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Abstract

Space charge effect is ever of fundamental importance for low-energy parts of
accelerators. The technique known as emittance compensation allows analyzing
and optimizing of this kind of beamlines effectively. Simple and robust
estimations of the emittance degradation in various space charge affected
beamlines and guns have been obtained analytically and numerically.
Nonuniform longitudinal and transverse distributions of current, accelerating
and bunching were taken into account. The parameters of optimal beamlines
and guns for space charge affected beams have been estimated.

I dexT coGcTBEHHOT 0 3aps/a,
KOTepeHTHOCTD 3apsIIOBbIX KOJIe0aHUN H IMUTTAHC

C.B. Muaunckuu

Wucruryt sinepuoit pusnku um. I.U. Bynkepa
630090, HoBocubupck, Poccust

AHHOTALMA

O dexT coOCTBEHHOTO 3apsiia BCET/a WUIPaeT BaKHYIO POJb B WHXKEKTOPAx
YCKOpUTEJNIeH, TJie OSHEprus YacTHIl OTHOCHTEJbHO HeBeluKa. TexHuka
"emittance compensation" mo3BossieT 3(P(PEKTUBHO AHAIN3UPOBATH |
ONITHMH3MPOBATh TakWe KaHAIBl. B paboTe MONydYeHBl aHATUTHYECKH U
YHCJICHHO TIPOCTBIE M HAJEKHBIE OIEHKHM pOCTa HMUTTAaHCA B KaHaJlax C
npeBaIupyomuM 3GGeKToM COOCTBEHHOTO 3apsia M IMyIIKaX. YUYHTHIBAINCH
HPOZIONIbHAS M NONEpPeYHast HEOJHOPOJAHOCTH IIIOTHOCTH 3apsi/ia, YCKOPEHUe U
rpynnupoBka. IIpuBeleHbl OLEHKHM NapaMeTpOB ONTHMANbHBIX KaHAJIOB |
HyIIeK.

© Budker Institute of Nuclear Physics, SB RAS

2



1. Introduction

Space charge effect may cause significant emittance degradation in a beamline
and even change the behavior of beam motion in a beamline. Kapchinsky-
Vladimirsky equations [1] are very convenient to estimate the effect and also to
analyze its results:
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where @ and b are the envelopes in x an y directions; k is normalized focusing;
Jj=1/1,(By)’, normalized current; and € is canonical emittance. We shall use the
equations rewritten for rms-values
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where x and y mean horizontal and vertical rms-sizes and, in indexes, the
appropriate coordinates respectively; " means second derivative by the
independent coordinate z; €, I, G, e and p are the emittance, the current, the
focusing gradient, the particle charge and its longitudinal momentum respectively.

1, :4n-mc2/ZOe, ~17kA for electrons; G, =-G, =G for a horizontally

focusing  quadrupole, G, =G, = eB’ / 4p for a  solenoid, and
G, =pg’ / e, G, =0 foradipole, where g is the trajectory curvature.

If the terms with current in (1.2) are comparable or greater than ones with
emittance, one has to take into account space charge effect. So the following
inequation is to be met to neglect space charge effect [2]:
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Space charge also changes the phase of small vibration of a beam. If this is
significant, one should estimate the effect before usage of a single-particle model.
The equilibrium size of a beam is

1/4 1/4
2 .3 2 i
ol & X ~| & (1+1L2J5x0(1+6). (1.4)
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The equation of small vibration around this equilibrium is
2 .
A =35 AL A£G Ax (1.5)
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Its wavenumber is
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Space charge changes the wavenumber by
2 . .3 .
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|(x = x,)/x| <<1 is assumed here. If x ~ y , than
57
Ak = ——=, (1.8
16 € )

Thus, the second ("phase") criterion of the validity of a single-particle model is
1 I Jj2x+3y)x
4e L,(By)’ ° (x+y)

A similar criterion for the vertical plane is obtained substituting x <> y. If x~ y,

dz <<, (1 .9)

one can simplify this condition

i;sL <<1, (1.10)
16 €1, (By)

where L is the total length of the beamline. One can also consider the betatron
phase advance. The space charge effect is than
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(1.11)
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Estimates (1.10) and (1.11) are very close.

Term "emittance compensation" was probably put forward in [3] in analysis of
processes in RF photoelectron guns. Really, the author found that the normalized
emittance oscillates along a gun due to space charge effect and the optimal phase
advance can be chosen to minimize the emittance at the gun exit. The explanation
was that the phase portraits of bunch slices diverge and converge periodically. The
method was significantly formalized and developed in [4] and further works. Some
of the results being discussed here have been presented in [5] - [7].

=2¢

2. Basics

2.1. Longitudinal inhomogeneity: basic effect and equations

First of all, consider a bunch as a set of uniformly charged and independently
moving slices with zero emittance. This is a good approximation if a bunch is long
enough in the moving frame Byect >>r. Substituting

I/1,(By)* = j, G,e/ p=g, G,e/ p=h in(1.2) one obtains

x": ] _gx’

Xty @.1)
V==L hy.

xX+y

The longitudinal momentum and j are considered constant for the present. Suppose

X
that ( j is a solution for the system (2.1), given j, and some starting conditions.
y

Let's name this solution as principal. Then the motion of another slice with the
current j+ 9 (all the values with 6 are considered as small) is homothetic if its

o x Y x
sizes are /ﬂ[ J;(1+%6—JJ( J It's obvious, as the substitution
J Y JNY
. e [ X Jj+o(x . .. .. )
o Jj+9, e keeps (2.1) valid. This is the principal solution
y J Y

for the latter slice. Thus, the emittance of a bunch doesn't degrade if all its slices
are homothetic. If one shapes a bunch in that way, the effect of longitudinal
inhomogeneity is perfectly compensated.
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If the starting conditions of the two mentioned slices are the same, the sizes of
the second one will oscillate near the principal solution. The equations
(linearized!) for a small deviation from the principal solution are then

Sx" == 8x+6); _ b,
(§+ys) 22)
4 . x+ y
8y" = —j ———— — hdy.
y ](x+y)2 )3

S(XJ = _lg(x} S(x,J =0 at z=0. This is a system of linear equations with
y y y
variable coefficients. Its local eigen solutions are

1 . 2 2
_1[(x+y)4(g—h)2+4j2+(x+y)2(g—h) -exp| iiz\/j:+g+h— J +(g—_hJ K
(x+y) (2.3)

2 2 ()c+y)4 2
1 > Jj g+h J g—hY
[ (x+y) (g—h) +24jj —(x+y) (g—h)]-exp[izz\/w+2+ er[Tj J

In the case of axially symmetric focusing (g =% > 0) and quasistationary motion
(x=y; 2j/(x+y)* = g ) these are a dipole mode and monopole one respectively
Fig. 2.1:

2.4)

Fig. 2.1. Dipole (left) and monopole (right) charge vibration modes.

The wavenumber of the latter is +2 bigger. If both focusing and initial
conditions are axially symmetric, the dipole mode is not excited and only the
phase of the monopole mode (chare phase or phase for the sake of simplicity
further) is to be =7nn, where n is an integer to minimize the emittance. One can
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say that small monopole vibrations of different slices are perfectly coherent so the
phase portraits coincide periodically Fig. 2.2.

X' X' X'

Fig. 2.2. Spread and narrowing of phase portraits of slices.

In the case of non-symmetrical motion both modes are to be phased that seems to
be impossible.

2.2. Transverse inhomogeneity: basic effect and equations

The effect of transverse inhomogeneity is principal for steady beams and can
affect significantly transient ones. Consider a slice of a transient beam or, that is
similar, a steady beam with non-uniform transverse charge distribution. Let's
assume the whole system as axially symmetric. Then the equation for a particle at
a distance x from the axis is

x"—;g_gx—z_}_gx (25)

I, (ﬁy )3 X x .
where 7 is the current inside a cylinder of radius x, and all other symbols are as in
(2.1). Let's suppose that the motion is perfectly laminar, that is if x, > x, for two

particles at some place, it is valid everywhere. This condition is not always valid,
but is violated only in the low-density halo of a beam, so almost doesn't affect
estimation of emittance.

If the charge distribution of a beam (slice) is not uniform, ; is not

proportional to x*, and particle trajectories are not homothetic. The situation looks
like in Fig. 2.3.

/’———‘§“~_

4 ' ==

7 Space charge
Il 4 Il 4 |

Jatching ‘ !
7 bmq\f X

FocusiN

~.

Fig. 2.3. Motion of Gaussian slice.

Similar to the case of longitudinal inhomogeneity, one can consider a set of
homothetic principle trajectories for different particles and their oscillations
around the trajectories. The linearized equation for small deviation is then
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(2]
ox" = [xi +gj8x (2.6)

In the linear approximation, the phase portrait of a slice is straightened twice per a
period of oscillation and the emittance is zeroed.
If there is Gaussian distribution of current within a slice of the rms-size » and

current j, then
~ o -x’ -x’
i (x) = 21r eX dx=j|1-ex . 2.7
/) '(|).2nr2 p( 272 ] / p{ 252 J 2.7)

Wavenumbers of oscillations of a slice in total and a particle inside it coincide if
1—expl-x?/2r7)= x> /2r” = x = 1.78528667 .

