp
√
χqm = ~/bmax, χm = χqm depending on

the applied approach for a minimal scattering angle (classical and quantum
respectively). In this case the form of the expression for factor B is slightly
changed: under fulfilled condition (1), χm = χqm should be put in (6) to
account the quantum limit on the momentum and the Coulomb logarithm in
integrand should be written with the coefficient 1/2 (see (4)):

B(k, χqm) =
1
2
√
πk

∞∫
χq

m

√
1
χ
· ln
(
χ

χqm

)
· S(χ, k)dχ. (9)

5 Examples for CLIC and VEPP-4M
Results of the CLIC Damping Ring beam energy spread and emittance cal-
culation in the classical approximation versus the coupling parameter are
presented in Fig.3. The quantum approximation results are practically coin-
cide with those shown in figure. The same situation takes a place also in the
case of VEPP-4M2.

The reason is that for the conventional storage ring as well as for the
projected "nano-emittance" machine the integrals (6) and (9) have rather
close values, in spite of a several order difference between χcm and χqm. The
dependence of diffusion factor B on the parameter χm in classic and quantum
approximations is plotted in Fig.4 and 5 for two ranges of χm variation. There
are the points determined by the CLIC ring parameters in one of rhe ranges
and the points for VEPP-4M are in another.

2It was examined [7], all the Touschek effect calculations performed in the paper are in
a wholly satisfactory agreement with the results obtained by means of some other methods,
particularly, by Piwinsky’s one [8, 9]
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Figure 3: Relative increase of the beam emittance and energy spread due to
IBS versus the ratio of vertical and horizontal beam emittances for the CLIC
Damping Ring at E = 2.24 GeV and I = 0.34 mA/bunch

Suppose that the parameter χcm for CLIC (Fig.4) is increased by a factor
of 3 · 104 to a level of ∼ 10−2 owing to decreasing the vertical beam size
(see Fig.6). At the same time, the point for CLIC on the curve of quantum
approximation (Fig.4) moves through nine orders to a level of ∼ 10−2 in view
of the relation χcm/χ

q
m ∝ bmax. In this case, it follows from an analysis of

both B(χm) curves in Fig.6 that the diffusion factor of classic approximation
is about 2 times larger than that of quantum approximation. A region where
the mentioned curves becomes non linear in a plot with logarithmic absciss
scale and where two values of B can be distinguished is severely limited. In
practice, this region is not available (see a remark in a first section of the
paper).

6 Conclusion
It has been shown, that, formally, a quantum lower limit on scattering an-
gle must be included in consideration of the IBS processes. Nevertheless,
the CLIC and VEPP-4M Touschek calculation examples demonstrate that
an account of the quantum limit of minimal scattering angle instead of the
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Figure 4: Diffusion factor B as a function of the χm parameter in the classic
and quantum approximations. The bold points on curves correspond to the
CLIC parameters: 2.242 GeV beam energy, 0.34 mA beam current per bunch
and 0.003 ratio of the vertical and radial emittances.

Figure 5: Diffusion factor for the VEPP-4M vs the χm parameter in the
classic and quantum approximations at 0.9 GeV, 0.1 mA per bunch and 0.01
ratio of the emittances (the bold points on curves).
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Figure 6: The transformed CLIC example: bmax is 3 · 104 times decreased.

classical one does not change notably the numerical results. This conclusion
seems to be true for all existing and designed storage rings. An apparent dif-
ference between results of classical and quantum approximation can be only
in the non-realistic case of super-dense/super-thin beams.
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