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Abstract

The process of radiation from high-energy electron in ori-
ented single crystal is considered using the method which per-
mits inseparable consideration of both coherent and incoherent
mechanisms of photon emission. The total intensity of radiation
is calculated. The theory, where the energy loss of projectile has
to be taken into account, agrees quite satisfactory with available
CERN data. It is shown that the influence of multiple scattering
on radiation process is suppressed due to action of crystal field.
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.

Recently authors developed a new approach to analysis of pair cre-
ation by a photon in oriented crystals [1]. This approach not only
permits to consider simultaneously both the coherent and incoherent
mechanisms of pair creation by a photon but also gives insight on the
Landau-Pomeranchuk-Migdal (LPM) effect (influence of multiple scat-
tering) on the considered mechanism of pair creation. In the approach
the polarization tensor of photon was used which includes influence of
both external field and multiple scattering of electrons and positrons
in a medium [2]. In the present paper the analysis of process of radia-
tion from a high-energy electron in oriented crystal includes influence
of both an external field and the multiple scattering of electron. This
makes possible indivisible consideration of both coherent and incoher-
ent mechanisms of photon emission as well as analysis of influence of
the LPM effect on radiation process.

The properties of radiation are connected directly with details of
motion of emitting particle. The momentum transfer from a particle
to a crystal we present in a form q =< q > +qs, where < q >
is the mean value of momentum transfer calculated with averaging
over thermal(zero) vibrations of atoms in a crystal. The motion of
particle in an averaged potential of crystal, which corresponds to the
momentum transfer < q >, determines the coherent mechanism of
radiation. The term qs is attributed to the random collisions of particle
which define the incoherent radiation. Such random collisions we will
call "scattering" since < qs >= 0. If the radiation formation length
is large with respect to distances between atoms forming the axis, the
additional averaging over the atom position should be performed.

Under some generic assumptions the general theory of the coherent
radiation mechanism was developed in [3]. If the electron angle of
incidence ϑ0 (the angle between electron momentum p and the axis (or
plane)) is small ϑ0 � V0/m, where V0 is the characteristic scale of the
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potential, the field E of the axis (or plane) can be considered constant
over the pair formation length and the constant-field approximation
(magnetic bremsstrahlung limit) is valid. In this case the behavior of
radiation probability is determined by the parameter

χ =
ε

m

E

E0
, (1)

where ε is the electron energy, m is the electron mass,
E0 = m2/e = 1.32·1016 V/cm is the critical field, the system � = c = 1
is used. The very important feature of coherent radiation mechanism is
the strong enhancement of its probability at high energies (from factor
∼ 10 for main axes in crystals of heavy elements like tungsten to fac-
tor ∼ 170 for diamond) comparing with the Bethe-Heitler mechanism
which takes place in an amorphous medium. If ϑ0 � V0/m the theory
passes over to the coherent bremsstrahlung theory (see [4],[5] [6]). Side
by side with coherent mechanism the incoherent mechanism of radi-
ation is acting. In oriented crystal this mechanism changes also with
respect to an amorphous medium [7]. The details of theory and descrip-
tion of experimental study of radiation which confirms the mentioned
enhancement can be found in [6]. The study of radiation in oriented
crystals is continuing and new experiments are performed recently [8],
[9].

At high energies the multiple scattering of radiating electron (the
LPM effect) suppresses radiation probability when ε ≥ εe. In an amor-
phous medium (or in crystal in the case of random orientation) the
characteristic electron energy starting from which the LPM effect be-
comes essential is εe ∼ 2.5 TeV for heavy elements [10] and this value
is inversely proportional to the density. In the vicinity of crystalline
axis (just this region gives the crucial contribution to the Bethe-Heitler
mechanism) the local density of atoms is much higher than average one
and for heavy elements and at low temperature the gain could attain
factor ∼ 103. So in this situation the characteristic electron energy can
be ε0 ∼ 2.5 GeV and this energy is significantly larger than "threshold"
energy εt starting from which the probability of coherent radiation ex-
ceeds the incoherent one. It should be noted that the main contribution
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into the multiple scattering gives the small distance from axis where
the field of crystalline axis attains the maximal value. For the same
reason the LPM effect in oriented crystals originates in the presence of
crystal field and nonseparable from it. This means that in problem un-
der consideration we have both the dense matter with strong multiple
scattering and high field of crystalline axis.