2.3. General dimensionless equations of small oscillations

It is more convenient to analyze a dimensionless deviation 8 =0x/x. If a
round beam is uniform in the transverse plane and its energy and current are
conserved, its rms-size is given by

"= g 2.8)
2x

For a small deviation 6 from the principle trajectory, the linearized equation is
then

g J pon X s
x(1493)) =—F———=-gx(l+8)=3"+2—08'=-—=-0. 2.9
(48) = gl 0) a2 - 29)
If the energy and/or the current are variable, the equation for the rms-size is
=X
By [, 2.10)

; = X"+ 5 Z——gx,
= BY(— - gXJ ! *
2x
where x, =Pyx" is the normalized slope. The linearized equation for a small
deviation is then

8n+[2£+@}y -1 @.11)
x By x

Note that the coefficient at § in the right part is ever negative, that is the motion is
ever stable, and doesn't depend exphcltly on the focusing. All the principle

trajectories are homothetic, that is x, /x, =x, / x, for any two of them. So the
phase portraits of the slices are aligned if
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X +0x  x) +0x)

X, +0x, X, +0x, (2.12)

Considering terms with d as small one obtains

8 =0}. (2.13)
Property &x" = x8'+ x'dx/x has been used here. Consider the situation in more
details. Assume that some slice moves along the principle trajectory (xo,x(') )
Adjacent slices have principal trajectories §~(x0,x(')), where & is a parameter, and
deviations (&—1)(8x0,6x6), that are small. Applying (2.13) to all the slices one
obtains (Fig. 2.4)

56:O<:>8x/x:8x'/x'. (2'14)
Thus, it is necessary to find the points where 3’ =0 to minimize emittance.

A S
>
@]

OX

X

\

Fig. 2.4. Alignment of phase portraits.

One should substitute j <4/ in (2.11) to obtain the appropriate equation for
the effect of transverse inhomogeneity

8"+[2£+M]8’ = —4—25. (2.15)
x Py

X

2.4. Transformation matrix and phase

As any linear ordinary differential equation (ODE) of the second order, (2.11)
(also (2.15)) defines the transformation matrix between two arbitrary points of a
beamline z; and z;

M( ) c s 2.16
Z ’Z = 9 .
e (2.16)
where (C, C") and (S, S") are the values of (9, d8") at z;, if at z, they were (1, 0) and
(0, 1) respectively. They are well-known cos- and sin-like trajectories. In general,
the coefficient at &' in (2.11) and (2.15) is not zero, so detM is not necessary
unity [8]



_ X (B )' _| %o Z(B'Y)o
detM(z,,z,) = exp —I[Z;JFW dz | = x_1 m (2.17)

The transformation matrix of a uniform beamline with x and fy = const is

Zo

x .
cos@ —=sinQ

\/7 b
—ﬁsin(p cosQ
X

M(z,y,z,) = (2.18)

where ¢ =(z, -z, )\/7 / x . One can obtain the inverse matrix substituting ¢ — -¢.

Probably, this is the only case when the charge phase advance can be defined
absolutely correctly, that is the phase advances of two parts are (i) additive and (ii)
commutative. Nevertheless, we are interesting in cos-like trajectories most of all
(' = 0 in the birth-place of a beam), so the phase advance of a beamline can be
defined by equating it with the "appropriate" uniform beamline. A uniform
beamline is appropriate to the given one if the values x, j and By in the former and
at the end of the latter are equal and the ratio of C and C' elements of the
transformation matrices and their signs coincide. In this case the phase advance in
the beamline is

-C'x
¢ = arctan C\/7 , (2.19)

where the quadrant is selected so that the signs of cosp and -sing coincide to the
ones of C and C respectively. This phase is not ever additive and commutative,
but gives an idea on the most important beamline parameters and possesses several
useful properties. If a uniform beamline with the phase advance © — ¢ is added to
the end of an arbitrary one with the phase advance o, and x, j and Py in the former
and at the end of the latter are equal, then the total phase advance of the combined
beamline is 7

X .

cos(m — ) TSIH(N -9) acosQ * %
J , : _

\/7 - agsin(p * ( 0o *

J . (2.20)
sin(m—@)  cos(m— Q)

X
The analogous situation occurs for addition 27— ¢@. A set of beamlines with the
phase advances divisible by « has the phase advance also divisible by z. It follows

from the fact that the product of two superdiagonal matrices is also a
superdiagonal matrix

o 66 -
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Moreover, if the number of the parts the with phase advance = is odd, the total
phase advance is 7, otherwise it is 2z. It is due to the resulting C is the product of
C of partial matrices. Of course, x, j and Py at the end of the previous part and the
beginning of the next one must be equal.

It must be emphasized that (i) the mentioned charge vibration phase is not
the same as the well-known betatron phase. The analogy is only due to the same
type of the generating equations. Further, (ii) its definition (2.19) is proper for
analysis of emittance compensation, but is not solely possible.

3. Beamlines

3.1. Uniform beamline: longitudinal inhomogeneity

Let's estimate emittance dilution owing to the longitudinal inhomogeneity
effect in a uniform axially symmetric beamline with constant energy and current.
Apparently, this is the simplest case. The matter is that only small oscillation is
linear that is harmonic, but if the amplitude is not zero, the wavenumber of this
oscillation differs from the harmonic one. It disturbs the coherence of the different
slices. The linearized equation (2.11) gives the same phase for all the slices, so we
need to use next approximations

8" +L5=-L 58— L5 5 +2g5= g5 - g5, G.D)

x 2x 2x ’
where terms higher than cubic were omitted. An analogous equation was analyzed
in [9] (28,9)

F+wix =—ox’ —Bx’, (3.2)
and the frequency shift due to nonlinearity was found (28,13)
2
o® = B3 12 (3.3)
8w, 12w,
where « is the amplitude. In our case
m():\lzg:a:_gaﬁ:g' (34)
Substituting (3.4) into (3.3) one obtains
»? ~ iaz 3s
w, 12 (3-5)

Thus, the linearly increasing phase shift is

~ 1 2
Ap=-0a”, (3.6)

where ¢ is the total phase advance. Consider a bunch emitted with equal x = and
zero x' for all the slices and having Gaussian distribution of current along the
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longitudinal axis:
J=Joexp(=¢"). (3.7)
Let the stationary condition j, exp(—c;)=2r"g is valid for some slice at ¢, and

its phase advance through the beamline /2gL =2nn , where n is integer. Then the

sizes of all the neighbour slices at the end are approximately equal and their phases
are not equal due to the effect of the cubic (and higher) terms in (3.1). The
principal size (also stationary) of any slice is

xs = rexpl(cz -*)/2), (3.8)
and the relative charge vibration amplitude is
a=(r—x;)/ x5 =expllc — 2 )/2)-1. (3.9)

At the end of the beamline

x'=x,8" +x5(1+0) = —axS\/EA(p = —%(pa%cS\/Z_ =
| 3 (3.10)
=5 928 exple® —¢2 Ji-expllcz - ¢2)/2)).

If one substitutes this expression into the integrals for <x'> > and <xx’>, they
diverge. x' in
(3.10) grows exponentially with ¢, while in fact |x|<ry2g (1 —exp((gg —gz) 2))

So let's bound x' as

X = %r 2g[1 —cos[\/%(gz - gg)n(l —expllc2 -<?)2)). (3.11)

The lowest terms of the series expansions of both expressions at zero by (gg - gz)
coincide. Emittance is calculated as

<x’>=x%,
<x”? >= | x" exp(-¢*)dg / [exp(=¢)ds,
2 (3.12)

< xx' >=

S8 o8

o' exp(—G 7 )dg / [exp(=g*)de,
0

gX:\/<x2 ><x? > —< x>,

Final expressions are bulk enough, so are not placed here. € and optimal ¢, for
j=1,r=1,and n from 1 to 15 are placed in Fig. 3.1.

12



0.12 1.2

/
B % N / L
k
<< |
0.08 / + = 0.8
I IR ~—

@ I SR |
0.04 0.4
0 0
0 4 8 12 16
n

Fig. 3.1. € (red solid) and ¢, (blue crosses) vs. number of periods.
Blue dashed is 1.084n™'",

The emittance grows with n from 0.049 up to the asymptotic value 0.12. Optimal
G, #1.084n™""""  Thus, in the first 27-minimum

€=0.049r,/j , (3.13)
and it grows up to
e~0.12ryj, (3.14)

when n — . Every time g is optimal for given n and approximately equals to
Jjexp(=1.175n7%)/ 2x*

Let's estimate this effect if the phase is not optimal. Then assume the phase
portraits of the slices, except of ¢y, uniformly distributed over ellipses

X = r(exp((gé ¢ ) 2)+ cosw(l - exp((gg - gz) 2))),
x' =r4/2g sin \y(l - exp((g(z) - gz) 2)),
where v is the arbitrary phase. For each slice

<X>= ;—;T(exp((gg —gz) 2)+ cosw(l—exp((gé —gz) 2)))Zd\u =

=2l - 2)3fewnlles <)) ) (3.16)

<¥?>= rzng.f(sin \u(l - exp((gg - gz)/2)))zd\u = rzg(l - exp((gf) - gz) 2))2,

<Xx' >=0.

