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Abstract

A model of a neutral beam with geometric focusing and angular divergence
is described. An algorithm is presented for calculation of a two-dimensional
current density profile at an arbitrary distance from a flat circular emitter
with account of multiple plane apertures in a beamline limiting cross-section
of the beam. Numerical code is applied to calculation of current density pro-
files and power load on circular apertures due to neutral particles.
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1. Introduction

Low-divergent long-pulse neutral beams are often used in modern magnetic fusion
devices as a diagnostic tool providing unique information about plasma parameters
[1]. The most important requirements to these beams are sufficiently large current
and energy of the particles, so that the beam can penetrate to the plasma core. Also
the duration of the beams must be long enough, i.e. close to that of a plasma dis-
charge, amounting to at least a few seconds for large fusion devices. In particular,
this implies limitations on power flux onto the beam limiters and determines the
necessity of their water cooling.

Here we describe a model of a circular neutral beam with geometric focusing
passing through a beamline with plane apertures. The beam profile at desired posi-
tions is calculated as a function of beamlet (elementary cell of an ion-optical sys-
tem) divergence and accelerator focal length. It is assumed that the grid curvature,
determining the focal length, is uniform and beamlet divergence distribution is of
Gaussian type. Considering the number of beamlets large enough, the local current
density of the beam at a distance z can be evaluated by using a simple analytical
approximation. Namely, we assume that the ion current density is constant over
the circular plasma emitter and at each point of the emitter the divergence is equal
to that in a single beamlet.

The current density distribution of a focused neutral beam at a given distance
from an ion-optical system with uniform current density and without limiting aper-
tures in the beamline was obtained in [1]. In the presence of apertures absorbing
the outer part of the beam the task of finding the current density distribution be-
comes more complicated. The current density distribution can be reliably calcu-
lated using the already existing numerical code PADET [3]. In this code the cur-
rent density in a certain point is determined by summing up contributions of many
elementary beams formed in the beamlets of the ion-optical system. This proce-
dure includes possible absorption of the elementary beams by the apertures. The
current density profile and absorption of the beam by the apertures can be also
calculated by Monte Carlo method taking sufficiently large number of random
trajectories starting from the surface of the plasma emitter.

In this work the analytical expressions are obtained for calculation of the cur-
rent density profile of a focused beam of fast neutral atoms with the account of the
limiting apertures. Specific current density profiles needed for practical applica-
tions can be calculated from these analytical formulas using computing software
like Mathcad or Mathematica.



2. Model of a neutral beam

Geometry of the beam is shown in Fig.1. A circular emitter of radius a at z=0
produces a neutral beam with uniform equivalent current density, and every ele-
mentary beam is aimed at the point z = R on the z axis, where R is the curvature
radius of grids or the focal length of the accelerator. Atom current density profile
is of primary practical importance for neutral beam application in plasma devices
and other purposes. On the way to the target the elementary beam is subject to
geometrical focusing and angular spreading which is assumed of the Gaussian

form, exp(-6° / 6;), a typical approximation used for experimental data. Let us

use cylindrical coordinates and find current density at radius » of the observation
plane at distance z produced by the elementary current from the emitter infinitesi-
mal area pdpd¢ with the polar coordinates (p,®). Since the beam emitter is

axisymmetric we can without loss in generality place the point (r,z) at the obser-

vation plane at the x axis. The axis of the elementary beam due to focusing is di-
rected to the point z = R and crosses the observation plane at the point with polar
coordinates (r’,¢) where ¥’ = p(R—-z)/R from geometry.

Fig. 1. Geometry of a beam and observation plane.

We need further to calculate the angle & between the elementary beam axis and
direction to the point (r,z) which determines the current density. Let us find it
from a triangle with the sides L, I, / (see Fig.1)
L’ =01 +h>=2lhcos8. )
From Fig.1 we also find
P=2+(p-r) =2(1+p*/R),
h* =z> +(r—pcos@)’ +(psing)> =z> +r* + p> —2rpcosg,

L=r*+r" =2r'cosg.
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Substitution of #”, /, h, L into (1) yields the exact expression for 8(r, z, p, )
1+ —rcos@)/zR
pp )/ 2

Ji+ 07 /R N1+ (p> +7> —2prcosp)/z?)
In practice the focal length and distances from the atom emitter to apertures in the
beamline and to a plasma target are much greater than the emitter radius and char-
acteristic aperture sizes b,, z >> p,b, and R >> p,b, . Moreover, since the angu-

cosf =

n?