Below we consider case ϑ0 � V0/m. Than the distance of an
electron from axis � as well as the transverse field of the axis can
be considered as constant over the formation length. For an axial
orientation of crystal the ratio of the atom density n(�) in the vicinity
of an axis to the mean atom density na is

n(x)
na

= ξ(x) =
x0

η1
e−x/η1 , ε0 =

εe
ξ(0)

, (2)

where

x0 =
1

πdnaa2
s

, η1 =
2u2

1

a2
s

, x =
�2

a2
s

, (3)

Here � is the distance from axis, u1 is the amplitude of thermal vibra-
tion, d is the mean distance between atoms forming the axis, as is the
effective screening radius of the axis potential (see Eq.(9.13) in [6])

U(x) = V0

[
ln

(
1 +

1
x+ η

)
− ln

(
1 +

1
x0 + η

)]
. (4)

The local value of parameter χ(x) (see Eq.(1)) which determines the
radiation probability in the field Eq.(4) is

χ(x) = −dU(�)
d�

ε

m3
= χs

2
√
x

(x+ η)(x+ η + 1)
, χs =

V0ε

m3as
≡ ε

εs
. (5)

The parameters of the axial potential for the ordinarily used crystals
are given in Table 9.1 in [6]. The particular calculation below will be
done for tungsten crystals studied in [8]. The relevant parameters are
given in Table 1. It is useful to compare the characteristic energy ε0
with "threshold" energy εt for which the radiation intensity in the axis
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field becomes equal to the Bethe-Maximon one. Since the maximal
value of parameter χ(x):

χm = χ(xm), xm =
1
6
(
√

1 + 16η(1 + η) − 1 − 2η), χm =
ε

εm
(6)

is small for such electron energy (εt � εm), one can use the decompo-
sition of radiation intensity over powers of χ (see Eq.(4.52) in [6]) and
carry out averaging over x. Retaining three terms of decomposition we
get

IF =
8αm2χ2

s

3x0

(
a0(η) − a1(η)χs + a2(η)χ2

s + . . .
)
, (7)

a0(η) = (1 + 2η) ln
1 + η

η
− 2,

a1(η) =
165

√
3π

64

[
1√
η
− 1√

1 + η
− 4

(√
1 + η −√

η
)3

]
,

a2(η) = 64
[
(1 + 2η)

(
1

η(1 + η)
+ 30

)
− 12(1 + 5η(1 + η)) ln

1 + η

η

]
.

The intensity of incoherent radiation in low energy region
ε ≤ εt � εm is (see Eq.(21.16) in [6] and Eq.(A.18) in Appendix A)

Iinc =
αm2

4π
ε

εe
g0

[
1 + 34.4

(
χ2 lnχ+ 2.54χ2

)]

g0 = 1 +
1
L0

[
1
18

− h

(
u2

1

a2

)]
, f =

∞∫
0

f(x)e−
x
η1
dx

η1
, (8)

where

εe =
m

16πZ2α2λ3
cnaL0

, L0 = ln(ma) +
1
2
− f(Zα),

h(z) = −1
2

[1 + (1 + z)ezEi(−z)] , a =
111Z−1/3

m
,

f(ξ) = Re [ψ(1 + iξ) − ψ(1)] =
∞∑

n=1

ξ2

n(n2 + ξ2)
, (9)
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here ψ(z) is the logarithmic derivative of the gamma function, Ei(z)
is the integral exponential function, f(ξ) is the Coulomb correction.
For χ = 0 this intensity differs from the Bethe-Maximon intensity
only by the term h(u2

