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Abstract

Pair creation by a photon in an oriented crystal is considered in a
frame of the quasiclassical operator method, which includes processes
with polarized particles. Under some quite generic assumptions the
general expression is derived for the probability of pair creation of lon-
gitudinally polarized electron (positron) by circularly polarized photon
in oriented crystal. In particular cases ϑ0 � V0/m and ϑ0 � V0/m (ϑ0

is the angle of incidence, angle between the momentum of initial pho-
ton and axis (plane) of crystal, V0 is the scale of a potential of axis or
a plane relative to which the angle ϑ0 is defined) one has constant field
approximation and the coherent pair production theory correspond-
ingly. Side by side with coherent process the probability of incoherent
pair creation is calculated, which differs essentially from amorphous
one. At high energy the pair creation in oriented crystals is strongly
enhanced comparing with amorphous medium. In appendixes the inte-
gral polarization of positron is found in external field and for coherent
and incoherent mechanisms.

c©Budker Institute of Nuclear Physics SB RAS





.

1 Introduction
The study of processes with participation of polarized electrons and photons
permits to obtain the important physical information. Because of this rea-
son the experiments with use of polarized particles are performed and are
planning in many laboratories (CERN, Jefferson Nat Accl Fac, SLAC, BINP,
etc). In this paper it is shown that oriented crystal is an unique tool for work
with polarized electrons and photons.

The quasiclassical operator method developed by authors [1]-[3] is ade-
quate for consideration of the electromagnetic processes at high energy. The
probability of polarized pair creation by a circularly polarized photon has a
form (see [4], p.73, Eq.(3.12); the method is given also in [5],[6])

dw =
e2

(2π)2
d3p

ω

∫
dt2

∫
dt1R

(λ)
ss (t2)R

(λ)∗
ss (t1) exp

[
iε

ε′
(kx(t2) − kx(t1))

]
,

(1.1)
where for polarized electrons and positrons one has within the relativistic
accuracy

R
(λ)
ss =

m√
εε′

u+
s (p)eλαvs(p′) (1.2)

here kν = (ω,k) is the 4-momentum of the initial photon, pµ = (ε,p) is the
4-momentum of the created electron, k2 = 0, xµ(t) = (t, r(t)), t is the time,
and r(t) is the created electron location on a classical trajectory, kx(t) =
ωt − kr(t), ε′ = ω − ε, p′ = k − p, λ = ±1 is the circular polarization of
photon, s(s) = ±1 is the longitudinal(with respect to direction of motion)
polarization of electron (positron), we employ units such that � = c = 1.

Passing on to two-component spinors ϕ and choosing as the quantization
axis (the axis z) the direction of photon momentum k we get

e(λ) =
1√
2
(ex + iλey), eλα =

√
2
(

0 ŝλ

ŝλ 0

)
,

√
m

ε
us(p) =

√
ε+m

2ε

(
ϕs

σp
ε+mϕs

)
,

√
m

ε′
vs(p′) =

√
ε′ +m

2ε′

( σp′
ε′+mϕ−s

ϕ−s

)
. (1.3)
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Here ŝ± = (σx ± iσy)/2 is the raising (lowering) operator:

σzϕs = sϕs, ŝλϕs = δλ,−sϕ−s, ϕ+
s ŝλ = δλ,sϕ

+
−s. (1.4)

Below we will consider the small angle approximation (the vector p is
directed nearly along the vector k, just this configuration yields the main
contribution into the process probability) and will retain only the main terms
in the decomposition over 1/γ (γ = ε/m is the Lorentz factor). Within this
accuracy one obtains√

m

ε
us(p) =

1√
2

(
ϕs[

s
(
1 − m

ε

)
+ σϑ

]
ϕs

)
,√

m

ε′
vs(p′) =

1√
2

( − [s (1 − m
ε′
)

+ ε
ε′ σϑ

]
ϕ−s

ϕ−s

)
, (1.5)

where ϑ = v−n = v⊥,v = v(t) is the electron velocity, v⊥ is the component
of electron velocity perpendicular to the vector n = k/ω. Let us note that
ϑ′ = v′ − n = p′/ε′ − n = (n − v)ε/ε′, ϑ′γ′ = ϑγ.

Using the relations

ϕ+
s σϑϕs = 0, ϕ+

−sσϑϕs = ϑx + isϑy ≡ ϑ(s), ϕ+
s ŝλϕ−s = δλ,sδλ,s,

ϕ+
s ŝλσϑϕ−s = δλ,sϕ

+
−sσϑϕ−s = ϑ(λ)δλ,sδλ,−s,

ϕ+
s σϑŝλϕ−s = δλ,sϕ

+
s σϑϕs = ϑ(λ)δλ,sδλ,−s, (1.6)

we find within the adopted accuracy

R
(λ)
ss =

1√
2

[mω
εε′

δλ,sδλ,s − ϑ(λ)
(
δλ,sδλ,−s +

ε

ε′
δλ,sδλ,−s

)]
. (1.7)

Taking advantage of relation δ2λ,s = δλ,s = (1+ξ)/2, where ξ = λs, we obtain

R
(λ)
ss (t2)R

(λ)∗
ss (t1) =

m2

8ε2−ε2+

{
ω2(1 + ξ−)(1 + ξ+)

+γ2ϑ
(λ)
2 ϑ

(λ)∗
1

[
ε2+(1 − ξ−)(1 + ξ+) + ε2−(1 + ξ−)(1 − ξ+)

]}
. (1.8)

Here for visualization we have written ε = ε− for the electron energy, ε′ = ε+
for the positron energy, ξ− = λs, ξ+ = λs for description of electron and
positron polarization correspondingly, ϑ2,1 ≡ ϑ(t2,1),

ϑ
(λ)
2 ϑ

(λ)∗
1 = (ϑx(t2) + iλϑy(t2))(ϑx(t1)− iλϑy(t1)) = ϑ2ϑ1 − iλ(n(ϑ2 ×ϑ1)).

(1.9)
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Substituting Eqs.(1.8), (1.9) into Eq.(1.1) one obtains the completely dif-
ferential probability of pair creation for circularly polarized photon and lon-
gitudinally polarized electron and positron. The above analysis shows that
in the situation under consideration the derivation with direct calculation
of matrix element is very simple comparing with the standard procedure
(with calculation of traces for polarized particles). This is in consequence of
Eq.(1.6).