lar divergence of the beam is wusually small, of the order
6, ~1"=1.7-107 rad << 1, and the current density depends on the angle expo-

nentially, we may consider only small & angles. For 8 <<1 cosé =1-6° / 2, s0

we expand (2) into Taylor series and keep only the terms of the order O(l/ z%) to

P 2
92zr—2+p2[l—ij _ﬁ(l—%}:os(p A3)

z z R z \z

obtain

with neglected terms of the order of O(l/ z*). The same approximate result can be
obtained directly from Fig.1 under condition @ <<1, when it is sufficient to write
2 2, n ’ 2 2
o z(é) _rtr Zz2rr Cos @ ::_z_i_pz(%_%j —%(l—%jcos(p.
It is easy to show by straightforward expansion into series that account of the ne-
glected terms of the order of O(l/ z*) (or O(@")) in simplification from (2) to (3)
becomes important only for relatively large angles 6/6, >>1. But for such 6 val-

ues the exponent exp(—6° / ;) is negligibly small. For example, for typical diver-
gence of @, ~1° ~1.7-107 rad a 1% relative error in the current density arising
from omitting the O(l/ z*) terms appears only at @ as large as 6/6, ~ 4.5, when

exp(—62/62) ~2-107 and for smaller 8 angles the error is even less. Therefore,

the expression (3) can be assumed accurate.

Let us also consider the influence of the angle y between the elementary
beam axis and normal to the observation plane on the current density. In practical
situation this angle is small, max(tan y) = (a +b)/z << 1, where b is the aperture

radius. The axial component of the elementary current at the observation plane is
dj.=dj-cosy=dj-(1-y° / 2), and correction to the current density is of the or-

der of (a+b)* / 2z* . In practice, typical values of the emitter radius and aperture
cross-size are comparable a~b~10cm and z2>100 cm, therefore,
(a +b)2/2z2 ~0.02, so the maximum relative error is about 2% at z=100 cm at

large radii » ~ b . Further we neglect this angle for the sake of simplicity and keep
6



in mind that our formulas are correct to within about 2% at all distances of interest,
and that this systematic error rapidly decreases with distance from the emitter. Of
the same order is the error from replacing the spherical form of the accelerator grid
by a flat one. It leads to 0(1/ z%) errors which are maximal at the beam periphery.

However, in numerical calculation there is no problem to include both Y-
dependence and exact expression for 6(r,z, p,¢) into the expression for the cur-
rent density.

The beam current density at the observation plane is calculated by integration
of elementary currents over the whole emitter surface

a 2z 2
. 9 r’ Z’ b
e (r22) = B[ pp [exp] - LELL) | g (4)
0 0 90
where B is a normalization constant to be found later. Integration over ¢ using the

relation J: e***’d@ = nl,(z) , where I(z) is the modified Bessel function, gives

veam (> Z) = 27TB exp| — r j‘ex —p—z[l—ljzl er(l—ij dp .(5)
Jocams 720 NP T T R) olzer \Z T R))PY

This expression for the current density distribution of a focused neutral beam at a
given distance from the ion-optical system and without limiting apertures in the
beamline was obtained in [1].

The constant B is determined from total current conservation, i.e. from con-
dition that the total beam current at any z position must be equal to the total emitter
current

_[jbeam (r,z)Zﬂ'rdr =J‘j0 (r)zﬂ'pdp ,
0 0
which in the case of the uniform emitter current density J, yields

]:jbeam (r,z)rdr =J, a2/2 .
0

Performing integration in the left hand side using [2] we find B=J, / 72’6, .
Thus, the elementary current density at the point (r,z) from the infinitesimal area
with coordinates (p,9) on emitter surface is

Qv (127 P, 9) = (o [ 72760 expl-0° (7,2, 0, )67 ) pdpd . (6)

At the focus (z =R) the current density distribution follows from (5) and
becomes a simple Gaussian type

jfocus (}") = JO(a2/R2902)eXp<_ }"2/R2002) : (7)
with the beam half-width at 1/e equal to R, .



Equation (5) can be also obtained in straightforward manner by using a model dis-
tribution function of the beam at the plane at which it starts:

=0,/nV6)8(v. - VO)H(a X jexp(— 02 +v2)/62V2), 8)

where V) is the atom velocity, xo and y, are the Cartesian coordinates in the emitter
plane, and H is the Heaviside step function indicating that the beam particles are
emitted within a circular aperture with radius a. For z > 0 the distribution function
can be obtained by solving a collisionless kinetic equation. The particle trajectories
are straight lines, so there are constants of motion, that are essentially initial coor-
dinates at the plane z=0. These constants of motion can be written as
Xg=x=-v.z/v., y,=y-v,z/v.. The components of the velocity vector are
also constants of motion. So, since the distribution function is a function of the
constants of motion it can be immediately written at a plane at distance z from the
source as

f=0J,/7Vi60)8(v. —VO)H[a —\/(x—vxz/vz)z +(y—v,z/v.)’ )x

xexpl— (v2 +v2)/62v?).