1/a
2) which reflects the nongomogeneity of atom

distribution in crystal. For u1 � a one has h(u2
1/a

2) 	 −(1 + C)/2 +
ln(a/u1), C = 0.577.. and so this term characterizes the new value
of upper boundary of impact parameters u1 contributing to the value
< q2

s > instead of screening radius a in an amorphous medium.
Conserving in Eq.(7) only the main (the first) term of decompo-

sition, which corresponds to the classical radiation intensity, neglect-
ing the corrections in Eq.(8) (g0 = 1, χ = 0), using the estimate
V0 	 Zα/d and Eqs.(3), (5), we get

εt 	 3L0dm
2

2πa0(η)
= 63

L0d

a0(η)
MeV, (10)

where the distance d is taken in units 10−8 cm. Values of εt found
using this estimate for tungsten, axis < 111 >, d=2.74 ·10−8 cm are
consistent with points of intersection of coherent and incoherent inten-
sities in Fig.1 (see Table 1). For some usable crystals (axis < 111 >,
room temperature) one has from Eq.(10)

εt(C(d)) 	 0.47 GeV, εt(Si) 	 2.0 GeV, εt(Ge) 	 1.7 GeV, (11)

so this values of εt are somewhat larger than in tungsten except the
diamond very specific crystal where value of εt is close to tungsten one.

For large values of the parameter χm (ε� εm) the incoherent radi-
ation intensity is suppressed due to the action of the axis field. In this
case the local intensity of radiation can by written as (see Eq.(7.129)
in [6])

Iinc =
29Γ(1/3)
31/62430

ε

εe

αm2

χ2/3(x)

[
g0 +

1
L0

(
0.727 +

lnχ(x)
3

)]
. (12)

Here we take into account that

ln
1
γϑ1

= ln(ma) → ln(ma) − h

(
u2

1

a2

)
− f(Zα) = L0 − 1

2
− h

(
u2

1

a2

)
.

(13)
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Figure 1: The inverse radiation length in tungsten, axis < 111 > at
different temperatures T vs the electron initial energy. Curves 1 and
4 are the total effect: Lcr(ε)−1 = I(ε)/ε Eq.(18) for T = 293 K and
T = 100 K correspondingly, the curves 2 and 5 give the coherent
contribution IF (ε)/ε Eq.(25), the curves 3 and 6 give the incoherent
contribution Iinc(ε)/ε Eq.(27) at corresponding temperatures T .

Table 1. Parameters of radiation process of the tungsten crystal,
axis < 111 > for two temperatures T .

T (K) V0(eV) x0 η1 η ε0(GeV) εt(GeV) εs(GeV) εm(GeV) h

293 413 39.7 0.108 0.115 7.43 0.76 34.8 14.4 0.348
100 355 35.7 0.0401 0.0313 3.06 0.35 43.1 8.10 0.612

Averaging the function (χ(x))−2/3 and lnχ(x)(χ(x))−2/3 over x ac-
cording with Eq.(8) one can find the effective value of upper boundary
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of the transverse momentum transfer (∝ mχ
1/3
m instead of m) which

contributes to the value < q2
s >. Using the obtained results we deter-

mine the effective logarithm L by means of interpolation procedure

L = L0g, g = g0 +
1

6L0
ln

(
1 + 70χ2

m

)
. (14)

Let us introduce the local characteristic energy (see Eq.(2))

εc(x) =
εe(na)
ξ(x)g

=
ε0
g
ex/η1 , (15)

In this notations the contribution of multiple scattering into the local
intensity for small values of χm and ε/ε0 has a form (see Eq.(15) in
[11])

ILPM(x) = −αm
2

4π
ε

εc(x)

[
4πε

15εc(x)
+

64ε2

21ε2c(x)

(
ln

ε

εc(x)
+ 2.04

)]
.

(16)
Integrating this expression over x with the weight 1/x0 we get

ILPM =
αm2

4π
ε

εe
g

[
−2πεg

15ε0
+

64
63
ε2g2

ε20

(
ln
ε0
εg

− 1.71
)]

. (17)

It should be noted that found Eq.(17) has a good accuracy only for
energy much smaller (at least on one order of magnitude) than ε0 (see
discussion after Eq.(15) in [11]).