(3.15)
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For the total bunch

2% 1 V6 32
<x?>= ﬁ‘!f X% > exp(—¢)dg = ”2[2 —TCXP(Qg /2)+TeXp(Gg )}
© 3.17
<x” >=%£< X >eXp(—g2)d€=2gr{;—\/fexp(sﬁ/z)Jr\?exp(eﬁ)} G-17)

g, =V<x’ ><x? >

& reaches the minimum at ¢, = 0.540, the value is ~0.144 if j=1 and x=1.
Thus, if the phase is not optimized, the emittance can be

€=0.144r,/j , (3.18)

that is triple larger than in the 2z-minimum.

Let's verify these estimations numerically now. Code "Butterfly" has been
developed for this purpose. The code simulates the motion of an axially symmetric
bunch with uniform charge distribution in the transverse plane and Gaussian one
along the longitudinal axis through an axially symmetric uniform beamline. The
motion equation

" j

¥=oo e (3.19)

derived from (2.1) is solved by Dormand-Prince 5(4) scheme [10] within
0 <z <100 for each slice independently. Initial data are ever x = 1, x’ = 0, the peak
current is ever 1, g is varied. Dense output of x and x' with the step 0.05 is
performed. The emittance and the rms-size of the bunch are calculated using these
data in the nodes of the mentioned grid. Necessary mean values are ever calculated

as
2L/ g 8 V) 49
<t ] i[m]exp[‘ = }W (3.20)

to avoid the infinity limits in the integrals. Change of variablec = 3/(1—-9) is used

for this purpose. The integrand is limited within the mentioned limits, so no
problems with numerical integration occur. The integrals are calculated with code
"DLobatto" described in [11] and [12].

Problems occur when slices carrying small currents pass waists. For example,
the minimal radius of a slice with the current 0.0183 (¢=2) in g=0.168
(¢o = 1.044, the optimum for the 2x-minimum) is

x, =exp(-g/ j)~107*, (3.21)

so the integration step must be too small ~x, and the integration procedure is
ineffective. As a bunch ever contains small-current slices, the problem ever occurs.
To solve it, consider the canonical form of (3.19). Its Hamiltonian is
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2 .
p J g 2 '
H=—-=Inx+Zx",p=x".
7 9 ) p (3.22)
Of course, it preserves. Then the order of the equation can be reduced
12

S PR =H,. (3.23)
2 2 2
In a crossover
x, = xyexpl-xy/ /). (3.24)
The advance of z in passing it from (xo, x'y) to (xg, —x'g) is
Az=2 dx. (3.25)

w0 /x )+ xg?
Unfortunately, the integrand has an integrable singularity at the lower limit. Let's
substitute & =y —x, to avoid it:

e

[ ‘ &dg . (3.26)
0 x/jln((ﬁz +xc)/x0)+ xy

The integrand is limited within the integration limits and its value at the lower one
is

Az =4

12
x—f’exp(— XLJ . (3.27)
J J
This value must be used if
2 12
lé—exp xL <Tol, (3.28)
4 x, J

where 7ol is the claimed accuracy. The same "DLobatto" code is used here.
Calculated Az is added to z, x' is inverted, and the integration procedure goes on. If
a node of the dense output grid occurs at the crossover, its value is calculated from
the interpolation polynomial of the next integration step.

The integrator can ignore a crossover as the right part is evaluated only in a
few nodes within a step. In this case the transition doesn't affect the accuracy. The
sign of x is ever checked and, if necessary, inverted together with the one of x".

Let's examine numerical results. Analytical estimation above yields the

optimal ¢, =1.044 and the focusing g = 0.5exp(—¢;) = 0.168 for 2n-minimum.
The results for this case are placed in Fig. 3.2. First 2nn-minimum of the emittance
occurs at z=10.6 (¢ =,/2gz=1.96m), and its value is € = 0.036. The analytical

result is € = 0.049 at z = 10.84. It was found that the optimal g for 2z-minimum in
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the numerical model is = 0.09 (¢, #1.310). The results for this case are placed in
Fig. 3.3. First 2zn-minimum of the emittance occurs in this case at z~ 14.2
(¢ =+/2gz ~1.927), its value is € = 0.023. An obvious difference between the two

cases is that the values in 2zn-minima differ not so much in the former (it
corresponds well to Fig. 3.1), while they increase almost linearly with n in the
latter. In both cases values in (2n+1)n-minima are bigger than in 2mn ones. At
lower g the beats of € and the rms-size increase and € in minima increases too.

0.25 —25
0.2 [|n ,/“ ,,' \ N ','\ n ,,"‘ N ! 2
] g ' ! ) / ! B
1 \ AN AN
il [ \ \ \ \ \ ) \
.15 = [tf S [s] A IS0 o0 (IS DY T I A LS [\ Y o 2.5
AR AR AR AR AR AR VAR
w i AR b ; 4 B i i e
o1 | } |,
0.05 —0.5
0 T T T T 0
0 20 40 60 80 100
z
Fig. 3.2. ¢ (red solid) and rms-size (blue dashed) of a bunch in g = 0.168.
0.5+ —4
0.4+
0.3+
w ’ —
0.2+
0.1
0 \ \ \ \ 0
0 20 40 60 80 100

4
Fig. 3.3. ¢ (red solid) and rms-size (blue dashed) of a bunch in g = 0.09.
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Optimal parameters for maxima are ¢, =0.540 and g = 0.5exp(—¢) = 0.374.
The results for this case are placed in Fig. 3.4.

0-27 1.2

0.16 N . ’\‘II-\\’,-\\’,’\\,”\“II\‘\,/’\\JI.‘\‘II\‘\Il“\\,l“\\,'“’

| —0.8
0.12 4

© i - —

0.08 4

h —0.4
0.04 — |

0 \ \ I \ 0
0 20 40 60 80 100

z
Fig. 3.4. ¢ (red solid) and rms-size (blue dashed) of a bunch in g = 0.374.

One can see the size beating is small enough, that is the focusing is near
matched (g = 0.40 gives a little lower beating). The emittance beating is also small.
Its value in all the maxima except of first and third ones is = 0.15. The analytical
estimate (3.18) gives 0.144 that is in good agreement.

It should be mentioned also that g = 0.2...0.3 are optimal for 2nn-minima with
large n. The typical minimal value is € =~ 0.07. The analytical estimate Fig. 3.1,
(3.14) gives € = 0.12 and g = 0.3.

Thus, the derived analytical estimate is verified in toto by numerical
experiments. The optimal numerical emittance value in the 2m-minimum is
significantly lower than the analytical one and the optimal focusing is weaker. The
analytical result for 2nn-minima is valid while the focusing is overestimated a
little. For maxima, the estimate is in good agreement with the numerical results.

3.2. Uniform beamline: transverse inhomogeneity

Let's estimate the effect of transverse inhomogeneity now. Consider Gaussian
transverse distribution with the current j and the rms-size ». The beam moves
through a uniform beamline with focusing g. The initial radius of a particle is y
and y'= 0. Then

7 = jll—expl- 2 /2r)) (3.29)
and, if gr’/j <1, an immovable particle exists, which radius x, satisfies the
equation

17



(1 - exp(— x; /ZrZ))/xg =g/2j. (3.30)

The principal (equilibrium) radius of another particle is

x, = J2j(1 —expl-y? /27

. (3.31)
g
The relative charge vibration amplitude is
_(y—xg)_ y l—exp(—xé/Zrz)_1 313
X, X, l—exp(—yz/Zrz) . (3.32)

In 2nn-minima the transverse coordinate of a particle and its derivative are
Y=Y, (3.33)

x'=—ax,\2gAp =
3
1— — 2 /22 1— 22 (3.34)
L, l_zgxo\/ expl-y? 127 )[l\/ expl-xa /2r )_1}

l—exp(—xg/Zrz) X, l—exp(—y2/2r2)

Dephasing here is because of the same nonlinearity as in the above case. Average
values necessary for the emittance are

<x’>=r%, (3.35)
12 1 T 12 2 2 ~
<X >:F£x yexp(—y /2r )dy =

=1 g j(57.69873 1354(1 —exploxg /207 +

288 X,
r? s 1 x; 1
+144.2468283 (1 - exp(- x2 /277 )+ 30+ = 2L —
Xo 2r l—exp(— Xq /2r ) (336)

~5.8798217720 ! -

r x/l—exp(— xq /2r2)

—85.48606633— /1 — expl— xZ /217 )
Xo

Xo

1372523488 (1 - expl- 2 / 2#))“}
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<xx'>= #}'}‘x’yz exp(— y° /2r2)dy = i(pr\/;x

x| -0.9799702953 20 ! +
r \/l—exp(— x§/2r2) (3.37)
+6-12.82290995-" /1 - exp(- x; /2r° )

%o
2
+9.6164552267(1 - exp(- x2 /217
Xo
The expression for the emittance is too bulk to place it here. The emittance gets the
minimum at xy = 2.292r, that is the optimal focusing is

g=0353;/r". (3.38)
Its value is then
£ = 0.002820r4[j = 0.0177nry[; . (3.39)

Let's verify these estimations numerically. "Hook" code intended for this
purpose is very similar to "Butterfly". It simulates the motion of a longitudinally
uniform beam with Gaussian transverse distribution. The basic motion equation
used is

2]
x =7]—gx, (3.40)

where 7 is given by (3.29). Necessary mean values are always calculated as

1 2o LE( 9 ) [ (8 Y L) 949
<§>:F_(|)-§yexp(—y /2r )dy_2'([é(l—9JeXp{ [I—SJ /ZJ(I_S)3 > (3.41)

where y =r3/(1—-39) is substituted to avoid infinite limits of integration.

