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1 Introduction
In considering problems of beam stability in accelerators it is impor-
tant to know the wake fields generated by bunches of charged particles
moving axially inside a metallic vacuum chamber. If the bunch is suf-
ficiently short and is relativistic then the generated wake field contains
modes of a wide frequency range. To calculate the fields it is necessary
to know the surface impedance of the chamber metal for this large
frequency range. The consideration of resistive wake fields of an axi-
ally moving relativistic line Gaussian bunch in a circular beam pipe at
room temperature is based on the normal skin boundary conditions. If
the beam pipe is at low (a few K0 ) temperature, but in normal state,
then the metal electron mean free path may exceed the skin depth and
then anomalous skin or general Reuter-Sondheimer boundary condi-
tions must be used. Such consideration was performed in [5].
The case of a superconducting beam pipe also deserves consideration.
For fields with frequencies hω > 2ε0 ( ε0 is the energy gap of the
superconductor) the surface impedance must go to that of the metal
in norma state, but at hω < 2ε0 the the surface impedance is specific.
The expressions for surface impedance in the base of BCS theory was
given in [2] for type-1 superconductors. For the extreme anomalous
limit approximation the expressions were significantly simplified.
The intention of the present paper is proceeding from general expres-
sions of [2] to derive surface impedance expressions suitable for numer-
ical computations.

2 Expression for the surface impedance
of superconductor

To calculate the surface impedance Zs(ω) of a metal in superconduct-
ing state we use the expressions derived in [1, 2] and used in [3]. Using
the notations of this works we have for the case of specular electron
reflection at the surface
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Zss(ω) = i · 8ω
c2

·
∞∫
0

dq

q2 + K(q)
(1s)

and for diffuse reflection case

Zsd(ω) = −i · 4π2ω

c2
· 1
∞∫
0

ln (1 + K(q)/q2)dq

(1d)

where

K(q) = − 3
c2hvF Λ(0)

·
∞∫
0

dR ·
1∫

−1

eiqRu−R/l(1−u2) ·I(ω,R, T ) ·du , (2)

I(ω,R, T ) = − iπ ·
ε0∫

ε0−hω

(1 − 2f(E + hω))

×(g(E) · cos(αε2)) − i sin(αε2))eiαε1 · dE

−iπ ·
∞∫

ε0

[
(1 − 2f(E + hω)) · (g(E) · cos(αε2) − i sin(αε2)) · eiαε1

−(1 − 2f(E)) · (g(E) · cos(αε1) + i sin(αε1)) · e−iαε2

]
· dE,

where

ε1 = (E2−ε2
0)

1/2, ε2 = ((E+hω)2−ε2
0)

1/2, g(E) =
E2 + ε2

0 + hωE

ε1ε2
,

α =
R

hvF
, Λ(0) =

m

ne2
, f =

1
1 + eE/kbT

, (3)

where ε0 is the energy gap at a given temperature T of superconduc-
tor, m is the effective mass, n is the electron number density, vF is
the Fermi velocity of free electrons of the metal, kb is the Boltzmann
constant. The integration over u can be easily performed:
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1∫
−1

eiqRu ·(1−u2) ·du = 4 ·F (qR), F (x) =
1
x2

·
(

sinx

x
− cos x

)
. (4)

Denoting
C =

12π
c2hvF Λ(0)

,

we can rewrite (2) as

K(q) = i · C

q

∞∫
0

F (x) · e− x
ql

×
{ ε0∫

ε0−hω

(1 − 2f(E + hω)) · (g(E) cos (αε2) − i · sin (αε2)) · eiαε1dE

+

∞∫
ε0

[
(1 − 2f(E + hω)) · (g(E) · cos (αε2) − i · sin (αε2)) · eiαε1

−(1 − 2f(E)) · (g(E) cos (αε1) + i · sin (αε1)e−iαε2)
]

dE

}
dx (5)

We denote β = 1/(hvF q), gm(E) = |g(E)| .

1. The case hω < 2ε0 .

In the region ε0 − hω < E < ε0 we have ε2
1 < 0, ε2

2 > 0 ,
so ε1 = −i|ε1|.
In the region ε0 < E we have ε2

1 > 0, ε2
2 > 0.

K(q) =
C

q

{ ε0∫
ε0−hω

(1 − 2f(E + hω))

∞∫
0

(gm(E) cos(ε2βx) + sin(ε2βx))

×e−εβx−x/qlF (x)dxdE + i

∞∫
0

[
(1 − 2f(E + hω))
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×
∞∫
0

(g(E) cos(ε2βx) − i sin(ε2βx)) · eiε1βx−x/(ql)F (x)dx

−(1 − 2f(E)) ·
∞∫
0

(g(E) cos(ε1βx) + i · sin(ε1βx))

×e−iε2βx−x/(ql) · F (x) dx
]

dE

}
. (6)

2. The case hω > 2ε0 .

In the region ε0 − hω < E < −ε0 we have ε1
2 > 0, ε2

2 > 0 .
In the region −ε0 < E < ε0 we have ε2

1 < 0, ε2
2 > 0,

so ε1 = −i|ε1|.
In the region ε0 < E we have ε2

1 > 0, ε2
2 > 0 .