The spectral probability of radiation under the simultaneous action
of multiple scattering and an external constant field was derived in
[6] (see Eqs.(7.89) and (7.90)). Multiplying the expression by ω and
integrating over ω one obtains the total intensity of radiation I. For
further analysis and numerical calculation it is convenient to carry out
some transformations

1. Changing of variables: ν → aν/2, τ → 2t/a, (ντ → νt).

2. Turn the contour of integration over t at the angle −π/4.
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One finds after substitution t→ √
2t

I(ε) =
αm2

2π

1∫
0

ydy

1 − y

x0∫
0

dx

x0
Gr(x, y), Gr(x, y) =

∞∫
0

Fr(x, y, t)dt − r3
π

4
,

Fr(x, y, t) = Im
{
eϕ1(t)

[
r2ν

2
0(1 + ibr)ϕ2(t) + r3ϕ3(t)

]}
, br =

4χ2(x)
u2ν2

0

,

y =
ω

ε
, u =

y

1 − y
, ϕ1(t) = (i− 1)t+ br(1 + i)(ϕ2(t) − t),

ϕ2(t) =
√

2
ν0

tanh
ν0t√

2
, ϕ3(t) =

√
2ν0

sinh(
√

2ν0t)
, (18)

where

r2 = 1 + (1 − y)2, r3 = 2(1 − y), ν2
0 =

1 − y

y

ε

εc(x)
, (19)

ω is the photon energy, the function εc(x) is defined in Eq.(15) and
χ(x) is defined in Eq.(5). The expression for the spectral probability
of radiation used in the above derivation can be found from the spectral
form of Eq.(16) in [1] (dW/dy = ωdW/dε) using the standard QED
substitution rules: ε → −ε, ω → −ω, ε2dε → ω2dω and exchange
ωc(x) → 4εc(x).

The inverse radiation length in tungsten crystal (axis < 111 >)
1/Lcr(ε) = I(ε)/ε Eq.(18), well as coherent contribution 1/LF (ε) =
IF (ε)/ε Eq.(25) and incoherent contribution 1/Linc(ε) = Iinc(ε)/ε
Eq.(27) are shown in Fig.1 for two temperatures T = 100 K and
T = 293 K as a function of incident electron energy ε. In low en-
ergy region (ε ≤ 0.3 GeV) the asymptotic expressions Eqs.(7) and (8)
are valid. One can see that at temperature T = 293 K the intensity
IF (ε) is equal to Iinc(ε) at ε 	 0.4 GeV and temperature T = 100
K the intensity IF (ε) is equal to Iinc(ε) at ε 	 0.7 GeV. The same
estimates follow from comparison of Eqs.(7) and (8), see also Eq.(10).
At higher energies the intensity IF (ε) dominates while the intensity
Iinc(ε) decreases monotonically.

The inverse radiation length given in Fig.1 can be compared with
data directly only if the crystal thickness l � Lcr(ε) (thin target).
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Otherwise one has to take into account the energy loss. The
corresponding analysis is simplified essentially if l ≤ Lmin =
(max(I(ε)/ε))−1 . The radiation length Lcr(ε) varies slowly on the
electron trajectory for such thicknesses. This is because of weak de-
pendence of Lcr(ε) on energy in the region Lcr(ε) 	 Lmin and the
relatively large value of Lcr(ε) � Lmin in the region where this depen-
dence is essential but variation of energy on the thickness l is small.
For W , axis < 111 >, T = 293 K one has Lmin = 320 µm at energy
ε = 300 GeV, see Fig.1. For this situation dispersion can be neglected
(see discussion in Sec.17.5 of [6]) and energy loss equation acquires the
form

1
ε

dε

dl
= −Lcr(ε)−1 ≡ −I(ε)

ε
. (20)

In the first approximation the final energy of electron is

ε1 = ε0 exp (−l/Lcr(ε0)) , (21)

where ε0 is the initial energy. In the next approximation one has

ln
ε(l)
ε0

= −Lcr(ε0)