Consider simulation results now. It was found that the minimum emittance is
reached at g = 0.38, that is quite near the analytical estimation. The reached value
in the 2a-minimum is €=0.0079 (z = 7.15), that is twice smaller than the
analytical result (j = 1 and » = 1 every time). The results for this case are depicted
in Fig. 3.5. At lower focusing, the emittance grows in both maxima and minima.
For instance, at g = 0.20 € = 0.0168 in the 2z-minimum (z = 9.65).
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Fig. 3.5. € (red solid) and rms-size (blue dashed) of a bunch in g = 0.38.

g = 0.55 is optimal for maxima Fig. 3.6. At stronger focusing, first maxima
grow a little while far ones decrease.
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Fig. 3.6. € (red solid) and rms-size (blue dashed) of a bunch in g = 0.55.
Analytical estimate of emittance maxima (black dash-dot).

Thus the analytical estimate is improved numerically. Best emittance in 27n-
minima achieved is

£ 2 0.0079nr/} = 0.0079nr |—— (342)
1,(By)
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in focusing field

2
j eB I 1
2,, *038=5 < [—J =038———. 3.43
’ P\ 2p LBy’ r* G4
The optimal focusing for maxima is
. 2
G 20551 & (ﬁJ —oss—1 L (3.44)
r 2p L(By)" r

and the emittance in maxima is

1
~0.164/ jr=0.16 . (3.45)
#2016/ AT

The optimal focusing differs significantly for the cases of the longitudinal
inhomogeneity and the transverse one, 0.09 and 0.38 respectively. Nevertheless, it
should be mentioned that j means the peak current of a bunch in the first case,
while the current of a stationary beam in the second one. One can estimate the
"mean" current of bunch as

j 1*(2)dz
jl(z)dz '

<] >= (3.46)

This mean value is V2/2 of the peak one for a Gaussian bunch. In optimal focusing,
the emittance dilution due to the longitudinal inhomogeneity is triple bigger than
due to the transverse one, 0.023 vs. 0.0079.

3.3. Uniform beamline: combined effect

Consider the effect of the longitudinal inhomogeneity and the transverse one
in combination. As above, assume the motion of particles independent in different
slices and perfectly laminar within one slice. The beam is axially symmetric and
moves in homogeneous axially symmetric linear focusing field. As the two above
analytical estimates yielded not so exact results for the 2mn-minimum emittance,
and the dependencies of the emittance and the optimal focusing are always

€ = const - nr\/?
: (3.47)

~ J
8o = CONSE -,
¥

the goal is to find these constants numerically, but not focus on very complicated
analytical calculations. From the two above estimates one should expect the
optimal emittance value worse than in both considered cases, and the optimal
focusing intermediate between above ones.

"2D" simulation code has been developed for this purpose. It is analogous to
"Butterfly" and "Hook", but uses other equations. The basic motion equation for a
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particle at the distance x from the axis is
I 2 27
(3.48)

=———-gx=—"-gx,
I,(py) x x
and coincides with (3.40), but the expression for ; differs

”

7 = jexp(—g2 )(1 — exp(— y2 /212 )) (3.49)
Mean values for emittance evaluation are calculated as
1 00 00
<g>=——[[eoyexpl-y? /27>~ edy =
r 00
(3.50)

:%II&(—rln(l—S),—ln(l—w)x
T oo

xexp(_[sjz/z_( ‘I/ J2J d\v _1n(1—9)d9
1-9 I-y) Jl-y  1-9

y=-In(1-9),g=—-In(l-y) are substituted to avoid infinite integration limits.
The code uses the two-dimensional Gaussian distribution of particles in a bunch.

As usually, j =1 and » = 1 every time.
It was found that the optimal focusing for 2m-emittance is g = 0.13. Then the

emittance value is € =0.037 at z = 11.85 (¢ =/2gz ~1.92n) Fig. 3.7. At lower

focusing field both minima and maxima emittances increase. Focusing field
2=0.42 is matched to the bunch, that is oscillations of its size are minimal
Fig. 3.8. Simultaneously it is optimal for maxima emittances. At stronger focusing

both minima and maxima emittances increase.
0.5 —3
oa A A A A~ Al Al T
1 ) 1 ) R [ ! 1 \
[ R g ! K ! [ 1y R
40 HER) \ H ] [ i iR
[ T R T S S W | AN I O 1 B | B =)
oy v I £\ A I N A R | R |
031! I h T K I O I | Y O T B Y
[ ] 1 1] H H Il ) )
3V) iy L
‘ ' i ' H 1 / -
0.2 AVERY R T |/ TR 1
. il 0 W/ .
1 1
0.1 |
0 0
0 20 40 60 80 100
z

Fig. 3.7. € (red solid) and rms-size (blue dashed) of a bunch in g = 0.13.
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Fig. 3.8. € (red solid) and rms-size (blue dashed) of a bunch in g = 0.42.

Thus, the optimal for minima emittances focusing in this case is

. 2
g2nz0.13%@(ﬁ] —o3—~ 1 (3.51)
r 2p L) r

Then the values of emittance in the first several 2nn-minima are

I
&= 0.037nry[j =0.037nr |——. (3.52)
1,(By)’

For emittances in maxima, the optimal focusing is

. 2
2, 204821 o [ﬁj —om— L L (3.53)
r 2p L,(By)" r

Then the maxima values are

Ji
=0.2rj =02r [———. (3.54)
#2027 1,y

One can see the combined effect is stronger than both above ones separately and
the optimal focusing for it is intermediate between them.
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3.4. Nonuniform beamline: longitudinal inhomogeneity

Uniform focusing considered in the three above sections occurs extremely
rarely in real beamlines. Separate lenses are typically used to focus beams. Let's
estimate the mentioned space charge effect in this case. Consider the simplest
nonuniform beamline that consists of a thin solenoid and two equal empty spaces
before and after it Fig. 3.9.

Fig. 3.9. Motion of a charged bunch in the simplest nonuniform beamline.

As in section 3.1, consider a slice with the coordinate ¢ in a bunch with
longitudinal Gaussian distribution. The initial rms-size is 1, its derivative is 0, and
the lengths and the lens strength are chosen so that the state at the exit is the same.
As usually, j = 1. The motion equation without focusing is then

2
o xpcT) (3.55)
2x
It is useful to find its analytical solution. Its Hamiltonian
2 2
gl _SPCS) oy (3.56)

2

doesn't depend on z explicitly and, hence, is preserved. Initially # = 0, so one can
reduce the order of the equation:
12

_ 2
x——wmx:ODx':wlexp(—gz)lnx. (3.57)

2

The explicit analytical solution of this equation is not known, but the following
implicit equation can be derived:

!\/eXP( ¢)ing

The slice is matched if x'= 0 at the end of the beamline for it and the neighbours.
It is equivalent to the condition x'/x =const at the lens. Let's find a matched

(3.58)

beamline for a slice with the current j, = exp(—¢;) . Consider a neighbour slice
with the current j, = j, + &/ for this purpose. For the former slice, the half-length

of the beamline z, is bound to the size in the lens x, as
24



1t

ZO_HL/E. (3.59)

For the latter one

! ! j ds (3.60)

e e T e

This expression is equivalent to the solution of the ODE:

=nx 1 3o 20) = %902 € o 20541 Z0 - 3.61)

Assuming §j as small one can estimate x; using one step by the simplest second
order Runge-Kutta scheme known as leapfrog:

X, =x,+ f(xg +1/2f(xy,24)02,2, +1/2062)dz, (3.62)
where f{x,z) is the right part. Substituting f{x,z) one obtains

sv =3, —x = JInx, +1/ 2010, (i —Jo Fo Wi 7o Fo (3:63)

As the Hamiltonian is preserved, the derivative immediately before the lens is

X =4/J, Inx;. (3.64)
Then the condition of concordance is

& &' P odg Xg4/lnx,

A SN - ) (3.65)

X, X L JIng  Inx, —1/2

Only main terms in series expansion by 9 are kept here. The only appropriate
solution of this equation is x, =9.544162306 . In this case the integral is

J ds = 8.163821003. (3.66)
1 4/Ing
The slope immediately after the lens is

Vo In, (3.67)

X =x -2—x,.
X9
The Hamiltonian is
X
H="L—ZLnx,.
2 ) 1 (3.68)
The size at the waist after the lens is
~ 2
X = exp(— — H]. (3.69)
Ji
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The distance from the lens to the waist is

! ]l e )%1 “j‘;l ds (3.70)

T e i T

It differs from z,, so we should evaluate x; and x;" out of the waist. Use the
following substitution of the second order of approximation to expand the
expression above by 9;:

5% 5% (xl/;1 xo)
[ el | eV Tz O

Thus, the derivative at the end of the beamline (at z, from the lens) is

= 11 ( )
X Zy —Z
1 le 04 (3.72)
Substituting (3.59)-(3.71) and keeping only square term in expansion by o one
obtains

%, 0.1654852087-5
X=- - (3.73)
0

The expressions for emittance evaluation are the same as, but one should substitute

X' =X/, jo = exp(=63), 8 = exp(=¢*) — exp(~¢y). (3.74)
The emittance reaches its minimum at ¢, = 0.673, and its value (dimensionless) is

~ 3.32. Taking into account the current and the size one can estimate the minimal
emittance as

: I
£ = 0.02457\[ = 0.0245r |- (3.75)

o(BY)
The half-length of the beamline is then

zo =10.24——, (3.76)
Vi
while the lens strength is

D= 0.251£.