We get

K(q) =
C

q

{ ε0∫
−ε0

(1 − 2f(E + hω)) ·
∞∫
0

(gm(E) cos (ε2βx) + sin (ε2βx))

×e−|ε1|βx−x/qlF (x)dxdE + i
[ −ε0∫
ε0−hω

(1 − 2f(E + hω))

×
∞∫
0

(g(E) cos (ε2βx) − i sin (ε2βx)) · eiε1βx−x/(ql)F (x)dxdE

+

∞∫
ε0

(
(1 − 2f(E + hω)) ·

∞∫
0

(g(E) cos (ε2βx) − i · sin (ε2βx))

×eiε1βx−x/(ql) ·F (x) dx−(1−2f(E)) ·
∞∫
0

(g(E) cos (ε1βx)+i ·sin (ε1βx))

×eiε2βx−x/(ql) · F (x) dx

)
dE

]}
. (7)
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In [2] only the case l → ∞ and so R/l → 0 was considered. We
consider the general case. Performing the integration over x in (6) and
(7) it is convenient to introduce the following notations:

I1 =
∫ ∞

0
cos (ε2βx)·e−|ε1|βx−x/qlF (x)dx =−A

2
+

A2 − ε2
2 + 1

4
Ta+

Aε2β

4
La,

I2 =
∫ ∞

0
sin (ε2βx)·e−|ε1|βx−x/qlF (x)dx =

ε2β

2
−Aε2β

2
Ta+

A2 − ε2
2 + 1

8
La,

where
A = |ε1|β +

1
ql

; Ta = arctan

(
2A

A2 + β2ε2
2 − 1

)
;

La = ln
(

A2 + (1 + ε2β)2

A2 + (1 − ε2β)2

)
;

and
I3 = I3r + iI3i =

∫ ∞

0
cos (ε2βx)eiε1βx−x/qlF (x)dx ,

I3r = − 1
2ql

+ I3r0(ε1, ε2) + I3r0(−ε1, ε2) ,

I3i =
ε1β

2
+ I3i0(ε1, ε2) − I3i0(−ε1, ε2) ,

I4 = I4r + iI4i =
∫ ∞

0
sin (ε2βx)eiε1βx−x/qlF (x)dx ,

I4r =
ε2β

2
+ I4r0(ε1, ε2) + I4r0(−ε1, ε2) ,

I4i = I4i0(ε1, ε2) + I4i0(−ε1, ε2) ,

where

I3r0(ε1, ε2) =
1
8
Q(ε1, ε2) · L(ε1, ε2) +

1
8
W (ε1, ε2) · T (ε1, ε2) ,

I3i0(ε1, ε2) = I4r0(ε1, ε2) =
1
16

W (ε1, ε2)·L(ε1, ε2)−1
4
Q(ε1, ε2)·T (ε1, ε2) ,

I4i0(ε1, ε2) = −1
8
Q(ε1, ε2) · L(ε1, ε2) +

1
8
W (ε1, ε2) · T (ε1, ε2) ,
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where
Q(ε1, ε2) = β(ε2 + ε1)2 ;

T (ε1, ε2) = arctan
( 2/ql
(1/ql)2 + β2(ε2 + ε1)2 − 1

)
.

W (ε1, ε2) =
1

(ql)2
+ 1 − β2(ε2 + ε1)2 ;

L(ε1, ε2) = ln
(

(1/ql)2 + (1 + β(ε2 + ε1))2

(1/ql)2 + (1 − β(ε2 + ε1))2

)
.

In this notations the expression (6) (the case hω < 2ε0) can be
rewritten as

K(q) =
C

q
·
{∫ ε0

ε0−hω
(1 − 2f(E + hω)) · (gm(E) · I1 + I2)dE+

∫ ∞

ε0

[
(1−2f(E+hω))·(I4r−g(E)I3i)+(1−2f(E))·(I3i−g(E)I4r)

]
dE.

+i · 2
∫ ∞

ε0

(f(E) − f(E + hω))(g(E)I3r + I4i)dE

}
(8)

and the expression (7) (the case hω > 2ε0 ) as

K(q) =
C

q
·
{∫ −ε0

ε0−hω
(1 − 2f(E + hω)) · (I4r − g(E)I3i)dE

+
∫ ε0

−ε0

(1 − 2f(E + hω))(gm(E)I1 + I2)dE

+
∫ ∞

ε0

(
(1−2f(E+hω))(I4r−g(E)I3i)+(1−2f(E))(I3i−g(E)I4r)

)
dE

+i
[∫ −ε0

ε0−hω
(1 − 2f(E + hω))(g(E)I3r + I4i)dE

+2
∫ ∞

ε0

(f(E) − f(E + hω))(g(E)I3r + I4i)dE
]}

. (9)
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These are our final general expressions, which can be used in numerical
computations.