ε0∫
ε1

Lcr(ε)−1 dε

ε
. (22)

If the dependence of Lcr(ε)−1 on ε is enough smooth it’s possible to
substitute the function Lcr(ε)−1 by an average value with the weight
1/ε:

Lcr(ε)−1 → ε0L
cr(ε1)−1 + ε1L

cr(ε0)−1

ε0 + ε1
≡ 1
L
. (23)

Numerical test confirms this simplified procedure. Using it we find

ln
ε(l)
ε0

= −L
cr(ε0)
L

ln
ε0
ε1

= − l

L
,

∆ε
ε0

= 1− exp
(
− l

L

)
≡ l

Lef
. (24)

Enhancement of radiation length (the ratio of Bethe-Maximon ra-
diation length LBM and Lef ) in tungsten, axis < 111 >, T = 293 K is
shown in Fig.2. The curve 1 is for the target with thickness l = 200 µm,
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where the energy loss was taken into account according using the sim-
plified procedure Eq.(24). The curve 2 is for a considerably more thin-
ner target, where one can neglect the energy loss. The only available
data are from [8]. The measurement of radiation from more thin targets
is of evident interest.

Figure 2: Enhancement (the ratio LBM/Lef ) in tungsten, axis
<111>, T = 293 K. The curve 1 is for the target with thickness
l = 200 µm, where the energy loss was taken into account (accord-
ing with Eq.(24)). The curve 2 is for a considerably more thinner
target, where one can neglect the energy loss (Lef → Lcr). The data
are from [8].

In order to single out the influence of the multiple scattering (the
LPM effect) on the process under consideration, we should consider
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both the coherent and incoherent contributions. The probability of
coherent radiation is the first term (ν2

0 = 0) of the decomposition of
Eq.(18) over ν2

0 . The coherent intensity of radiation is (compare with
Eq.(17.7) in [6])

IF (ε) =

x0∫
0

I(χ)
dx

x0
. (25)

Here I(χ) is the radiation intensity in constant field (magnetic
bremsstrahlung limit, see Eqs. (4.50), (4.51) in [6]). It is convenient
to use the following representation for I(χ)

I(χ) = i
αm2

2π

λ+i∞∫
λ−i∞

(
χ2

3

)s

Γ (1 − s) Γ (3s− 1) (2s− 1)

× (s2 − s+ 2)
ds

cos πs
,

1
3
< λ < 1. (26)

The intensity of incoherent radiation is the second term (∝ ν2
0) of

the mentioned decomposition. In Appendix A the new representation
of this intensity is derived, which is suitable for both analytical and
numerical calculation:

Iinc(ε) =
αm2

60π
ε

ε0
g

x0∫
0

e−x/η1J(χ)
dx

x0
, (27)

where J(χ) is defined in Eq.(A.16).
The contribution of the LPM effect in the total intensity of radia-

tion I Eq.(18) is defined as

ILPM = I − IF − Iinc (28)

The relative contribution (negative since the LPM effect suppresses the
radiation process) ∆ = −ILPM/I is shown in Fig.3. This contribution
has the maximum ∆ 	 0.8% at ε 	 0.7 GeV for T = 293 K and
∆ 	 0.9% at ε 	 0.3 GeV for T=100 K or, in general, at ε ∼ εt. The
left part of the curves is described quite satisfactory by Eq.(17). For
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Figure 3: The relative contribution of the LPM effect ∆ (per cent) in
tungsten, axis < 111 >. Curve 1 is for T = 100 K and curve 2 is for
T = 293 K.

explanation of right part of the curves let us remind that at ε � εm
the behavior of the radiation intensity at x ∼ η1 is defined by the ratio
of the contributions to the momentum transfer of multiple scattering
and that of the external field on the formation length lf (see Eq.(21.3)
in [6])

k =
< q2

s >

< q >2
=

ϑ̇2
slf

(wlf )2
∼ ε

ε0
χ−4/3

m =
ε

ε0

(εm
ε

)4/3
,

1
LF

∼ α

lf
∼ αm2

ε
χ2/3

m =
αm2

εm
χ−1/3

m , (29)

where w is an acceleration in an external field. The linear over k
term determines the contribution into intensity of incoherent process:
1/Linc(ε � εm) ∼ k/LF (ε) ∼ αm2/(ε0χ