The current density profile is given by j,,..(x,y,z)= '[ j I Sv.dv dv,dv_ which

)

after simple calculations gives the same result as (5), but for R = oo, since we did
not take into account inclination of the particle trajectories due to bending of the
grids. In order to include the focusing effect, equation (8) should be modified as

follows
£ = faV360) 8.~V Ha= i +3] ¢

xexp(— (v, —v.x/R)* + (v, - vzy/R)z)/ﬁo2 vzz)
This expression includes the inclination of the particle trajectories, which assum-

(10)

ing the facts that 6, <<1 and that the angle of focusing is small, is equal to
v.x/R or v_y/R for the displacements along x and y-axes respectively. Calcula-

tion of the flux density profile using (10) gives the same relationship as (5) for the
finite R.

This approach can be applied to obtain the profile of a beam passing through
a set of circular apertures of different radii. For the case of one aperture of radius b
placed at z =z, the distribution function of the beam without focusing immedi-

ately after the aperture has the form
f = (JO/ﬂV03002)5(vz - I/())I_I(a _\/(X _v):ZO/vz)2 + (y - vyZO/Vz)2 )X

Xexp(— (v +v)2,)/902 vf)H(b—ﬁxz +y2),




where the last step function describes transmission of the aperture. Using the same
constants of motion, beyond the aperture, at z > z, the distribution function can be

written as

£ =/Vi60)80. V) Ha=Jx=v.z /v P +(r=v,2 /v Jx

Xexp(—(vf +v)2,)/6’02 vzz)H(b—x/(x—vx(z—zo)/vz)2 +(y—vy(z—zo)/v_,)2).

The current density profile can be again found by multiplying the distribution
function by v, and integration over the velocity space. The final result has the fol-
lowing form

2 a 2
; _ 202 _r 27 P 2rp
]beam(r9z) - (JO/”Z 60 )exp( %j J.O d(o.(!. exp[ 90222 + 22902 COS(DJX

><H(b—\/pz(l—zo/z)2 +z2r?/2* +220/z(l—zo/z)prcos¢jpdp

Addition of other apertures leads to multiplying the distribution function by corre-
sponding step functions. Generalization of this procedure for non-circular aper-
tures and for a focused beam is straightforward. Another, probably more vivid
approach to calculation of the current density profile of a beam passing through
apertures is considered in the next section.

3. Account of apertures in the beamline

Consider the system shown in Fig.1 with addition of a singly-connected plane ap-
erture of a general form. The aperture plane perpendicular to the z-axis is located
at the distance z, from the beam emitter, and the shape of the aperture edge is
described by the plane curve C given in parametric form with x(¢) and y(¢) being
functions of parameter ¢ measured along C (Fig.2). We are again interested in the
current density produced by the beam in an arbitrary point (r,z) of the observa-
tion plane at the distance z from the emitter. The elementary current at the point
(0,p) at the emitter produces the current density at the observation plane only if

these two points can be connected by a straight line which passes through the aper-
ture. Let us formulate this condition mathematically. The assumed straight line
passes through two points with the Cartesian coordinates (pcose, psing,0) at

the emitter and (x, y,z) at the observation plane (Fig.2).
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Fig. 2. Beam emitter 1, aperture plane 2, and target plane 3.

In projection to the plane y=0 the equation of this line is
x(Z)=pcosp+Z(x—pcosp)/z and in the plane x=0 the equation is
W(Z)=psing+Z(y— psing)/z. Thus, this line crosses the aperture plane
z = z, in the point

X, = peos@+(x—pcos@)z, [z, y, = psing+(y—psing)z,/z, (11)
where coordinates xy, y, in the aperture plane should not be confused with x, y,

temporarily used in (8)—(10) as coordinates in the emitter plane.