7

(3.77)

Let's verify this analytical estimate numerically. Code "Butterfly" has been
modified for this purpose. The difference of new code "ButterflyN" is that the
beam moves without focusing and a thin lens is added to the centre of the
beamline. Simulation was conducted in a wide range of z,. The results are shown
in Fig. 3.10.
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Fig. 3.10. Minimal € (red solid) and optimal lens strength (blue dashed)
vs. half-length of beamline.

Obviously, the optimal beamline half-length is zy~ 7.0. Then the emittance
value is €~ 0.030 and the lens strength is D~ 0.381. Note that the optimal length
(2z9) and the emittance value are quite near to ones in the case of uniform
focusing, 14.2 u 0.023 respectively. The optimal emittance varies insignificantly in
the range of half-lengths 6...15. The optimal lens strength is evaluated exactly
enough by the following expression (thombs in Fig. 3.10):

3.184

= 3.78
z,+0.7153 (3.78)
Motion through the optimal beamline is shown in Fig. 3.11.
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Fig. 3.11. € (red solid) and rms-size (blue dashed) of a bunch in a beamline with
half-length zy = 7.0 and lens strength D = 0.381.
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Fig. 3.12. € (red solid) and rms-size (blue dashed) of a bunch in a beamline with

half-length zy = 3.0 and lens strength D = 0.842.

The n-minimum here appears weakly and the bunch is overfocused, that is the
end of the beamline (and the emittance minimum) is placed after the waist. At
smaller zy the m-minimum disappears and the waist moves to the origin of the
beamline Fig. 3.12. At significantly longer z, the T-minimum appears abruptly and
shifts to the beginning of the beamline. It can even occur before the lens that is
can be obtained in empty space with no focusing Fig. 3.13. The 2zx-minimum

coincides with the waist very exactly.
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Fig. 3.13. € (red solid) and rms-size (blue dashed) of a bunch in a beamline with

half-length zy = 20.0 and lens strength D = 0.1236.
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3.5. Nonuniform beamline: transverse inhomogeneity

To obtain similar result for the case of transverse inhomogeneity code "Hook"
has been modified. The only difference of new code "HookN" is that particles
move without focusing and a thin lens of the strength D is added to the middle of
the beamline, at the distance z, from the beginning. As usually, j=1 and =1 in
all the cases. For each zy, D was optimized to obtain the minimum emittance at the
exit of the beamline. The results for a wide range of z, are depicted in Fig. 3.14. It
is clear that the optimal half-length of the beamline is zy~ 4.0. Then the emittance
at the exit is €~ 0.0144 and the lens strength is D~ 0.688. In contrast to the case of
longitudinal inhomogeneity, the minimum of emittance is pronounced. If z, lies in
the range 3.5...10 and the lens strength is optimal, the emittance value exceeds the
global optimum not so much. The optimal lens strength can be evaluated as
(thombs in Fig. 3.14)

2.966

- L (3.79)
z, +0.7174

0.16 4 —3

Fig. 3.14. Minimal € (red solid) and optimal lens strength (blue dashed) vs. half-
length of beamline.

Motion of a beam through the optimal beamline is shown in Fig. 3.15. The =n-
minimum appears abruptly, is placed not far from the 2w-one, and its value is only
a little bigger. The beam is overfocused, so that the beamline exit (and the
emittance minimum) is situated after the waist.
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Fig. 3.15. € (red solid) and rms-size (blue dashed) of a bunch in a beamline with
half-length zy = 4.0 and lens strength D = 0.688.

At shorter z, the T-minimum disappears Fig. 3.16.
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Fig. 3.16. € (red solid) and rms-size (blue dashed) of a bunch in a beamline with
half-length zy = 1.0 and lens strength D = 1.80.

At significantly longer z, the T-minimum appears clearly and is shifted to the
beginning of the beamline Fig. 3.17. It can occur even before the lens that is can be
obtained in empty space without focusing. The 2x-minimum coincides well with
the waist. The value in the former can be smaller than in the latter.
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Fig. 3.17. € (red solid) and rms-size (blue dashed) of a bunch in a beamline with
half-length zy = 20.0 and lens strength D = 0.122.

3.6. Nonuniform beamline: combined effect

Consider the combined effect in the case of non-uniform focusing now. Code
"2D" has been modified to evaluate the emittance and the parameters of the
optimal beamline. The only distinction of new code "2DN" is that particles move
without focusing and a thin lens of the strength D is added to the middle of the
beamline, at the distance z, from the beginning. As usually, j=1 and »=1. For
each given zj, D was optimized to minimize the emittance. The results are placed
in Fig. 3.18. The optimal zy= 6.0. It is located between the values obtained in the
two sections above, and closer to the former one. Then the emittance at the exit is
€~ 0.0461, and the lens strength D~ 0.445. The obtained emittance value is worse
than in both cases above. Note that the optimal beamline length (2z;) and the
emittance here are close enough to ones obtained with code "2D" for uniform
focusing, 11.85 and 0.0373 respectively. If z, lies within 5 and 11, and the lens
strength is optimal, the emittance value exceeds the optimal one not significantly.
The optimal lens strength can be evaluated as follows (thombs in Fig. 3.18)

3.118

__ o (3.80)
z, +0.8080
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Fig. 3.18. Minimal ¢ (red solid) and optimal lens strength (blue dashed)
vs. half-length of beamline.

Beam motion through the optimal beamline is depicted in Fig. 3.19. The n-
minimum appears weakly and the beam is overfocused that is the 2r-minimum is
situated after the waist.
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Fig. 3.19. € (red solid) and rms-size (blue dashed) of a bunch in a beamline with
half-length zy = 6.0 and lens strength D = 0.445.
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In shorter beamlines the m-minimum disappears and the waist moves to the

entrance Fig. 3.20.
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Fig. 3.20. € (red solid) and rms-size (blue dashed) of a bunch in a beamline with

half-length zy = 2.5 and lens strength D = 0.980.

In significantly longer beamlines m-minimum appears well and shifts to the
entrance Fig. 3.21. The 2n-one exactly coincides with the waist. The values in both

are comparable.
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Fig. 3.21. € (red solid) and rms-size (blue dashed) of a bunch in a beamline
with half-length zy = 20.0 and lens strength D = 0.1227.
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3.7. Matched focusing beamline with bunching
Bunching is frequently used in injectors, so taking it into account is of great
interest. During bunching, j in (2.11) and JN'in (2.15) are no longer constants. One

still can consider a beamline where one slice (longitudinal inhomogeneity) or
particle (transverse one) is always matched to the focusing. In this case the
focusing in the beamline is proportional to the current. The obtained linearized
equations are similar to ones used in sections 3.1 and 3.2, but their coefficients are
variable. Analytical solutions of these equations in general case are not known, but
one can use adiabatic approximation and so estimate the solution. The motion
equation for the case of longitudinal inhomogeneity is then

p J
0" =—-—-6,
e (3.81)
and its Hamiltonian is
2 .
p ](Z) 2 2
H=r—+1228 p=3§. 3.82
2 2 0P (3.82)
Use the property
dH _ oH (3.83)
dz 1074

to estimate a solution of in adiabatic approximation. If j varies slowly enough so
that Aj/j << 1 over the period of oscillation, one can approximate

J'(@)
gt L JAE) e (3.84)
oz 4x*
where a is the local relative amplitude of charge vibration. The derivative is
averaged over the period. The full derivative is then

dH [6'2 i@ 5 J ( J@) 2, i) azj:
dz Cdz 2x2 dz 4x2 (3.85)
=1Ma2 = aa'LZ)+a2—j,(Z).

dz 2x* x’ 2x?