2/3
m ). The LPM effect is de-

fined by the next term of decomposition over k (∝ k2) and decreases
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with energy even faster than 1/Linc(ε). Moreover one has to take into
account that at ε ≥ εs the contribution of relevant region x ∼ η1 into
the total radiation intensity is small and 1/LF (ε) decreases with the
energy growth as χ−1/3

m . For such energies the main contribution gives
the region x ∼ χ

2/3
s = (ε/εs)2/3 and 1/Lcr(ε) increases until energy

ε ∼ 10εs (see Fig.1). This results in essential reduction of relative
contribution of the LPM effect ∆.

It’s instructive to compare the LPM effect in oriented crystals for
radiation and pair creation processes. The manifestation of the LPM
effect is essentially different because of existence of threshold in pair
creation process. The threshold energy ωm is relatively high (inW , axis
< 111 >, ωm ∼ 8 GeV for T = 100 K and ωm ∼ 14 GeV for T = 293
K). Below ωm the influence of field of axis is weak and the relative con-
tribution of the LPM effect attains 5.5% for T = 100 K [1]. There is no
threshold in radiation process and IF becomes larger than Iinc at much
lower energy εt and starting from this energy the influence of field of
axis suppresses strongly the LPM effect. So the energy interval in which
the LPM effect could appear is much narrower than for pair creation
and its relative contribution is less than 1% in W , axis < 111 >. Since
value of εt depends weakly on Z (Eq.(10)), εm ∝ Z−1 (Eqs.(5), (6)) and
ε0 ∝ Z−2 (Eq.(9)) the relative contribution of the LPM effect ∆ for
light elements significantly smaller. Thus, the above analysis shows
that influence of multiple scattering on basic electromagnetic processes
in oriented crystal (radiation and pair creation) is very limited espe-
cially for radiation process.
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A Appendix
New representation of the intensity of the incoherent radia-
tion in external field, asymptotic expansions

In the expression for the intensity of incoherent radiation enters
following integral over photon energy ω (see Eq.(21.21) in [6]):

J(χ) =

1∫
0

[
y2(f1(z) + f2(z)) + 2(1 − y)f2(z)

]
dy, z =

(
y

χ(1 − y)

)2/3

,

(A.1)
where y = ω/ε, the functions f1(z) and f2(z) are defined in the just
mentioned equation in [6]:

f1(z) = z4Υ(z) − 3z2Υ′(z) − z3,

f2(z) = (z4 + 3z)Υ(z) − 5z2Υ′(z) − z3, (A.2)

here Υ(z) is the Hardy function:

Υ(z) =

∞∫
0

sin
(
zt+

t3

3

)
dt . (A.3)

Introducing the variable η = y/(χ(1 − y)) we obtain

J(χ) =

∞∫
0

[
χ3η2

(1 + ηχ)2
(f1 + f2) +

2χ
(1 + ηχ)

f2

]
dη

(1 + ηχ)2

=
χ3

6
d2

dχ2
(J1(χ) + J2(χ)) +

d

dχ
(χ2J2(χ)), (A.4)

where

J1,2(χ) =

∞∫
0

f1,2(z)
dη

(1 + ηχ)2
, z = η2/3. (A.5)

Integrating Eq.(A.5) by parts we find

J1,2(χ) =
f1,2(∞)

χ
− 2

3

∞∫
0

f ′1,2(z)
η2/3dη

(1 + ηχ)
. (A.6)
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Since the integral Eq.(A.6) for separate terms of functions f ′1.2(z) di-
verges, one has to transform it to an another form. We represent the
functions f ′1,2(z) in terms of derivative of the Hardy functions

f ′1(z) = z2Υ(5)(z) − 3zΥ(4), f ′2(z) = z2Υ(5)(z) − 5zΥ(4) + 3Υ(3),
(A.7)

where we used equations

zΥ(z) = Υ′′(z) + 1, Υ(n+3)(z) = (n+ 1)Υ(n) + zΥ(n+1). (A.8)