It is interesting to trace how the expression for the surface im-
pedance of a metal in superconducting state Zs(ω) transforms into
that in normal state Zn(ω) when the temperature T is increased up
to the critical temperature of the superconducting transition Tc , that
is when the superconducting energy gap ε0(T → 0) → 0 . Putting
ε0 = 0 in (5) we get

K(q) =
C · hω

q
· i ·

∞∫
0

F (x) · e− x
ql
·(1+iωτ)dx

= i · αRS

l2(1 + iωτ)
· 1
t3

·
(
−t + (t2 + 1) arctan t

)
.

Here τ = l/vF is the relaxation time,

αRS =
3
2
·
(

l

δ

)2

, t =
ql

1 + iωτ
δ =

c√
2πσω

,

δ is the skin depth .
Putting this K(q) into the (1s) we get

Zs(ω) = i · 8ωl

c2
· 1
1 + iωτ

·
∞∫
0

dt

t2 + ξκ(t)
, (10)

where

ξ = i · αRS

(1 + iωτ)3
, κ(t) =

1
t3

·
(
−t + (1 + t2) arctan t

)
.

This expressions coincide with the expressions (21,40,41) of [4]. Taking
into account the relation

arctan t =
1
2i

ln
(

1 + it

1 − it

)
,
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we can rewrite (10) as

Zs(ω) = i · 8ωl

c2
·

∞∫
0

dt

t2 + iαRS
1+iωτ · KRS( it

1+iωτ )

where
KRS(s) =

1
s3

·
(

2s − (1 − s2) · ln
(

1 + s

1 − s

))

This coincide with the expressions (21, 29, 30) of [4].
In the extreme anomalous limit, when the field penetration depth

is small compared with the coherence length and with free path length
one may set α = R/hv0 = 0, ql >> 1 [2, 3]. Using the relations
( F (x) is defined by(4))

∞∫
0

F (x)dx =
π

4
, σ =

ne2l

mvF
,

and setting α = 0 in (6) and (7) we get for the case

hω < 2ε0

K(q) =
3π2σω

c2ql
·
{ 1

hω

ε0∫
ε0−hω

(1 − 2f(E + hω))gm(E)dE

+i · 2
hω

∞∫
ε0

(f(E)−f(E+hω)) ·g(E)dE
}

=
3π2σω

c2ql
·
(σ2

σ
+ i

σ1

σ

)
. (12)

and for the case
hω > 2ε0

K(q) =
3π2σω

c2ql
·
{ 1

hω

ε0∫
−ε0

(1 − 2f(E + hω))gm(E)dE+
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i· 1
hω

·
[
2

∞∫
ε0

(f(E)−f(E+hω))·g(E)dE+

−ε0∫
ε0−hω

(1−2f(E+hω))g(E)dE
]}

=
3π2σω

c2ql
·
(σ2

σ
+ i

σ1

σ

)
. (13)

The relations (12) and (13) are definitions of the functions σ2/σ and
σ1/σ for both the cases.

Inserting the expressions (12) or (13) into (1s) and performing a
simple integration we get for the case of specular reflection:

Zss =
8
9
·
(√

3
πω2l

c4σ

)1/3

· (1 + i
√

3)
(σ1/σ − iσ2/σ)1/3

=
ZNs

(σ1/σ − iσ2/σ)1/3
.

And inserting the expressions (8) or(9) into (1d) we get for the case of
diffusive reflection:

Zsd =
(√

3
πω2l

c4σ

)1/3

· (1 + i
√

3)
(σ1/σ − iσ2/σ)1/3

=
ZNd

(σ1/σ − iσ2/σ)1/3
.

Comparing ZNs and ZNd, respectively, with the expressions (44) and
(45) of [4], we see that these are just the anomalous surface impedances
of normal metal with free path length l at Tc respectively for specular
and diffusive reflections of electrons at the surface.

We can get the same expressions for ZNs and ZNd directly from
(13) in the limit ε0(T → Tc) → 0 (then we have the metal in normal
state) and

K(q) = i · 3π2σω

c2ql
. (14)

Then it follows from (13) that σ1/σ = 1, σ2/σ = 0, as it should be.
Inserting (14) into (1s) and (1d) we get, respectively, ZNs, and ZNd.
In the limit of high frequencies (hω >> ε0) the surface impedance of
the metal in superconducting state Zs(ω) approach the surface im-
pedance of the metal in normal state ZN (ω) at Tc . But ZN (ω) for
the frequencies ωτ > 1 essentially deviates from the anomalous sur-
face impedances ZNs, and ZNd. . So all the results obtained for the
so called extreme anomalous limit are applicable only for frequencies
ωτ < 1 .
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