Substituting (3.84) and
(3.85) in (3.83) one can estimate the amplitude

Do 2 7B & TO e (3.86)
X 4x a 4j(z)
It is enough to estimate emittance dilution. One should substitute the integral
nonlinear phase advance
\/7 (3.87)

L
o= ljaz cos’ ¢(z)dz
45 x
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in instead of (3.6). The total phase advance should be
L .
(pzjgdzzhc. (3.88)
0

The dependencies of j and g on z are necessary to calculate both advances. Let's
choose the exponential dependency

jocgxexp(z/L-1nv), (3.89)

where v =j/j, is the ratio of the currents at the exit and the entrance of the

beamline. Then
= ﬂj ‘/; \/— A (3.90)
X 0

exp(z/L-Inv)dz =

Inv
SO
nlnv

a8 T ot 2rleralelo 1) 2n)- 1))

- jcos ~—agu™". (3.91)

43 Jo-1 4
Hence

gocr o A(pa\/; oc v V0 = const. (3.92)

Thus, in adiabatic approximation the compensated emittance doesn't depend on
bunching. This estimation is valid only if

gl/g3/2 << 1’ (393)

that is violated frequently.
To wverify this estimation, code "Butterfly" has been modified. New code
"Butterfly]" varies the current and the focusing exponentially along the beamline.
Nonlinear equation (2.10) is solved, but not

(3.81). As usually, j=1, x=1, x"= 0 at the entrance. j and g increase by v
times at the exit regardless of the beamline length L. The emittance minima
structure turned out to be complicated enough, so a search engine for the global
minimum had to be included. The search was carried out by descent from the
nodes of a logarithmically equal grid in the given area of g and L. The step of the
grid was m,,,/n,; =1.1. The descent was performed by dual directions scheme [13]

I1.3. The initial focusing was limited g < 0.5, and the phase advance 4.5 <@ <7.9
(limits were not stiff, so the values can exceed them). The results are placed in Fig.
3.22.

The optimal beamline length decreases as 15.7/ 3\/; , while the optimal initial

focusing fluctuates within 0.08...0.11. The emittance grows as 0.0215- 3\/3 . If the

range of search is significantly widened, g<5 u 1.5<¢ <12, the result is
preserved. Evidently, it means that the 2n-minimum is global.
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Fig. 3.22. 2m-minimal emittance (triangles; red solid is 0.0215v"?), and optimal
focusing (blue dashed) and beamline length (green dash-dot) vs. current ratio.

A homogeneous in the longitudinal direction beam can't be bunched, so the
effect of transverse inhomogeneity hardly can occur separately. Thus the only
combined effect should be also considered. For numerical evaluation of the
emittance, code "2D" has been modified in the same way as described for
"Butterfly]". The results obtained with new code "2DJ" are placed in Fig. 3.23.
The initial focusing was limited g <0.5, and the phase advance 4.5<¢<7.9
(limits were not stiff).

0.1+ 16 —0.16
\
—0.12
—0.08D
—0.04
0 I I 80— I 0
4 8 12 16 20
i
Fig. 3.23. 2n-minimal emittance (triangles; red solid is 0.0349-v"%*), and optimal

focusing (blue dashed) and beamline length (green dash-dot) vs. current ratio.
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The optimal beamline length decreases as 12.7-v "%, while the optimal

initial focusing fluctuates within 0.10...0.14. The emittance increases as

0.0349 - v"* | If the range of search is significantly widened, g<5u 1.5 < ¢ <12,
the result is preserved. Seemingly, it means that the 2z-minimum is global.

3.8. Matched focusing beamline with accelerating

An accelerating section after the buncher and/or a gun can also affect the
emittance until the energy where the conditions (1.3) and (1.9) are met. To
estimate the effect let's consider a beamline with matched focusing, as in 3.7. In
the case of accelerating, focusing is to be proportional to (By)~. Then the equation
of small vibration looks as follows

oo B g J g

, (3.94)
By x’
where all the coefficients are variable. In the canonical variables it is
8=L,
Pro (3.95)
p’ = _BY %63
X
where p = Byd'. Its Hamiltonian is
2 . 2 [ 82
B T (3.96)

AT T

Use (3.83) to estimate a solution of (3.95) in adiabatic approximation. If By varies
slowly enough that is A(By) / (By) <<1 during a period of vibration, one can
approximate

oz 4
The full derivative is then

5 3.0
ey x]—Qa- (3.97)

L;—H — aa'(By) L - a*(By) L.
Iz X X

Substituting (3.97) and (3.98) in (3.83) one can estimate the relative amplitude:

(3.98)

a (ﬁY)’ ()" (3.99)

=——=axX
4By
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To estimate the emittance one should substitute the integral nonlinear phase
advance (3.87) in (3.10) instead of (3.6). The total phase advance should be (3.88).
The dependencies of By and g on z are necessary to calculate both advances. Let's
choose the exponential dependency

By cexp(z/L-Ina),g « exp(-3z/L-Ina), (3.100)

where o = (By)l / (By)o is the momenta ratio at the end and the beginning of the
beamline. Then the total phase advance is

PL i 302
Q= EI(exp(z/L~lna))_3/2dz:gﬁLL, (3.101)
x 3 x Ina
and the nonlinear part is
3na*? Ino
a? a¥?-1
Ap=— J‘exp(g(oc’y2 - 1) 3n)><
4 (3.102)

x cosz{m(o‘}/2 eXp(€<°‘_3/2 _1)/2n)_1)]dg ~ n+yIna
(Vo +1fVa 1) I

A weakly depends on o (as ~+/lna ), so it can be neglected. Then the
normalized emittance is

g, ocr'Pyoc A(pa\/?By ocaoto o =at (3.103)

The formulae above are valid only if

xBr) (3.104)
Bryfj
that is violated frequently.
To verify this estimation, code "Butterfly" has been modified. New code
"ButterflyA" varies the momentum linearly along the beamline. As usually, j =1,
By =1, x=1,x"= 0 at the entrance. By, j and g were chosen as follows:

By =1+(a—1)/L,

. 1 Jo

== 3.105
TS0 B (109
-

™)

For each slice, the following linear ODE system with variable coefficients was
solved:
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X

Py
S O A I S P/
xl - B’Y[ zx ng - (By)z (2)6 gox}

Normalized slope x, = Byx" was used to calculate the normalized emittance. Other

>

(3.106)

details are similar to code "Butterfly]". The results for 2n-minima are shown in
Fig. 3.24. The initial focusing was limited g < 0.5 and the phase advance

45 j Pe()dz = V28059 (3.107)
S<o= g(2)dz = <79. )
d Jolo +1)
0.025 — 160 — —0.2
- A |
- 0.16
> 0.12
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Fig. 3.24. 2w-minimal emittance (triangles; red solid is 0.0220-07""*°), and optimal

focusing (blue dashed) and beamline length (green dash-dot) vs. momenta ratio.

The optimal beamline length grows with o as L =11.96+ 6.05a., while the
optimal initial focusing fluctuates within 0.1...0.16. The normalized emittance

diminishes as 0.0220-0.*"*®. As in the two cases above, extension of the search
area doesn't affect the results.

Consider now the combined effect in an accelerating structure. Code "2D" has
been modified for this purpose the same way as described for "ButterflyA". The
results of new code "2DA" at the same conditions as for "ButterflyA" are depicted
in Fig. 3.25. The optimal beamline length grows with o as L =10.89 +5.03c,

0.227

while the optimal initial focusing as g =0.115-a""" . The normalized emittance

is varies weakly around ~0.035. As in the three cases above, extension of the
search area doesn't change the results.
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Fig. 3.25. 2x-minimal emittance (red solid), and optimal focusing (blue dashed)
and beamline length (green dash-dot) vs. momenta ratio.

3.9. Summary

For the convenience, the formulae for beamlines obtained in Sections 3.1 - 3.8
are collected here. The appropriate coefficients are accumulated in Table 3.1. The
2n-minimal normalized emittance at the end of an optimal beamline can be

estimated as

g, =€r ’ﬂ
1By

The length of the optimal beamline is

L= L";/ |I| .
\ 7,(Bv)°

The distributed focusing gradient in a matched beamline is

=g M
r? 1, (By)’
The lens strength in a simplest non-uniform beamline is
0
r I,y
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If the energy or the peak current is variable, all the parameters belong to the
beginning of a beamline. The listed formulae and coefficients can be also used to
estimate the initial approximation for precise simulation and optimization of a
beamline.

Table 3.1. Parameters of optimal beamlines.

Parameter Uniform beamline
Longitudinal Transverse Combined
£° 0.023 0.0079 0.037
g° 0.09 0.38 0.13
L 14.2 7.15 11.85
Nonuniform beamline
£° 0.030 0.0144 0.0461
D° 0.381 0.688 0.445
L 14.0 8.0 12.0
Distributed focusing : bunching
& 0.0215-3v 0.0349 . 0%
g 0.08...0.11 0.10...0.14
L 15.7/30 1270 0%
Distributed focusing : accelerating
£ 0.0220 - 13 0.035
g 0.1...0.16 0.115- o,
L 11.96 + 6.05a 10.89 +5.03a

4. Electron guns
4.1. Effect of longitudinal inhomogeneity in guns

A source of electrons (also protons or ions) always emits particles with quite
low energy. Thus j and hence the space charge effect are strongest in this area.
Unfortunately, the model described above doesn't work in this area due to the
following reasons:

1. Conducting electrodes ever occur nearby an emitter. Their charge
distributions depend on the one in the beam and produces fields
comparable to the ones of the beam charge. Thus the effect of electrodes
is defining near an emitter.