Now we will show that
∞∫
0

η2/3f ′1,2(z)dη =
3
2

∞∫
0

z3/2f ′1,2(z)dz = 0. (A.9)

Using Eq.(A.7) and integration by parts, one can reduce all the inte-
grals in Eq.(A.9) to the form

∞∫
0

Υ′(z)
dz√
z

= Re

∞∫
0

dz√
z

∞∫
0

τ exp
(
izτ +

iτ3

3

)
dτ

=
4√
3
Re

⎛
⎝

∞∫
0

eix
2
dx

⎞
⎠

2

= 0. (A.10)

The last equation permits one to rewrite Eq.(A.6) as

J1,2(χ) =
f1,2(∞)

χ
+ i1,2(χ), i1,2(χ) = χ

∞∫
0

f ′1,2(z)
z3dz

1 + χz3/2
. (A.11)

Entering in Eq.(A.11) expression (1 + u)−1 we present as contour
integral

1
(1 + u)

=
i

2

λ+i∞∫
λ−i∞

us

sinπs
ds, u = χz3/2, −1 < λ < 0. (A.12)
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Using the standard form of the Hardy function one has

Υ(n) =
dn

dzn
Im

∞∫
0

exp
(
i

(
zτ +

τ3

3

))
dτ

= Im

∞∫
0

(iτ)n exp
(
i

(
zτ +

τ3

3

))
dτ (A.13)

Substituting in the integral in Eq.(A.11) the functions f ′1,2(z) in the
form Eqs.(A.7), (A.13) and integrating over the variables z and τ we
obtain

i1,2(χ) =
iπχ

12

λ+i∞∫
λ−i∞

(
χ√
3

)s A1,2(s)
Γ (1 + s/2)

ds

sin2(πs/2)
, (A.14)

where Γ(s) is the gamma function,

A1(s) = Γ
(

3s
2

+ 6
)

+ 3Γ
(

3s
2

+ 5
)
,

A2(s) = Γ
(

3s
2

+ 6
)

+ 5Γ
(

3s
2

+ 5
)

+ 3Γ
(

3s
2

+ 4
)
.(A.15)

Substituting Eqs.(A.14), (A.15) into Eq.(A.11) and using Eq.(A.4), we
get after change of variable s→ 2s, displacement of integration contour
and reduction of similar terms the final expression for J(χ)

J(χ) =
iπ

2

λ+i∞∫
λ−i∞

χ2s

3s

Γ(1 + 3s)
Γ(s)

R(s)
ds

sin2 πs
, −1

3
< λ < 0 (A.16)

where
R(s) = 15 + 43s + 31s2 + 28s3 + 12s4. (A.17)

In the case χ� 1, closing the integration contour on the right, one
can calculate the asymptotic series in powers of χ

J(χ) = 15 + 516χ2

(
ln

χ√
3
− C

)
+ 1893χ2 + . . .

18



	 15
[
1 − 34.4χ2

(
ln

1
χ
− 2.542

)]
(A.18)

In the case χ� 1 it is convenient to present the integral Eq.(A.16) in
the form

J(χ) =
i

2

λ+i∞∫
λ−i∞

χ2s

3s
Γ(1−s)Γ(1+3s)R(s)

ds

sinπs
, −1

3
< λ < 0 (A.19)

Closing the integration contour on the left one obtains the series over
the inverse powers of χ

J(χ) =
58πΓ(1/3)

81 · 31/6χ2/3
+

628π31/6Γ(2/3)
243χ4/3

−13
χ2

(
lnχ− 1

2
ln 3 − C +

57
52

)
+

188πΓ(1/3)
81 · 31/6χ8/3

+ . . . . (A.20)
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