It follows from Eqs.(1.7), (1.8) that in the case when the energy of one
of particles is essentially larger than other particle energy, then together
with energy the polarization of photon is transmitted to this particle. This
conclusion can be obtained immediately from Eqs.(1.3), (1.4) if one neglects
the angle ϑ in the wave function Eq.(1.5) for the particle with large energy
and reserves it in the wave function for the particle with small energy only.
Then either one wave function or another becomes proportional to either
ϕs or ϕ−s. In this case the polarization of particle (see Eq.(1.4) is defined
uniquely. If in this case in addition the angles ϑ� 1/γ contribute mainly (ϑ
is the angle between momenta of initial photon and created particle), then
one can neglect the terms in Eqs.(1.7), (1.8) with the same polarizations
of created particles. Then in Eq.(1.8) only one term remains which defines
uniquely the polarizations of both particles. This fact agrees with helicity
conservation rule in electromagnetic processes. This situation is realized in
the process of pair creation by a photon in an external field for κ� 1 [4], as
well as for the same process under strong influence of the LPM effect [11].

Summing in Eq.(1.8) over the polarizations of created electron ξ− and
omitting the term (v(ϑ1 × ϑ2)) which vanishes at integration over the
azimuthal angle of created pair we get∑

ξ−

R
(λ)
ss (t2)R

(λ)∗
ss (t1) (1.10)

=
m2

4ε2−ε2+

{
ω2(1 + ξ+) + γ2ϑ2ϑ1

[
ε2+(1 + ξ+) + ε2−(1 − ξ+)

]}
.

The cross process of emission of photon with energy ω by an electron with
high energy ε in oriented crystal was considered recently by authors [12]. It
is evident that this process possesses the similar properties in the case when
the photon takes away an essential part of electron energy (ε′ = ε− ω � ε).
The explicit expression for the transformed combination R(λ)

ss (t2)R
(λ)∗
ss (t1) in

Eq.(1.8) can be found using the standard substitutions:

ε− → ε′, ε+ → −ε, ω → −ω, λ→ −λ,
s→ −ζ, s→ ζ′, ξ+ → ξ, ξ− → −ξ′. (1.11)
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As a result we find

R
(λ)∗
ζ′ζ (t2)R

(λ)
ζ′ζ(t1) =

m2

8ε′2ε2

{
ω2(1 + ξ)(1 − ξ′) (1.12)

+γ2(ϑ1ϑ2 + iλ(v(ϑ1 × ϑ2))
[
ε2(1 + ξ)(1 + ξ′) + ε′2(1 − ξ)(1 − ξ′)

]}
,

where ξ = λζ, ξ′ = λζ′. Substituting Eq.(1.12) into the formula for the
probability of photon emission (see e.g.[4], p.63, Eq.(2.27)) one obtains the
completely differential probability of radiation of circularly polarized photon
from longitudinally polarized electron in the case when the final electron has
longitudinal polarization. Summing in Eq.(1.12) over polarizations of final
electron ζ′ and omitting the term (v(ϑ1 ×ϑ2)) which vanishes at integration
over angles of emitted photon we arrive to Eq.(1.8) of [12].

It should be noted that while the terms depending on angles in Eqs.(1.8)
and (1.12) describe the spin correlations arising from helicity conservation
rule, the spin correlations in terms ∝ ω2 describes by rule of conservation of
projection of angular momentum on the direction of motion at zero angles.
This explains absence of the term with (1 − ξ−)(1 − ξ+) in Eq.(1.8) and the
term with (1 − ξ)(1 + ξ′) in Eq.(1.12).

It should be noted that a few different spin correlations are known in an
external field. But after averaging over directions of crystal field only the
longitudinal polarization considered here survives.

2 General approach to pair creation in oriented
crystal

The theory of high-energy electron radiation and electron-positron pair cre-
ation in oriented crystals was developed in [7]-[8], and given in [4]. In these
publications the process radiation from electron and pair creation by a pho-
ton was considered for unpolarized particles. Since the expression for the pair
creation probability has the same structure as Eqs.(1.8), (1.11) below we use
systematically the methods of mentioned papers to obtain the characteristics
of pair creation of longitudinally polarized electron (positron) by a circularly
polarized photon.

Let ϑ0 be the photon angle of incidence with respect of a chosen axis
of crystal and V0 be the scale of the corresponding continuous potential of
the axis. For ϑ0 � (V0/ε)1/2 ≡ ϑc, created particles are moving high above
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the potential barrier, and can be described in terms of rectilinear trajectory.
In rest frame of a crystal there is only an electric field of axis E. In frame
moving with a relativistic velocity v = nv (n = k/ω, k2 = ω2 − k2 = 0)
along the photon direction momentum, a magnetic field H = γv(E×v) arises
(γv = (1 − v2)−1/2 � 1) and, as it is well known, that resultant field in this
frame can be represented with relativistic accuracy in the form of plane waves
with frequencies γv|q‖|v(q‖ = qn).

The periodic crystal potential U(r) can be presented as the Fourier series
(see e.g.[4], Sec.8 )

U(r) =
∑
q
G(q)e−iqr, (2.1)

where q = 2π(n1, n2, n3)/l; l is the lattice constant.
The equivalent photon flux averaged over time and over transverse coor-

dinates is the sum of partial contributions Jq. The later quantity has the
form

Jq = −n
γv

4πe2
|G(q)|2
|q‖| q2

⊥ (2.2)

where q⊥ = q−n(qn). In the interaction region, the transverse size of which
is of the order λc = 1/m, and the longitudinal size is the process formation
length, which is of the order 2π/γvq‖ in the center mass frame of the incident
and equivalent photons, there are Nq � 2πλ2

c |Jq/γvq‖| photons. The effective
strength of interaction is characterized by the parameter

αNph = α
∑
q
Nq =

∑
q

|G(q)|2
m2|q‖|2 q2

⊥ (2.3)

This parameter is purely classical (it does not contain Planck’s constant �)
and always arises in problems with electromagnetic interaction in external
field. For αNph � 1 the external field can be taken into account in pertur-
bation theory, while for αNph � 1 one has the constant field limit as it is
known from the theory of interaction of photon with the plane wave field (see
e.g.[9]). For estimates one can assume |G(q)| ∼ V0, q‖ ∼ q⊥ϑ0, in which case

αNph ∼
(

V0

mϑ0

)2

. (2.4)

Therefore for ϑ0 � V0/m ≡ ϑv the constant field approximation is applicable
while for ϑ0 � V0/m the perturbation theory is valid, the first approximation
of which is the coherent pair production theory (see e.g. [10]).
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In a crystal one have to integrate over pair creation points. Substituting
Eq.(1.11) into Eq.(1.1) we find for the probability of creation of longitudinally
polarized positron by a circularly polarized photon

dwξ+ =
αm2

(2π)2ω
d3p+

2ε−ε+

∫
d3r0
V

×
∫
dt1

∫
dt2e

iAp

[
ϕp1(ξ+) − 1

4
γ2 (v1 − v2)

2
ϕp2(ξ+)

]
,

Ap =
m2ω

2ε+ε−

t2∫
t1

[
1 + γ2ϑ2(t)

]
dt,

ϕp1(ξ+) = 1 + ξ+
ω

ε+
, ϕp2(ξ+) = (1 + ξ+)

