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Abstract

We study the beam breakup instability of the dipole coherent os-
cillations of the relativistic positron bunch interacting with initially
unperturbed electron cloud. We assume a special distribution of the
linear density of positrons along the bunch which enables the calcula-
tions of analytic solutions of the linearized equations of motion of the
cloud electrons. With these assumptions equations describing centroid
beam breakup oscillations of the cloud and of the bunch can be solved
taking into account effects of the cloud pinching and associated BNS
damping. Although the BNS damping does not eliminate the electron
cloud instability of coherent oscillations of the bunch, it changes the
dependencies of the coherent oscillation amplitudes on the time from
the quasi-exponential to the power function ones.

c©Budker Institute of Nuclear Physics SB RAS



.

1 Introduction
Positron, or proton beams can produce in the vacuum chambers of stor-
age rings big amounts of secondary low energy electrons. The space charge
fields of the beam focus these electrons towards the closed orbit of the beam.
Typical filling patterns of the beam by its bunches do not provide stability
conditions for oscillations of these electrons relative the beam closed orbit.
As a result, secondary electrons leave the beam after being passed by several
beam bunches. However, if the electron production rate is large enough, this
phenomenon can result in collections near the closed orbit of electron clouds.
One or, more gaps in the filling pattern of the beam usually serve to clean
the orbit from these clouds. So that to the next turn the beam particles
produce a fresh cloud. The space charge fields of these clouds perturb the
oscillations of the beam particles resulting in the electron cloud instability.
This manifold phenomenon can manifest itself through the instabilities of
either incoherent or coherent oscillations of the beam. In particular, the au-
thors of Ref.[1] have suggested to explain the observed blowups of transverse
positron bunch sizes in electron-positron factories KEKB and PEP-II (see,
e.g. in Refs.[2] and [3]) as a result of some head-tail singlebunch dipole in-
stability due to interactions of the beam bunches with the electron clouds.
Till now several candidates are considered as a driving head-tail instability to
explain particular effects. Although weak solenoidal magnetic fields increase
the threshold currents of electron cloud instability [4], it still does not al-
low, for instance, the high-current operations of KEKB with small distances
between the neighbor bunches in the positron beam.

General descriptions of coupled oscillations of a single bunch in the beam
and of the cloud encounters heavy mathematical difficulties. Very frequently
these calculations are simplified employing the rigid bunch model where co-
herent oscillations of the bunch and of the cloud are described as the oscil-
lations of their centroids (for example, in Refs.[1] and [5]). However, even
in this approximation the resulting equations describing the coupling of even
dipole coherent oscillations of the bunch and of the cloud still are very com-
plicated for their direct analytic solutions. We can point out at least two
important features embarrassing such calculations.
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First, in most realistic cases the linear density of the bunch is a smooth
function of the longitudinal distance in the bunch (z). Usually, it means that
the frequencies of the oscillations of the cloud electrons (Ωc ) vary during the
bunch passage. As a result, the equations describing the motions of electrons
enable their analytic solutions only in special cases. The simplest case, when
the bunch linear density is a rectangular function of z was studied in many
details in e.g. Refs.[1] and [6]. In this model, the frequencies Ωc are con-
stant. So that the frequency spreads of the cloud electrons can appear only
due to nonlinear dependencies of the bunch space charge fields on transverse
coordinates. The frequencies Ωc of the cloud electrons interacting with the
bunch having a smooth linear density vary between zero and the maximum
value corresponding to that of the linear density. In this case, the values Ωc

are distributed within relevant frequency interval even for linear dependen-
cies of the bunch space charge forces on the transverse electron positions.
An example of the calculations taking into account smooth variations of the
bunch linear density was given in Ref.[5]. However, due to several incorrect-
ness in the calculations and assumptions (see, e.g. in Ref.[7]) this paper gives
wrong predictions for both initial and asymptotic behavior of the amplitudes
of coherent oscillations of the bunch.

Second, during the bunch passage the electron cloud tends to be pinched
near the closed orbit. Generally, this pinching increases the space charge fields
of the electron cloud and results in the variations of the betatron tune shifts
of the bunch particles along the bunch. If the cloud pinching is strong, that
can result in the BNS damping (see, e.g. in Ref.[8]) of coherent oscillations
of the bunch and affect the asymptotic behavior of the amplitudes of these
oscillations.