2. If a beam is transient (consists of bunches), then an area always exists
where its energy is low enough and the bunch length in the moving frame
is comparable or smaller than its transverse sizes. In this case coupling
between different slices is significant.
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3. The head and the tail of a bunch move in different conditions: when the
head is being born, the bunch is absent, while when the tail is being born,
the bunch has been already emitted. Moreover, during acceleration, a
lower energy bunch is situated behind the head, while a higher energy one
passes ahead of the tail. The transverse forces are different in this case due
to non-locality of interaction. Hence the gained transverse momentum
depends not only on the local current, but also on the longitudinal
coordinate in a bunch.

If the emitter is circular and the beam is stationary, the gun geometry can be
optimized so that space charge effect doesn't cause emittance dilution. Well-known
Pierce gun [14] is an example. At the same time longitudinal inhomogeneity ever
corrupts the emittance as a gun can be optimal for a given current only, and the
phase portraits of slices with different currents are distorted and rotated with
respect to the optimal one.

The trajectories of particles in a gun preserve if its voltage and current meet

Child-Langmuir law I oc U*'* (only if nonrelativistic). In this case the emittance
(not normalized!) doesn't depend on the current. The quality factor of a gun is

8/ (r\/j ) Let's determine its dependency on the voltage and the current in the

nonrelativistic case.

3/2
By = y2eU/mc? mﬁzj:ﬁoc v = const, (4.1)
o\PY

that is it depends only on the geometry (¢ and r = const). At the same time, the

brightness is / / g o \/E . If all the sizes are varied proportionally and the current

density from the emitter is preserved, & oc 7,/ oc #>,U o r*"* | so the quality factor
is

< F(BY)3/2 U3/4
oc oc = const. 4.2
A *2

The brightness in this case is proportional to x/U / >, but the increase of the

voltage and the current density is restricted by the electric strength and the
emissive ability.
As the basic scaling is derived, one should only determine the coefficient

at r\/7 in the expression for the emittance and the optimal ratio of the gun length

to the emitter radius. Another important parameter is the charge phase at the gun
exit as the further beamline should add a 2znn's complement to minimize the final
emittance.

SAM [15], a 2D steady-state code, was used to simulate guns. The phase
portraits of the beam at the exit were calculated for a set of homogeneously
emitted currents. Each result was considered as the state of the slice with the given
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current. A diode gun similar to used in [16] has been simulated first Fig. 4.1. The
emitter radius was 5 mm, the distance between the electrodes was 123 mm, while
the beam was observed at 200 mm from the cathode. The optimal current was 2 A

at 300 kV that corresponds well to the "natural" perveance.
SAN_U4.00 23-83-7004 09:44 308kvaun

Rimm )

/2L i
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Fig. 4.1. The geometry of the basic gun, red solid lines are electrodes.

The calculated beam parameters depending on the beam current are depicted
in Fig. 4.2. They were calculated by the following formulae:

x=v<x? >,

x' =< xx'> /A< x>, (4.3)
=< xt><x? > —<xx' >,
20— 8 —3
| '\.\
iy = Al
E1Zi E4 -\ / —Zg
€ .| E, % e e L £
% °] % e ¥ £
* 4 2 Y e /./ —12
] k. A e LA
Sl e N N o
] = A L~
4- 0 Lo
0 1 2 3

I, A
Fig. 4.2. Beam parameters vs. beam current: rms-size,
its derivative and emittance.
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Let's calculate the charge phase and the relative charge amplitude from these

data now. The beam size at the cathode preserves, but its homothetic size x o« N
(section 2.1), so that

& _1x
a 21 “4)
Than the initial charge vibration amplitude is
08 (4.5)
Sx:—SI@:—lxa—I = —Oz—L.
ol 2 1 ol 21
The dimensionless deviation from the homeothetic trajectory at the gun exit is
ox x of
6:;: lg_L 6[ = @:lﬁ_L’ (46)
x xol 21 o xol 21
and its derivative by the longitudinal coordinate is
o) ¥ & B 1N x O (4.7)
X X X ol xo x*al
As 88, /0l isnegative at the emitter, the significant matrix elements are
00 0o’
Co—,C'oc —,
ol o (4.8)
and the charge phase at the gun exit is
o' _x'ox
¢ = arctan —Cx — arctan| 0 x 0ol | 4.9
cyj 1 lax)
Lieg
21 xol

The quadrant should be selected so as the signs of sing and cos¢ coincide to the
ones of the numerator and the denominator respectively.
To calculate the relative charge amplitude one should compare 65/0] with

the same derivative for a beam starting at the same point with fixed initial
conditions, that is 68/ =—1/21, and 88'/6] with the latter multiplied by the

local wavenumber, that is 85'/0l =—1/21-./; /x. The root of the sum of the

squares of these ratios gives the relative amplitude:

2 , , 2
A= g@_x_l +jl 21 o' xox ) (4.10)
x ol ol x ol

The dependencies of the phase and the amplitude on the current for the mentioned
gun are shown in Fig. 4.3.
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Fig. 4.3. Charge phase and relative amplitude vs. beam current.

It is seen that the phase is almost constant within current limits from 1 to 3 A
and its value is = 2.5 = 0.8x. Thus, if an ideal uniform beamline (where the phase
advance doesn't depend on the amplitude) with the phase advance ~ 1.2x is placed
after the gun, one should expect the minimal emittance. The following questions
are still left: (i) what peak current of a bunch gives the minimum emittance in this
system, (ii) which slice should be matched to the compensation beamline, and (iii)
what is the optimal phase advance of the latter. The dependency of the
compensated emittance of a 2.2 A (peak current) Gaussian bunch on the matched
slice current and the charge phase is placed in Fig. 4.4. An ideal compensation

O = N WA WM ®B N B ©

0.5 1.0 1.5 20 25 3.0

I, A
Fig. 4.4. Compensated emittance of Gaussian bunch of 2.2 A peak current vs.
charge phase and matched current.
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beamline (equation (2.11)) with the phase advance 2n — ¢ and matched with the
given current was added after the gun. The global minimum 1.52 mm-mrad is
reached at the matched current 1.144 A and the phase advance 2n—2.49 =1.207n
in the compensation beamline. Without the beamline, the emittance due to phase
portraits fanning (pure longitudinal inhomogeneity effect) is 6.14 and the full one
(combined effect) 6.89 mm-mrad at the same peak current. The dependencies of

the emittance and the quality factor s/ \/7 (all the sizes are preserved) on the peak

current without compensation are shown in Fig. 4.5. Upper curves include slice
emittances. The non-compensated emittance is proportional to the peak current in

both cases if /,> 0.7 A. Hence 8/\/7 AT .

12 0.0012
Vs
\ 7,
-— - P
8 \ — 0.0008
— -— — / .

3 \ _ - — /
E N~ -~ -~ -
£ ; e
uE5 1 / ©

4 < / 0.0004

=L
\///
0 0

0

[

2 3

I A

Fig. 4.5. Non-compensated emittance of Gaussian bunch (solid) and 8/ \/7

(dashed) vs. peak current. Upper (red) curves include slice emittance.

Similar compensated values one can find in Fig. 4.6. The phase advance and
the matched current of an ideal compensation beamline were optimized for each
given peak current. The addition due to the slice emittances was calculated as

£, =45 +&;—¢., 4.11)

where g, and ¢, are the lower curve and the upper one in Fig. 4.5 while &; and g4

are the same in Fig. 4.6. In other words, the differences of squares of the curves in

Fig. 4.5 and Fig. 4.6 are equal. The matter is that some slices have a crossover at

the end of the beamline, so the calculated rms derivative
2o g2+ <xx’ >?

<x'7 > (4.12)

< x>?

is unrestrictedly large. Thus, a more proper method is hardly possible in this
model.
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Fig. 4.6. Compensated emittance of Gaussian bunch (solid) and 8/ \/7 (dashed)

vs. peak current. Upper (red) curves include slice emittance.

s/ ﬁ in this case almost doesn't depend on the peak current in the range

1...3 A and amounts to ~2:10* m without slice emittances and ~4-10* m with
them. As the rms size at the emitter is x = 7/2 = 2.5 mm, the quality factor is = 0.08
and =~ 0.16 respectively. The effect of the imperfection of the compensation
beamline can be estimated as ((3.6), (3.13), (3.108), Fig. 3.3 and Table 3.1)

X o3 ¢
0.023 . a o 0.27, (4.13)
where x; is the size of the matched slice at the gun exit, a is the relative amplitude
of charge vibration Fig. 4.3, and ¢ is the phase advance in the beamline. In this
case the beamline contains a thin lens (as typically x' > 0 for the matched slice at
the gun exit) and uniform focusing further. So the effect of longitudinal
inhomogeneity in the gun is about the same in a uniform beamline with the same
amplitude and phase advance. The combined effect is approximately twice
stronger that also corresponds to a uniform beamline.

Four other guns have been simulated in the same way to investigate the
influence of the gun geometry. The emitter radius was equal while the length was
varied. The electrodes were shaped to make perfect electric field. Additional
electrodes were added to the guns "Short 2" and "Long 2" to equalize their
perveance to the primary one. The optimal current in all the cases was ~ 2 A. The
plots for these guns are similar to Fig. 4.2 - Fig. 4.6 and were omitted here. The
results for all the simulated guns are placed in Table 4.1. The observation point
position is measured from the cathode. The last column considers the slice
emittances. All the calculated values are valid for the range of peak current
1..3A.
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Table 4.1. Simulated gun parameters.