ε+
ε−

+ (1 − ξ+)
ε−
ε+
, (2.5)

where α = e2 = 1/137, the vector ϑ is defined in Eq.(1.5), V is the volume
of the crystal, p+ is the momentum of the positron in the creation point
r0. Corresponding, the probability of creation of longitudinally polarized
electron by a circularly polarized photon is

dwξ− =
αm2

(2π)2ω
d3p−
2ε−ε+

∫
d3r0
V

×
∫
dt1

∫
dt2e

iAp

[
ϕe1(ξ−) − 1

4
γ2 (v1 − v2)

2
ϕe2(ξ−)

]
,

ϕe1(ξ−) = 1 + ξ−
ω

ε−
, ϕe2(ξ−) = (1 − ξ−)

ε+
ε−

+ (1 + ξ−)
ε−
ε+
. (2.6)

From Eq.(2.5) one can find polarization of created positron

ζ+ = ζpλv, ζp =
dwξ+=1 − dwξ+=−1

dwξ+=1 + dwξ+=−1
(2.7)

In the limiting case ε+ � ε− it follows from Eq.(2.7) that ζp → 1.
The particle velocity can be presented in a form v(t) = v0 +∆v(t), where

v0 is the average velocity. If ϑ0 � ϑc, we find ∆v(t) using the rectilinear
trajectory approximation for the potential Eq.(2.1)

∆v(t) = −1
ε

∑ G(q)
q‖

q⊥ exp[−i(q‖t+ qr)], (2.8)

where q‖ = (qn), q⊥ = q − n(qn) (for detail see Eqs.(3.27)-(3.31) in
[4]). Substituting Eq.(2.8) into Eq.(2.5) and performing integration over
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u = n − v0 (d3p � ε2dεdu) and passing to the variables t, τ : t1 = t − τ ,
t2 = t+ τ , we obtain after simple calculations the general expression for the
probability of creation of longitudinally polarized positron by a circularly
polarized photon

dWξ+ ≡ dwξ+

dt
=
iαm2

4πω2
dε+

∫
d3r0
V

∫
dτ

τ + i0

[
ϕp1(ξ+) + ϕp2(ξ+)

×
(∑

q

G(q)
mq‖

q⊥ sin(q‖τ)eiqr0

)2 ]
eiAp1 , (2.9)

where

Ap1 =
m2ωτ

ε−ε+

⎡
⎣1 +

∑
q,q′

G(q)G(q′)
m2q‖q′‖

(q⊥q′
⊥)Ψ(q‖, q′‖, τ) exp[−i(q + q′)r0]

⎤
⎦

Ψ(q‖, q′‖, τ) =
sin(q‖ + q′‖)τ

(q‖ + q′‖)τ
− sin(q‖τ)

q‖τ

sin(q′‖τ)

q′‖τ
. (2.10)

3 Pair creation for ϑ0 � V0/m

(constant field limit and corrections to it)
The behavior of probability Eq.(2.9) for various entry angles and energies is
determined by the dependence on these parameters of the phase Ap1 given
Eq.(2.10). Here we consider the axial case for ϑ0 � V0/m ≡ ϑv. The
direction of crystal axis we take as z−axis of the coordinate system. The
order of magnitude of the double sum in Ap1 is (G/m)2(q⊥/q‖)2Ψ(q‖, q′‖, τ).
For the vector q lying in the plane (x, y) we introduce notation qt, for such
vectors one has qz = 0 and the quantities in Eq.(2.10) can be estimated in
the following way:

G(q) ∼ V0, q⊥ ∼ 1/a, q‖ ∼ ϑ0/a, (3.1)

where a is the size of the region of action of the continuous potential. For
all remaining vectors q⊥ ∼ q‖ ∼ 1/a. Then the contribution to the sum of
the terms with qz 
= 0 will be ∼ (V0/m)2Ψ ≤ (V0/m)2. Since (V0/m)2 � 1
this contribution can be neglected. Thus, we keep in the sum only terms
with qt for which its value is ∼ (V0/mϑ0)2Ψ. The large value of the phase
Ap1 leads to an exponential suppression of probability dWξ+ . Therefore the
characteristic value of the variable τ in the integral Eq.(2.10) (which have the
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meaning of the formation time (length) of the process) will be adjusted in a
such way that the large factor (V0/mϑ0)2 will be compensated by the function
Ψ(q‖, q′‖, τ), i.e. for small entry angles the contribution gives region where
q‖τ � 1. Expanding the phase Ap1 correspondingly we find an approximate
expression for ϑ0 � ϑv

Ap1 � m2ωτ

ε−ε+

{
1 − τ2

3

∑
qt,q′

t

G(qt)G(q′
t)

(qtq′
t)

m2
exp [−i(qt + q′

t)�]

×
[
1 − τ2

10

(
(nqt)

2 + (nq′
t)

2 +
2
3
(nqt)(nq′

t)
)]}

, (3.2)

here � = r0t. We can rewrite Eq.(3.2) in the terms of the average potential
of atomic string U(�) =

∑
qt

G(qt) exp(−iqt�):

Ap1 =
m2ωτ

ε−ε+

{
1 +

τ2

3
b2τ2 +

τ4

15

[
(b(n∇)2b) +

1
3
((n∇)b)2

]}
, (3.3)

where b = ∇U(�)/m, ∇ = ∂/∂�. For the pre-exponential factor in Eq.(2.9)
we find

[. . .] � ϕp1(ξ+) − ϕp2(ξ+)τ2

[
b2 +

τ2

3
(b(n∇)b)

]
(3.4)

Taking the integral over τ we obtain the spectral probability for
ϑ0 � V0/m.

dWF
ξ+

(ε+) =
αm2dε+

2
√

3πω2

∫
d2�

S

{
R0(λ) − (b(n∇)2b)

3b4 R1(λ)

− λ

30b4

[
((n∇)b)2 + 3(b(n∇)2b)

]
R2(λ)

}
, (3.5)

where

R0(λ) = ϕp2(ξ+)K2/3(λ) + ϕp1(ξ+)

∞∫
λ

K1/3(y)dy,

R1(λ) = ϕp2(ξ+)
(
K2/3(λ) − 2

3λ
K1/3(λ)

)
,

R2(λ) = ϕp1(ξ+)
(
K1/3(λ) − 4

3λ
K2/3(λ)

)

−ϕp2(ξ+)
(

4
λ
K2/3(λ) −

(
1 +

16
9λ2

)
K1/3(λ)

)
, (3.6)
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here λ =
2m2ω

3ε−ε+|b| , Kν(λ) is the modified Bessel function (McDonald’s func-

tion). Since the expression for dWF
ξ+

is independent of z, it follows that∫
d3r0/V → ∫

d2�/s, where S is the transverse cross section area per axis.
The term in Eq.(3.5) with R0(λ) represent the spectral probability in the con-
stant field limit. The other terms are the correction proportional ϑ2

0 arising
due to nonhomogeneity of field in crystal.