For beam passing through the aperture this point (x,,y,) must lie inside the
closed curve C, being the edge of the aperture i.e. inequalities
Xoinc (Vo) <Xo < Xpac (Vo) and -y 0 (X0) < Vg < Vi o (%) must be satisfied

(for simplicity we assume only convex shapes of the curve C which is suitable for
almost all practical cases). Let us define an “aperture function” 4 which is equal to
unity if both of the latter inequalities hold, i.e. if the elementary beam under con-
sideration passes through the aperture and adds to the current density at the obser-
vation plane, and equal to zero otherwise. Using the Heaviside step function H(x)
which is equal to unity for x >0 and zero for x <0, we may write the aperture
function in the explicit form

Az % 3,2, 0,0) = (12)

=H(x,— X min,c o ))H(xmax,C (Yo)—x0)H(yy = Ymin,c (xo ))H(ymax,C (x0)=¥0)>

where x,(z,,x,z,p,¢) and y,(z,,7,z,p,¢) are taken from (11). The current

density after the aperture is written explicitly using the expression (6) for the cur-
rent density of the freely propagating beam

djaﬁcr(rﬂzﬂpﬁw) :djbcam(r’Z)pﬂw)'A(Z()ax:yazﬂp7¢)’

10



In practice circular and rectangular apertures are used most often, and we
will specify conditions of elementary beam passing for these cases in more detail.

1. Rectangular aperture. Consider a rectangular aperture with the sides of length
2b, along the x-axis and 2b, along the y-axis, and with the center of the rectangle

lying at the point with Cartesian coordinates (x.,y.). Conditions for elementary

beam passing through the aperture are: x,—-b <x,<x,+b  and

v, —b, <y, <y.+b,, therefore the aperture function takes the form

A(x, y,z, p,0) = H(xy —x, +b)H(x, +b, =X )H(yy =y, +b,)H(y. +b, — y,).
In the limiting case when, for example, b, — oo, the rectangle degenerates

into an infinite slit of constant width 2b,, and only one condition remains

x, —b, <x, <x_,+b,. The aperture function in this particular case becomes

Az, %, 9,2, p,0) = H(xg —x, +b)H(x, + b — x;).

2. Circular aperture. It is quite natural that in practice circular neutral beams are
used in combination with circular apertures.

a) Off-axis circular aperture. This is the most general case. Let the center of
the circle have coordinates (x_,y,), then the edge of the circular aperture of ra-
dius b is given by the equation (x—x,)*+(y—y,)> =b” and conditions of the
elementary beam passing through the aperture

—b7 = ys <xy<x,+4b>—y; and y,—+b’—x; <y, <y, +11b2—x0 ,

or comblnmg them we obtain one condition (x, —x,)> +(y, —y.)> <b>. The
aperture function is
A(zy,x,¥,2, p,0) = H(b2 —(x, _xc)z -y, _yc)z) .
b) Concentric circular aperture. In this special case the center of the circular
aperture lies on the beam axis x, = y, =0, the aperture edge equation becomes

x*+y>=b", and conditions of elementary beam passing are

— b7 =g <x,<b> =yl and —b>—x] <y, <+/b>—x; or combining

both conditions, x; + y; <b’. If the system of the beam and apertures is fully

axisymmetric, it is convenient to use polar coordinates in the aperture plane, and
this  condition wusing (11) can be rewritten in the form

2_2
rizg 2rz0 2
5 (1——jpcos¢+(l—7j p><b

z z
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The corresponding aperture function is
A(zg,%,,2,p,9)=0(b* —x5 —y;) = (13)

2 rzzg 2rz, z, Z, : 2
=H|b"————|1-—|pcosp—|1-—| p~ |
z z z z

3. Multiple apertures. It is easy to generalize these single-aperture functions to
the case of several consecutive apertures. The elementary beam would reach a cer-
tain aperture at the distance z, only if it already passed through all previous aper-
tures located at the distances z; between the beam emitter and the given aperture. In
other words, the straight line of sight from (p,¢) to (r,z) must not cross any

aperture. Thus, the condition of passing through the n-th aperture requires that
A(z;,x,¥,2,p,¢)=1 for all i from the interval 1<i<n, and the net aperture

function for z, < z < z,,, may be written in a compact form as a product

n+l

Atotal(x’y927p9¢):HA(Ziaxayaz:p’¢)~

i=1
The elementary current density at an arbitrary distance from the emitter with the
account of all apertures between the emitter and the observation plane is

dj(xﬂy7zﬂpﬂ¢) = djbeam(\l‘x2 +y2 9Z’p’¢). Atolal(x’y7zipﬂ¢) >
and finally the two-dimensional current density distribution in x-y plane at the dis-

tance z from the emitter of fast neutrals is given by integration of the elementary
currents over the emitter surface

J(x,3,2) = [ pp [ (dj(x.y,2, p.9)] pdp)de. (14)

For practical use it is important to know the portion of the initial beam that passes
through each aperture. Let us call this value a “transmission coefficient”. It is cal-
culated as a ratio of the total current that passes through the n-th aperture to the
total beam current at the emitter /,

n,=1(z,+0)/I, . (15)
The total current after the aperture is calculated using the current density (14)

I(z,+0)= [dv [ j(x,y,2, +0)dx.