Gun Length, | Observation | U, 0] : :

mm point, mm kV 8/ \/7 ’ 8/ \/7

m (slices), m

Basic | 123 200 300 |25 | 210* | 410
Short | 61.5 100 150 [ 22 | 75107 | 48107
Short2 | 61.5 100 300 |2 2.5-10* | 5-10*
Long | 246 400 850 | 2.5 | 410 |5410"
Long 2 | 246 400 300 | 3.1 | 1.2:10" | 4610

It should be mentioned that the charge phase at the gun exit varies from 2 to
3.1 only while the gun length is quadrupled. Note that the observation point is ever
placed beyond the electric field area and a beam moves through some empty space

proportional to the gun length. e/ \/7 ratios with slice emittances of all the
considered guns are almost equal, 8/ J_ =(4.740.7)-10%*m.

Thus, emittance compensation applied to an electron gun always improves
emittance several times. The expected compensated normalized emittance of a
well-designed gun with an ideal compensation beamline is

8n ~ O'er ] = O‘IVB ;’ (414)
\ 7,By \ 7By

where 7, is the emitter radius and x. is the rms beam size at the emitter. A non-
ideal optimal compensation beamline worsens this value to

g, ~045x, ! =0.225r, ! . (4.15)
\ 7By \ 4By

The charge phase advance of the compensation beamline should be 1.05...1.35x.
The compensation beamline should be matched to the 0.5...0.75 of the peak
current.

4.2. Grid effects

At least three grid effects should be taken into account:
1. Scattering on the cells (not connected to space charge directly).
2. Focusing in cells at non-optimal current.
3. Space charge inhomogeneity owing to thinning out.

Let's estimate scattering first Fig. 4.7.
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Fig. 4.7. Scattering on grid.

If U is the cathode-to-grid voltage, then the normalized transverse momentum of
scattered electrons is

p eU
%<]PF, (4.106)

and the portion of the scattered electrons is

ANV _d __U_
N @ awpl (@.17)

where W = W, /B* ~ W, -mc*/2eU is the ionization loss (see [17], Bethe formula

(1.16) and Table 1.6), W, ~2 MeV/g-em® = 2:10° eV/kg'm?; and [ is the ratio of the
area of a cell to its perimeter. Flammersfield formula [18], (25b) yields a little
smaller penetration depth. It is taken into account that (i) not more than a half of
electrons fly out the left edge (Fig. 4.7) and (ii) not more of the latter have the
momentum directed upwards, all the others can't move beyond the grid. Then the
added normalized emittance can be calculated as

€ = pe r,{ﬂ<reU v 4.18
" me* N me* | Wypl' (4.18)

For example, for cathode-grid unit Y-824 made by CPI/Eimac (the cathode
diameter 16 mm, the cathode-to-grid distance 0.2 mm, the size of a square cell
0.55mm) this value is ~2.9-10°m at the cathode-to-grid voltage 100 V.
Apparently, this effect doesn't contribute to the total emittance, but generate a very
small amount of electrons with large transverse momentum.

Let's estimate the emittance on account of focusing in cells of a grid. In a
round cell (also not a bad approximation for a square one), the flux incoming to
the grid is

A(D:nRzAE:ZnRJ.ERdz:IERdz=%, (4.19)

where R is the cell radius, AE is the field difference on the grid surfaces, and Fy is
the radial field. The gained transverse momentum of a particle is

49



p= EJ‘ERdZ’ (420)
A4

and the normalized tilt at the cell edge is

AER
X, =L = [Ed=

n T 421
mc. mecy 242U mc? e *2D)

Thus the gained emittance is

g, =q<x’ ><x?> r-AER 4
n = n =T 22
8wl2Umcz/e (4.22)

where 7 is the emitter radius. Properties < x> >=r>/4 and <x/* >= X!* /4 were

used.
For slit-like cells Fig. 4.8 that often occur in grids the appropriate formulae
are:

A® = dAE = 2[ E dz = [ E dz = AETd, (4.23)

X, =L =2 [Ed:= AEd

me. - mey 242U mc? e ’

-AEd
g, ={<x>><x*> __and (4.25)
SWIZUmcz/e

<x!? >= X!?/2 for aslit, but only a half of cells focus in the selected direction.

(4.24)

’ /I
s
/i

Fig. 4.8. Slit-like cells grid.

The field between the grid and the cathode is

TocU? = Eax P, (4.26)

The field outside the grid depends also on the gun geometry. Consider the basic
gun from Section 4.1 and assume that the matched current (AE = 0) coincides with
the optimal one. Then one can calculate the field at the grid and plot the
dependency of AE on I Fig. 4.9: dAE /dI = -0.467 MV/(m-A) with good accuracy.
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Then the normalized emittance depending on the peak current of a Gaussian bunch
can be calculated (a grid of mentioned Y-824 was taken) Fig. 4.10.
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Fig. 4.9. Field step across grid vs. current.
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Fig. 4.10. Normalized emittance vs. peak current.

The compensated emittance of the same gun grows as square root of the peak
current in the range 1...3 A (Fig. 4.6) and is e~ 3.3 — g, ~4.1 mm-'mrad at 2 A.
Thus, at peak current exceeding 2 A the grid emittance is smaller than the space
charge one. The results for other considered guns are very close to this.

Now it would be very useful to find a scaling formula for grid emittance.
Independent variables are: the emitter radius r, the peak current /, the cell size d,
and the cathode-to-grid distance D. U depends on these parameters as
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[ 2/3
Uoc(r—zj D7, (4.27)

The field on the grid on the cathode side is

IR%E
E, o £7j D'3, (4.28)
r
while on the other side
1 2/3
E, x (—2] . (4.29)
r
On the assumption that the effect of £ is dominant, the emittance is
}"1 1/3
If, on the contrary, the outside field £, determines AF, then
vt
€, o d(B] . (4.31)
As the effects of both fields are comparable, the truth lies in the middle:
1/3
€, ® 0.0l(ﬂ)—d. (4.32)

)

Coefficient 0.01 is dimensional, so one should take the values in meters and
Amperes.

Owing to thinning out a beam by the grid, the current density becomes
inhomogeneous Fig. 4.11. The effect can be considered as in Sections 2.2 and 3.2.
Assuming the motion of a slice as the principal trajectory, one can treat the motion
of an area with current as its disturbance.

r

Fig. 4.11. Thinning out beam by grid.

In contrast to Fig. 4.11, the real phenomenon is 2D and the current areas are
not concentric circles. After a slit-like grid, the motion approximates to 1D. The
areas move independently until their edges do not cross. After that, the disturbing
transverse force oscillates around zero for a given particle and the mean disturbed
momentum of the latter preserves. It is owing to crossing of more and more edges
of primary current areas. If the cells are square, crossing of the edges occur not
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simultaneously over the perimeter, but the basic phenomenon remains. Thus, the
emittance is effected by:
1. The beam size x.

The local wavenumber of charge vibration \/7 / X.

The relative amplitude of charge vibration A.
The cell size y.
The transparency of the grid v.

exxx' = x- xA(l _ﬁ)g ~ %XA(I - V)\U (4.33)

As usually, rms values are presumed: one should take y =d /4 for square cells

nhkw N

and y=d/ 242 for slitOlike ones, where d is the period of a square cells grid and
the slit width for a slit-like one. In the latter case, only a half of cells contribute to
x', so the result should be divided by V2 . So the result is

Sz%Ad(l—v j—lAd(l—v) ! :snz%Ad(l—v) ! (4.34)

8 1,(y) TPy
For the guns considered in Section 4.1 and a square-cell grid of period 0.55 mm
and the transparency 0.8, the considered effect gives the additional normalized
emittances are 0.35, 0.44, 0.64, 0.40 and 0.24 71 mm-mrad respectively. In all the
cases the effect of thinning out is much smaller than the ones of transverse
inhomogeneity and of focusing in grid cells.

5. Conclusions

1. The emittance at the end of a space charge dominated circular-symmetric
beamline can be reduced greatly if the parameters of the latter are
optimized. Emittance compensation takes place for various current
distributions of bunches and types of beam optics.

2. The compensation is strongest if the charge vibration phase advance
through a beamline is = 2x. The value of emittance increases as n in 2nn-
minima. The values of emittance in (2n+1)n-minima are ever worse than
in 2nm ones.

3. Longitudinal inhomogeneity typically stronger affects the emittance than
transverse one. The combined effect is the strongest.

4. Lumped and distributed focusing produce almost equal effects.

0.28...0.33

5. The effect weakly depends on bunching and accelerating: as v and

o35 where v and o are the bunching and accelerating coefficients.
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6. The effect of longitudinal inhomogeneity is typically strongest in electron
guns. The emittance from a gun can be improved significantly by adding
an optimal compensation beamline.

7. Focusing in the grid cells usually weakly affects the emittance. This
effect can be significant at peak currents lower than optimal one.

8. The two other effects in guns, scattering on a grid and thinning out, are
apparently negligible.
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