If the potential U(�) can be assumed to be axially symmetric, we put
U = U(�2) and one can integrate over angles of vector �. We obtain

dWF
ξ+

(ε+) =
αm2dε+

2
√

3πω2

x0∫
0

dx

x0

{
R0(λ) − 1

6

(
mϑ0

V0

)2
[
xg′′ + 2g′

xg3
R1(λ)

− λ

20g4x2

(
2x2g′2 + g2 + 14gg′x+ 6x2gg′′

)
R2(λ)

]}
, (3.7)

where we have gone over to the new variable x = �2/a2
s, x ≤ x0, x

−1
0 =

πa2
sdna = πa2

s/S, as is the effective screening radius of the potential of the
string, na is the density of atoms in a crystal, d is the average distance
between atoms of a chain forming the axis. The notation U ′(x) = −V0g(x)
is used in Eq.(3.7) and

λ =
2ω2

3ε−ε+κ(x)
, κs =

V0ω

m3as
, κ(x) = −dU

d�

ω

m3
= 2κs

√
xg(x). (3.8)

For specific calculation we use the following expression for the potential of
axis:

U(x) = V0

[
ln
(

1 +
1

x+ η

)
− ln

(
1 +

1
x0 + η

)]
, g(x) =

1
(x+ η)(x + η + 1)

.

(3.9)
For estimates one can put V0 � Ze2/d, η � 2u2

1/a
2
s ≡ η1, where Z is the

charge of the nucleus, u1 is the amplitude of thermal vibrations, but actually
the parameters of potential were determined by means of a fitting procedure
using the potential Eq.(2.1) (table of parameters for different crystals is given
in Sec.9 of [4]). The function κ(x) vanishes at x = 0 as a result of thermal
vibrations and reaches a maximum at

x = xm =
1
6

{
[1 + 16η(1 + η)]1/2 − 1 − 2η

}
(3.10)

and then fall off as x−3/2. It should be noted, that for all crystals η � 1 and
in this case xm � η and κ(xm) ≡ κm � κs/

√
η.
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In Fig.1 the spectral probability of coherent pair creation dwξ+/dy in
tungsten, T=293 K, axis < 111 > is given. The calculation was performed
using Eq.(3.7) with termR0(λ) only (the corrections∝ ϑ2

0 were omitted). The
sum of curves at the indicated energy gives unpolarized case. At energies
ω = 100 GeV and ω = 250 GeV the coherent process dominates over the
Bethe-Heitler mechanism.

Figure 1: The spectral probability of pair creation dwF
ξ+
/dy, the curves 1 and

2 are for energy ω = 22 GeV, the curves 3 and 4 are for energy ω = 100 GeV,
the curves 5 and 6 are for energy ω = 250 GeV. The curves 1, 3 and 5 are for
ξ = 1, and the curves 2, 4 and 6 are for ξ = −1.

Let us consider the case of small values of parameter κ. In the constant
field approximation (the term with R0(λ) in Eq.(3.7)) in the probability
dWF

ξ+
(ε+) one can substitute the asymptotic of McDonald’s functions Kν(λ)

at λ � 1. After this one obtains using the Laplace method in integration
over the transverse coordinate x

dWF
ξ+

(ε+)

dε+
=

√
3αm2

4ω2x0

[
ε+
ω

(1 + ξ+) +
ε2−
ω2

]
κ

3/2
m√−κ′′m

exp
(
− 2ω2

3ε−ε+κm

)
,

(3.11)
where κm = κ(xm), κ′′m = κ′′(xm). For unpolarized particle this result
coincides with Eq.(12.14) of [4]. If κm � 1 one can integrate Eq.(3.11) also
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using the Laplace method. The integral probability of polarized pair creation
is

WF
ξ+

=
9αm2

64x0ω

√
π

2
κ2

m√−κ′′m
exp

(
− 8

3κm

)(
1 +

2
3
ξ+

)
. (3.12)

At relatively low photon energies where the parameter κm is small

κm � κs√
η
� κs√

η1
=

ωV0√
2m3u1

≡ κ1√
2

(3.13)

and the main contribution to e+e− pair creation gives the incoherent (Bethe-
Heitler) mechanism. The influence of effective crystalline fields on incoherent
processes is discussed in [4], Sections 7, 21, but the polarization effects were
not included.

In the case where the influence of effective crystalline field is weak
(κ1 � 1), the cross section acquires the correction of the order κ2

1 (we proceed
as in Sec.21.4 in [4] but taking into account polarization):

σp(ξ+) =
1
2
(
σp + ξ+σξ+

)
, (3.14)

where

σp =
28Z2α3

9m2

[(
1 +

396
1225

κ2

)
Lu − 1

42
− 1789

6125
κ2

]
,

σξ+ =
4Z2α3

3m2

[(
1 +

32
75
κ2

)
Lu − 1

6
− 439

1125
κ2

]
, (3.15)

Lu = L0 − h

(
u2

1

a2

)
, L0 = ln(ma) +

1
2
− f(Zα), a = 111Z−1/3λc.

Here λc is the electron Compton wavelength, κ2 is the mean value of κ2(�) for
the atomic density na(�) = exp(−�2/2u2

1)/2πu
2
1, the function h(u2

1/a
2) re-

flects a nonhomogeneity of atomic distribution in crystal, the function f(Zα)
represents the Coulomb corrections:

κ2 =
∫
κ2(�)na(�)d2� =

∞∫
0

e−x/η1

η1
κ2(x)dx, η1 =

2u2
1

a2
s

f(ξ) = Re [ψ(1 + iξ) − ψ(1)] = ξ2
∞∑

n=1

1
n(n2 + ξ2)

, (3.16)
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where ψ(ξ) is the logarithmic derivative of the gamma function, Ei(−x) is
the exponential integral function. It is seen from Eq.(3.15) that in a weak
field limit (κ1 � 1) in the logarithmic approximation the integral positron
polarization is ζ+ = ζC � 3/7.

The probability of coherent pair creation becomes comparable with the
Bethe-Maximon probability at κm ∼ 1. In this situation Eq.(3.12) still has
quite satisfactory accuracy (error< 15%), while Eq.(3.15) becomes inapplica-
ble. The relative contribution of the LPM effect to the total probability of
pair creation by a photon was found recently in [14]. This contribution has
the maximum about 5% at κm ∼ 1 for heavy elements. In this paper we
neglect the LPM effect. The differential cross section of incoherent pair cre-
ation in the effective crystalline field for polarized particles in the logarithmic
approximation for an arbitrary photon energy can be presented in a form

dσp(ξ+)
dy

=
2Z2α3

15m2
L(κ1)

∞∫
0

exp
(
− x

η1

)
f(x, y, ξ+)

dx

η1
,

L(κ1) = Lu +
ln(1 + κ1)

3
, (3.17)

where

f(x, y, ξ+) = (1 + ξ+)f1(x, y) +
[
y2(1 + ξ+) + (1 − y)2(1 − ξ+)

]
f2(x, y).