—oo

Since immediately after the aperture the current density is nonzero only in over the
aperture area, the /(z, +0) can be also calculated as an integral over this area

I(z, +0) :Ij(x,y,zn)dS. (16)

Hitting of the aperture surface by an energetic beam may lead to melting and
destruction of the aperture in case of long-pulse powerful beams. It may become a

12



serious concern and would require special measures to cool the apertures in order
to keep them under acceptable temperature. Power density can be calculated by
multiplying the current density immediately before the aperture plane by the accel-
erating voltage in the ion-optical system

P(x,y,z,)[Watt/cm?] = j(x, y,z, —0)[A/ecm?]-U[Volt].

4. Numerical calculations for realistic neutral beam system

The model calculation presented below is made for the beam and beamline with
the following parameters: the beam emitter radius is @ =10 cm, the focal length

R =340 cm, and the angular divergence 6, =1.2° =2.1-107 rad. The total beam
current at the emitter is /, =40 A, and the accelerating voltage is U, =40 kV,

therefore the power density at the emitter is P, = I,U,/ma’ =5.1 [kW/cm?].

There are four circular apertures in the beamline, all of them concentric with the
beam (Table 1).

Table 1. Axial positions and radii of circular concentric apertures in the beamline.

Aperture number | Distance from emitter | Aperture radius
Z, cm b, cm
1 79 9.85
2 210 9.75
3 263 12.5
4 312 12.5

Results of numerical calculations are presented in Fig.3 in terms of power
density profiles immediately before all four apertures and at the focal plane instead
of current density using the conversion formula P = jU,, so the current density

can be easily found by dividing the power density by the accelerating voltage
U, =40 kV.

In the focal plane (curve “5”) the beam half-width at the 1/e level found us-
ing (7) is RO, =7.1 cm. The power load profiles at the apertures are shown in
Fig.4.

The power load at the aperture #3 at z, =263 cm is relatively small, because

its radius is larger than the radius of the aperture #2, therefore the beam does not
manage to spread radially due to angular divergence since the distance from the
aperture #2 at z, =210 cm is not enough for that, (z;-z,)-8, <b; —b,, and

moreover the beam focusing attempts to decrease the beam diameter with z, the
maximal focusing angle is a/R =3-10"" rad.
13
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Fig. 3. Power density radial profiles at various positions: 0 — emitter, 1 — 79 cm,
2-210cm, 3 -263 cm, 4 — 312 cm, 5 — at the focal plane z =R =340 cm.
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Fig. 4. Power load distribution at the apertures:
1-79cm,2—-210cm, 3 -263 cm, 4 —312 cm.

For the case of concentric circular apertures calculation of the aperture power
loads and transmission coefficients is particularly simple. Expression (16) for the
total beam current that passes through the n-th aperture becomes

I(z, +0)=271 g i(r,z, —0)rdr, thus the transmission coefficient (15) is
. L J(rz,

n, :2ﬁJ:" Jj(ryz, —0)rdr /10 and the total power load on the n-th aperture is

14



0,=U, J.: Jjryz yrdr=w,(n,.,—n,), where W, =1,U, is the beam power at

the emitter.

Integral characteristics of the beamline with this specific neutral beam,
namely the aperture transmission coefficients and the integral power loads are pre-
sented in Table 2.

Table 2. Transmission coefficients and power loads of the apertures.

Aperture | Aperture position Transmission Total aperture power
number z, cm coefficient, 77, % load, O, kW

1 79 99.6 6.8

2 210 97.4 34.7

3 263 97.4 0.5

4 312 96.3 16.7

Analyzing the results presented in Table 2, one should be aware of the model limi-
tations discussed in Section 2, which cause some systematic errors due to simplifi-
cations in geometrical expressions.

5. Conclusion

The physical model of the circular neutral beam with geometric focusing and
Gaussian angular divergence in the beamline with multiple plane apertures of arbi-
trary shape is described. Formulas for two-dimensional current density profile of
the beam at any distance from the emitter are derived. Rectangular and circular
apertures limiting the cross-size of the beam are considered in detail. Numerical
code based on this model is applied to the case of four circular apertures concen-
tric with the beam. Current density radial profiles, aperture transmission coeffi-
cients and aperture power loads have been calculated.

The authors are grateful to Dr. G.Fiksel (University of Wisconsin, Madison,
USA) and Dr. R.Uhlemann (IEF-Plasma Physics, FZ Jiilich, Germany) for valu-
able discussions.
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