(3.18)
Here

f1(x, y) = z4Υ(z) − 3z2Υ′(z) − z3, f2(x, y) = (z4 + 3z)Υ(z)− 5z2Υ′(z) − z3,

z = z(x, y) = [κ(x)y(1 − y)]−2/3 , y =
ε+
ω
, (3.19)

where the function κ(x) is defined in Eq.(3.8). Here Υ(z) is the Hardy func-
tion

Υ(z) =

∞∫
0

sin
(
zτ +

τ3

3

)
. (3.20)

When the influence of axis field on the incoherent process is weak (κ1 � 1,
z � 1), one can use decomposition (see Appendix D, Eq.(D.3))

Υ(z) � 1
z

+
2
z4

+
40
z7
, f1(z) � 5 +

64
z3
, f2(z) � 10 +

86
z3
. (3.21)

Substituting this decomposition in Eq.(3.17) and integrating over y we obtain
within the logarithmic accuracy Eq.(3.15).
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Integrating Eq.(3.17) over the positron energy we find for the cross sec-
tions contained in Eq.(3.14) -

σp =
4Z2α3

15m2
Lp(κm)

1∫
0

dy

∞∫
0

exp
(
− x

η1

)[
f1(x, y) + 2y2f2(x, y)

] dx
η1
,

σξ+ =
4Z2α3

15m2
Lξ+(κm)

1∫
0

dy

∞∫
0

exp
(
− x

η1

)
f1(x, y)

dx

η1
(3.22)

Here we introduced the functions Lp(κm) and Lξ+(κm) which refined the
logarithmic approximation Eq.(3.17) for κ1 ≤ 1 and for κ1 � 1. These
functions are obtained by means of interpolation procedure ([14]):

Lp(κm) = Lu − 1
42

+
1
3

ln
6 − 3κ2

m + 3κ3
m

6 + κ2
m

,

Lξ+(κm) = Lu − 1
6

+
1
3

ln
9 − 6κ2

m + 6κ3
m

9 + 2κ2
m

(3.23)

In Fig.2 the integral probability of pair creation by a photon in tungsten,
axis < 111 >, T = 100 K as function of photon energy is shown. The

Figure 2: The integral probability of pair creation by a photon in tungsten,
axis < 111 >, T = 100 K as function of photon energy. The curve 1 is
incoherent contribution, the curve 2 is coherent contribution the curve 3 is
their sum giving the total probability.
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curve 1 is the incoherent and the curve 2 is the coherent contribution while
the curve 3 is their sum giving the total probability. In low energy region
the LPM effect diminishes slightly the total probability (see [14]). In this
region the incoherent contribution dominates, these contributions are equal
at ω � 12 GeV. At higher energies the coherent contribution dominates
achieving maximum at ω � 1.2 TeV, while the incoherent contribution aims
for zero.

In Fig.3 the positron polarization vs relative positron energy ε/ω is given:
the curve 1 for ω = 12 GeV, the curve 2 for ω = 22 GeV, the curve 3 for
ω = 100 GeV. Both coherent and incoherent contributions are taken into
account. It is seen that shown dependence is approximately universal. When
ε/ω → 0 the positron polarization is tending to the Coulomb limit ζC = −1/3
since in this limit the coherent contribution is negligible. In the limit ε/ω → 1
the polarization ξ+ → 1 because of helicity transfer, which is common for
both coherent and incoherent contributions.

Figure 3: The positron polarization vs relative positron energy ε/ω in tung-
sten, axis < 111 >, T = 100 K. The curve 1 for ω = 12 GeV, the curve 2
for ω = 22 GeV, the curve 3 for ω = 100 GeV. Both coherent and incoherent
contributions are taken into account.

In Fig.4 the integral positron polarization ξ+ as a function of photon
energy ω is shown. Both coherent and incoherent contributions are taken
into account. At ω → 0 this is is the Coulomb limit ζC = 3(1−1/7Lu)/7 (Lu

is defined in Eq.(3.15)). At intermediate energies the shown dependence is
the result of interplay of the coherent and the incoherent contributions, while
in the high energy region we see the behavior of the coherent contribution.
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Figure 4: The integral positron polarization ξ+ as a function of photon energy
ω.

Now we turn to the situation when the photon energy is very high and
influence of crystalline field becomes very strong (κ1 � 1). In this case we
have (see Appendix B) for Eq.(3.14) (σp is given in Eq.(21.34) in [4])

σp � 8Z2α3

25m2

Γ3(1/3)
32/3Γ(2/3)κ−2/3Lp(κm) � 3.23

Z2α3L(κ1)

m2κ
2/3
1

,

σξ+ � 1.54Z2α3

m2
κ−4/3Lξ+(κm) � 3.95

Z2α3L(κ1)

m2κ
4/3
1

, (3.24)

where the average κs is defined in Eq.(3.16). It should be noted that the
asymptotic expansion of σξ+ at κ1 � 1 becomes valid only for very large
values of κ1 when the ratio σξ+/σp is very small. This is the consequence of
specific form of the next term of decomposition of σξ+ = σ

(1)
ξ+

+ σ
(2)
ξ+

+ . . . .

The term σ
(1)
ξ+

(Eq.(3.24)) is calculated in Appendix C. The next term σ
(2)
ξ+

has a form

σ
(2)
ξ+

=
Z2α3

m2

A(lnκ1 +B)
κ2

1

Lξ+(κm). (3.25)

For example, for tungsten crystal, axis < 111 >, T= 100 K, the obtained in
numerical calculation values of the coefficients are A � 10, B � −1.7.

In the region κs � 1 (the constant field approximation is valid if
κ

1/3
s ϑ0/ϑv � 1) the integral probability of coherent pair creation (the terms
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∝ ξ+ are calculated in Appendix B , the integral probability for the unpolar-
ized case is given in Eq.(12.16) of [4]) is

WF
p (ξ+) = c0

αV0

mx0asκ
1/3
s

[
lnκs +B1(η)

+
21
20
ξ+

(
1 − c1

κ
2/3
s

(ln κs + c2)
)]

, (3.26)

where (see Appendix B, Eq.(B.5))

c0 =
5
7π

31/6Γ3(2/3)
21/3Γ(1/3)

� 0.201, c1 =
27/3π

319/6

Γ(1/3)
Γ3(2/3)

� 0.527,

c2 = ln 2 − ln 3
2

− C +
3
2
� 1.067; β =

η

1 + η
, (3.27)

B1(η) = −0.374− 3.975β2/3

(
1 +

8
15
β +

7
18
β2

)
+ β

(
3
2

+
9
8
β +

13
14
β2

)
.

When κs = u1κ1/as � 1 the contribution of incoherent process is very small
and can be neglected (see Eq.(21.35) of [4]):

W incoh
p

WF
p

≤ 10−2Zα ln(mu1κ
1/3
1 )

κ
1/3
1 lnκs

. (3.28)

4 Modified theory of coherent pair production
The estimates of double sum in the phase Ap1 made at the beginning of
previous section: ∼ (ϑv/ϑ0)2Ψ remain valid also for ϑ0 ≥ ϑv, except that now
the factor in the double sum is (ϑv/ϑ0)2 ≤ 1, so that the values |q‖τ | ≥ 1
contribute. We consider first the limiting case ϑ0 � ϑv, then this factor
is small and exp(iAp1) can be expanded accordingly. As a result Eq.(2.9)
acquires the form

dW coh
ξ+

(ω) =
iαm2dε+

4πω2

∞∫
−∞

dτ

τ + i0
exp

(
i
m2ωτ

εε′

)∑
q,q′

G(q)G(q′)
m2q‖q′‖

(q⊥q′
⊥)

×
[
ϕp2(ξ+) sin(q‖τ) sin(q′‖τ) + iϕp1(ξ+)

m2ωτ

ε−ε+
Ψ(q‖, q′‖, τ)

]

×
∫
d3r

V
exp[−i(q + q′)r]. (4.1)
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The integration over coordinate r in Eq.(4.1) is elementary and gives δq+q′,0,
after which the sum over q′ and the integrals over τ are easily calculated by
means of the theory of residues. Finally we obtain

dW coh
ξ+

(ω) =
αdε+
8ω2

∑
q

|G(q)|2 q2
⊥
q2‖

[
ϕp2(ξ+) (4.2)

+ ϕp1(ξ+)
2m2ω

ε−ε+q2‖

(
|q‖| − m2ω

2ε−ε+

)]
ϑ

(
|q‖| − m2ω

2ε−ε+

)
.

For unpolarized photons (ξ+ = 0) Eq.(4.2) coincides with the result of stan-
dard theory of coherent pair production (CPP), see e.g. [10].

In the case κs � 1 (κs is defined in Eq.(3.8)), one can obtain from
general expression Eq.(2.10) the expression for spectral distribution, the re-
gion of applicability of which is broader than that of standard CPP the-
ory. For this purpose it is necessary to take into account that the phase
Ap1 Eq.(2.10) has for q‖ + q′‖ 
= 0 terms of the order (ϑv/ϑ0)3/κ′s and
(ϑv/ϑ0)4/κ

′2
s (κ′s = κsε−ε+/ω2) which can be small even for ϑ0 ≤ ϑv if

κs � 1. Therefore, assuming that these contributions are small, we carry out
the corresponding expansion of exp(iAp1), while the term with q‖ + q′‖ = 0 in
the double sum in Ap1 will be retained in the exponent. As a result we obtain
an expression which coincides in the form with Eq.(4.1) where we must make
the substitution

exp
(
i
m2ωτ

ε−ε+

)
→ exp

(
i
m2

∗ωτ
ε−ε+

)
, m2

∗ = m2
(
1 +

�

2

)
. (4.3)

Above the parameter � (Eq.(2.1)) has the form

�

2
=

1
m2

∑
q,q′

G(q)G(q′)
q⊥q′

⊥
q‖q′‖

[
δq‖+q′

‖,0 − δq‖,0δq′
‖,0

]
=

∑
q,q‖ �=0

|G(q)|2q2
⊥

m2q2‖
,

(4.4)

and in the term
sin(q‖ + q′‖)τ

(q‖ + q′‖)τ
it is necessary to assume that q‖ + q′‖ 
= 0. The

remaining calculations are carried out in the same way as in the transition
from Eq.(4.1) to Eq.(4.2). The final result can be presented in a form

dWmcoh
ξ+

=
αdy

8ω

∑
q

|G(q)|2 q2
⊥
q2‖

[
y

1 − y
(1 + ξ+) +

1 − y

y
(1 − ξ+)

+
8(y + ξ+)
(2 + �)y

τ

τ0

(
1 − τ

τ0

)]
ϑ(τ0 − τ), (4.5)
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where

τ0 =
4ω|q‖|

m2(2 + �)
, τ =

1
y(1 − y)

, τmin = 4. (4.6)

In derivation of Eq.(4.5) the higher order terms over τ�/τ0(2+�) are omitted.
Equation (4.5) is not more complicated than Eq.(4.2) but has a significantly
broader range of applicability.

The spectral distributions Eqs.(4.2) and (4.5) can be much higher than
the Bethe-Heitler pair production distribution for small angles of incidence
ϑ0 with respect to selected axis. For the case ϑ0 � 1 the quantity q‖ can be
represented as

q‖ � 2π
d
m+ qtnt. (4.7)

The main contribution to the sum in Eqs.(4.2) and (4.5) for small ϑ0 is given
by q with m = 0, then

q‖ �
(

2π
f
k cosϕ+

2π
h
l sinϕ

)
ϑ0, (4.8)

where f and h are the characteristic periods of the potential in the plane
transverse to the considered axis, ϕ is the angle of the projection n onto this
plane with respect to one of the planes containing the selected axis, k and l
are integers.

Let us consider the spectral distribution of pair production in the extreme
limit when the parameter s = 2ω|q‖|min/m

2 ∼ ωϑ0/m
2as � 1. In this

case the maximum of distribution is attained at such values of ϑ0 where the
standard CPP becomes inapplicable. Bearing in mind that if s � 1 and
ϑ0 ∼ V0/m than κs ∼ s � 1, we can conveniently use the modified theory
of CPP. Utilization of the modified theory for these values of s and � gives
the exact position of maximum of the spectral distribution (in region where
τ ∼ τ0) and the value of the total probability within logarithmic accuracy
(ln s� 1).

The direction of the vector nt in Eq.(4.7) can be selected in a such way
that the spectral distribution given by Eq.(4.5) has a sharp maximum near
the end of the spectrum at ym(1 − ym) = (2 + �)/2s with relatively narrow
(in terms 1/s) width ∆y ∼ (1 + �/2)/s(

dWξ+

dy

)
max

=
α�|q‖|min

4(2 + �)

(
1 + ξ+ +

1 − ξ+
τ2
0

)
, τ0 =

2s
2 + �

. (4.9)

It is seen that the maximum of the spectral distribution with the opposite
helicity (ξ+ = −1) is suppressed as 1/τ2

0 . At τ > τ0 one have to take into
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account the next modes of q‖ (see Eq.(4.7)). In this part of spectrum the
suppression of the probability with opposite helicity is more strong, so the
created positrons have nearly complete longitudinal polarization.

Bearing in mind that ∆y ∼ (2 + �)/2s we find that for ξ+ = 1

dN+

dt
∼ ∆y

(
dWξ+

dy

)
max

∼ α�m2

8ω
∼ �

Lrad

εe

ω
, (4.10)

where Lrad is the radiation length in a corresponding amorphous medium,
εe = m(16πZ2α2naλ

3
cL0)−1, L0 = ln(183Z−1/3 − f(Zα)), the function

f(Zα)) is defined in Eq.(3.16), N+ is the number of created positrons, for
tungsten one has εe � 2.5 TeV. Thus, the above analysis shows that the
considered mechanism of creation of longitudinally polarized positrons is es-
pecially effective because there is a gain both in the monochromaticity and
the total yield of polarized positrons with the energy ε+ � ω.

5 Conclusion
It is shown above that at high energy in the process of production of electron-
positron pair with longitudinally polarized particles by the circularly polar-
ized photon in an oriented crystal the phenomenon of helicity transfer takes
place in the case when the final particle takes away nearly all energy of the
photon. This is true in the constant field limit ϑ0 � V0/m as well as in the
coherent pair production region ϑ0 > V0/m.

In crossing channel: the radiation from longitudinally polarized high en-
ergy electrons in oriented crystals is circularly polarized (ξ(2) → 1) near the
end of spectrum [12] also in both regions. This is once more the particular
case of helicity transfer.

So, the oriented crystal is a very effective device for helicity transfer from
a photon to electron or positron and back from an electron to photon. Near
the end of spectrum this is nearly 100% effect.
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A Appendix
Integral polarization of positron in constant field,
asymptotic

It is instructive that from the expression for R0(λ) (Eqs.(3.7), (3.6)) one
can find integral degree of positron longitudinal polarization in an external
field characterized by parameter κ for any ω: this is ratio of coefficient at ξ+
and the rest part which enters in the probability for unpolarized particles

ζ =
F1

F
, F1 =

1∫
0

dy

y

⎡
⎢⎣
(

y

1 − y
− 1

)
K2/3(λ) +

∞∫
ξ

K1/3(z)dz

⎤
⎥⎦ , ξ =

2
3κy(1 − y)

,

F =

1∫
0

dy

⎡
⎢⎣
(

y

1 − y
+

1 − y

y

)
K2/3(λ) +

∞∫
ξ

K1/3(z)dz

⎤
⎥⎦ , (A.1)

where y = ε+/ω. This result follows also from Eq.(3.70) [4]. The integrand in
the first term of F1 is antisymmetric at substitution y ↔ (1− y) and because
of this doesn’t contributes into integral polarization.

Let us find the asymptotic values of ζ. At κ� 1 it is convenient to write
the function F1 in the form

F1 =

1∫
0

dy

y

∞∫
a/(4y(1−y))

K1/3(z)dz =

∞∫
1

dx√
x(x − 1)

∞∫
ax

K1/3(z)dz, (A.2)

where a = 8/3κ, x = 1/(4y(1 − y)). In the limit a � 1 one can use the
standard expansion of K1/3(z) for z � 1 and the last integral in Eq.(A.2)
becomes ∞∫

ax

K1/3(z)dz �
√
π

2

∞∫
ax

e−z

√
z
dz �

√
π

2
e−ax

√
ax
. (A.3)

Taking the integral over x we find

F1 � π√
2a
e−a, (A.4)

while the function F Eq.(A.1) in this terms (see Eq.(3.58) in [4]) is

F � 3π
2
√

2a
e−a. (A.5)
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So, we find

κ� 1, ζ =
2
3

(A.6)

In the limit κ� 1 we present the integral F1 as

F1 =

1∫
0

dy

y

∞∫
a/4y(1−y)

K1/3(z)dz = F
(1)
1 + F

(2)
1 , a� 1, y0 � 1,

a

y0
� 1,

F
(1)
1 =

1∫
y0

dy

y

∞∫
a/4y(1−y)

K1/3(z)dz �
1∫

y0

dy

y

∞∫
0

K1/3(z)dz = ln
(

1
y0

)
π√
3
,

F
(2)
1 =

y0∫
0

dy

y

∞∫
a/4y(1−y)

K1/3(z)dz �
y0∫
0

dy

y

∞∫
a/4y

K1/3(z) dz

=

∞∫
a/4y0

ds

s

∞∫
s

K1/3(z) dz � − ln
(

a

4y0

)
π√
3

+

∞∫
0

ln sK1/3(s) ds

=
π√
3

[
− ln

(
a

4y0

)
+

1
2

(
ψ

(
1
3

)
+ ψ

(
2
3

))
+ ln 2

]
, (A.7)

where ψ(x) is the logarithmic derivative of the gamma function. In cal-
culation of F (2)

1 we substitute the variable s = a/4y and than performed
integration by parts. Finally we have for F1 in the limit κ� 1

F1 =
π√
3

(
ln

κ√
3
− C

)
. (A.8)

Using the two first terms of decomposition of total probability of pair creation
(see footnote at p.86 in [4]) we obtain for integral probability of polarized pair
creation:

WM (ξ+) =
αm2

2ω

[
Dκ2/3 − 2

3
+
ξ+
3

(
ln

κ√
3
− C

)]
, (A.9)

where

D =
5Γ(5/6)(2/3)1/3

14Γ(7/6)
= 0.37961. (A.10)

So we have for integral degree of longitudinal polarization of created positrons

ζ(κ) =
lnκ− 1.126

1.139κ2/3 − 2
. (A.11)
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B Appendix
Coherent integral polarization term in a crystal at κs � 1

Here we consider situation when the value of parameter κ(x) on the
boundary of cell is small: κ(x0) � 2κs/x

3/2
0 � 1 and one can extend the

integration interval over x up to infinity. The term ∝ ξ+ in the integral
probability contains the integral (see Appendix A, Eq.(A.2))

Fax =

∞∫
0

dx

1∫
0

dy

y

∞∫
g

K1/3(z)dz, a(x) =
8

3κ(x)
� 4(x+ 1)

√
x

3κs
, (B.1)

where g = a(x)/(4y(1 − y)) The integration interval over x we split into two
parts

1. x ≥ xc, 2. x ≤ xc,

where κ3/2
s � xc � 1. In the first interval we have

F (1)
ax �

∞∫
xc

dx

1∫
0

dy

y

⎡
⎢⎣

∞∫
g1(x)

K1/3(z)dz −
√
x

3κsy(1 − y)
K1/3 (g1(x))

⎤
⎥⎦

=

⎡
⎣ ∞∫

0

dx−
xc∫
0

dx

⎤
⎦ 1∫

0

dy

y

∞∫
g1(x)

K1/3(z)dz − 2
3

1∫
0

dy

y

∞∫
g1(xc)

K1/3(z)dz,

= F (11)
ax + F (12)

ax + F (13)
ax , (B.2)

where g1(x) = x3/2/(3κsy(1 − y)). In the first integral over x : F
(11)
ax =

∞∫
0

dx . . . we reverse the integration order, introduce the variable s = g1(x)

and integrate over s by parts. We get

F (11)
ax = (3κs)2/3

1∫
0

[y(1 − y)]2/3 dy

y

∞∫
0

s2/3K1/3(s)ds =
35/3

24/3

Γ3(2/3)
Γ(1/3)

κ2/3
s .

(B.3)
In calculation of integrals over y in the second interval over x, as well as in
remaining integrals in Eq.(B.2) we use the results of previous Appendix. We
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have

F (2)
ax + F (12)

ax + F (13)
ax = − π√

3

⎡
⎣ xc∫

0

(
ln

1 + x

x

)
dx+

2
3

(
ln

2κs√
3x3

c

− C

)⎤⎦
� − 2π

3
√

3

(
ln

2κs√
3
− C +

3
2

)
. (B.4)

Adding Eq.(B.3) and Eq.(B.4) we find

Fax = cκ2/3
s

[
1 − c1

κ
2/3
s

(lnκs + c2)
]
,

c =
35/3

24/3

Γ3(2/3)
Γ(1/3)

� 2.295280... ,

c1 =
4π21/3

27 · 31/6

Γ(1/3)
Γ3(2/3)

� 0.526820... ,

c2 = ln 2 − ln 3
2

− C +
3
2
� 1.066625... (B.5)

C Appendix
Incoherent integral polarization term in crystal at κ1 � 1

At integration over y the term containing f2(x, y) in Eq.(3.18) vanishes
due to symmetry of integrand at y ↔ 1− y so the integral polarization term
(containing ξ+) is

Finc =

∞∫
0

e−x/η1
dx

η1

1∫
0

f1(x, y)dy, (C.1)

Let us consider the integral

F1 =

1∫
0

f1(x, y)dy = 2

1/2∫
0

f1(z(x, y))dy, z = [κy(1 − y)]−2/3, (C.2)

where f1(z) is defined in Eq.(3.19). Using the differential equation for Hardy
function Eq.(D.6) we can represent f1(z) in the form

f1(z) = z3Υ′′(z) − 3z2Υ′(z). (C.3)
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Let us split the integration interval in Eq.(C.2) into two parts

1. 0 ≤ y ≤ y0, 2. y0 ≤ y ≤ 1/2; κ−1 � y0 � 1.

In the first interval z � (κy)−2/3 and the corresponding integral is

F
(1)
1 =

3
κ

∞∫
z0

(
z3Υ′′(z) − 3z2Υ′(z)

) dz

z5/2

=
3
κ

⎡
⎣ ∞∫

0

dz −
z0∫
0

dz

⎤
⎦(√zΥ′′(z) − 3√

z
Υ′(z)

)
, z0 = (κy0)−2/3 � 1.(C.4)

Now we turn to the first integral
∞∫
0

(√
zΥ′′(z) − 3√

z
Υ′(z)

)
dz = −7

2

∞∫
0

Υ′(z)
dz√
z
. (C.5)

Using the representation Eq.(3.20) we get
∞∫
0

Υ′(z)
dz√
z

=

∞∫
0

dz√
z

∞∫
0

τ cos
(
zτ +

τ3

3

)
dτ = 2

∞∫
0

dx

∞∫
0

τ cos
(
x2τ +

τ3

3

)
dτ

= 2

∞∫
0

dx

∞∫
0

√
τ cos

(
x2 +

τ3

3

)
dτ =

4√
3

∞∫
0

dy

∞∫
0

dx cos(x2 + y2)

=
2π√

3

∞∫
0

r cos(r2)dr =
π√
3

∞∫
0

cos sds = 0. (C.6)

The second integral in Eq.(C.4) is
z0∫
0

(√
zΥ′′(z) − 3√

z
Υ′(z)

)
dz �

z0∫
0

(√
zΥ′′(0) − 3√

z
Υ′(0)

)
dz

=
2
3
z
3/2
0 − 6z1/2

0 Υ′(0). (C.7)

In the second interval y0 ≤ y ≤ 1/2 the variable z � 1 than the integral in
Eq.(C.2) is

F
(2)
1 � −2

1/2∫
y0

[
1

κ2y2(1 − y)2
+

3Υ′(0)
κ4/3y4/3(1 − y)4/3

]
dy. (C.8)

28



In the first term (∝ κ−2) we retain only the main term ∝ 1/y0 and in the
second term we carry out the integration by parts. We find

F
(2)
1 � − 2

κ2y0
− 18Υ′(0)

κ4/3y
1/3
0

+
18 · 25/3Υ′(0)

κ4/3
− 24Υ′(0)

κ4/3

1/2∫
0

dy

y1/3(1 − y)7/3
.

(C.9)
Substituting Eq.(C.5)-Eq.(C.7) into Eq.(C.4) and combining the result with
Eq.(C.9) we obtain

F1 = F
(1)
1 + F

(2)
1 � 24Υ′(0)

κ4/3

(
3 · 2−1/3 − b1

)
,

b1 =

1/2∫
0

dy

y1/3(1 − y)7/3
= 1.86775.., F1 � 5.7838

κ4/3
. (C.10)

Integrating in Eq.(C.1) over s = x/η1 (κ(s) � κ1

√
2s/(1 + s)) and using the

numerical value of the integral

2−2/3

∞∫
0

e−ss−2/3(1 + s)4/3 = 2.561.., (C.11)

we find

σξ+ � 3.95
Z2α3L(κ1)

m2κ
4/3
1

. (C.12)
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D Appendix
The Hardy function

The Hardy function

Υ(z) =

∞∫
0

sin
(
zτ +

τ3

3

)
dτ (D.1)

is encountered in the theory of electromagnetic processes in an external field.
At z � 1 the decomposition of Υ(z) is

Υ(z) =
1

32/3

∞∑
0

(−31/3z)k

k!
Γ
(
k + 1

3

)
cos

(
k + 1

3
π

)

=
Γ(1/3)
2 · 32/3

+
Γ(2/3)
2 · 31/3

z − z2

2
+ ..., (D.2)

and Υ(0) = 0.643950.., Υ′(0) = 0.469447...
At z � 1 there is asymptotic series of Υ(z) over 1/z3:

Υ(z) =
1
z

∞∑
0

(3k)!
k!

1
(3z3)k

=
1
z

(
1 +

2
z3

+
40
z6

+
2240
z9

+ ...

)
. (D.3)

For calculation it is convenient to use the following representation of the
Hardy function and its derivative

Υ(z) =

∞∫
0

sin

(√
3

2
zτ +

π

6

)
exp

(
−zτ

2
− τ3

3

)
dτ,

Υ′(z) =

∞∫
0

cos

(√
3

2
zτ +

π

6

)
exp

(
−zτ

2
− τ3

3

)
τdτ. (D.4)

It can be obtained using the expression

Υ(z) = Im

∞∫
0

exp
(
i

(
zτ +

τ3

3

))
dτ (D.5)

after a turn of integration line by the angle π/6.
The Hardy function satisfies the equation

Υ′′(z) − zΥ(z) = −1. (D.6)
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