In this paper we study stability of the linear dipole betatron oscillations
of a positron bunch in the electron cloud within the framework of the rigid
bunch model and assuming the beam breakup regime. For this reason, we
neglect in our calculations the longitudinal mobility of particles (positrons
and electrons). We also assume that at a given position s on the closed
orbit of positrons the unperturbed electron cloud is prepared by preceding
bunches of the beam. Coherent oscillations of the bunch are described by
the local centroids which depend both on the time and on the distance along
the bunch. We assume that the oscillations of the electron cloud are excited
by the oscillations of the bunch uniformly along the closed orbit. We shall
use a special smooth model expression for the linear density of the bunch
which enables exact solutions to the linearized equations of motion of the
cloud electrons.

Although such an approach gives a limiting view on the problem, it en-
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ables one to simplify the required calculations and to study the specific fea-
tures of the development of dipole singlebunch oscillations in many details.
For the bunches in a storage ring the beam breakup approximation may hold
well, if the frequency shifts of the coherent oscillations substantially exceed
the frequency of the synchrotron oscillations of particles. This approach gives
also adequate description of coherent fluctuations of the bunch in the case,
when these fluctuations are generated with the average frequency substan-
tially exceeding the frequency of the synchrotron oscillations of the particles.

We shall ignore the interactions of bunches in the beam. Partially, this
is based on the expectation that the main contribution to the singlebunch
interaction give the electrons in the close vicinity of the bunch. Due to
strong overfocusing of these electrons by the space charge fields of the bunch
to the time when the next bunch arrives at the perturbed cloud the most of
such electrons are removed to deep peripheral regions of the bunch, or out
of the vacuum chamber of the ring. For this reason and in agreement with
observations in e.g. positron storage ring of KEKB, we may expect that the
multibunch instabilities are depressed as compared to the singlebunch ones.

We simplify our calculations assuming that the cloud electrons are not
affected by external fields during the bunch passage. For example, that may
occur in straight sections of the ring. In the straight sections containing the
solenoidal fields (say, of the strength B) these calculations will give correct
results provided that the bunch length (σs) is small:

χ =
eBσs

mc2
� 1. (1)

Here, e is the charge of the electron, m is its mass and c is the speed of
light. The condition in Eq.(1) holds well for typical parameters of B-factories
except maybe the interaction point. For example, if we take B = 50 G and
σs = 5 mm, we obtain χ � 0.015. However, for a bunch which is 100 times
longer (e.g. σs = 50 cm) the parameter χ increase up to χ � 1.5. In the last
case, the cloud centroid equations should take into account the perturbations
of electrons by the magnetic fields of the solenoids.

2 Oscillations of the cloud centroids
We study the linear coherent oscillations of the cloud and of the bunch.
Correspondingly, the forces in all equations of motion will be calculated in
the linear approximation in the centroid coordinates. The motions of particles
are described using x as the horizontal coordinate of a particle, y – as the
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vertical coordinate and z as the longitudinal distance in the bunch from its
synchronous particle. We define as s = vt + z the length of the closed orbit
passed by the bunch particle to the time t. Assuming the studying of the
singlebunch oscillations we neglect the longitudinal motion of electrons. We
define as σx and σy the rms transverse horizontal and vertical bunch sizes
(σx > σy) and as b the radius of the cross section of the vacuum chamber.
Then, omitting the values of the order of (σx/b) � 1, we neglect the fields of
the charge images in the walls of the vacuum chamber. We describe the dipole
coherent oscillations of the bunch and of the cloud using the coordinates of
their centers of the gravity (the coordinates of their centroids). For vertical
coherent oscillations at the point s of the orbit we write yc = yc(t, s) for
the cloud centroid. Since the bunch moves along the closed orbit with the
average velocity v, we write yb = yb(s − vt, s).

At least for B-factory parameters, the typical value of the electron cloud
density on the closed orbit of the bunch is substantially lower than that of
the bunch. For this reason, if we study the singlebunch coherent oscillations,
the effects of the space charge fields of the cloud on electron motions can be
neglected. Assuming that the bunch particles are relativistic ones so that
their Lorentz factors γ = 1/

√
1 − (v/c)2 are large, we find that the force

acting on electrons at the position s on the closed orbit is proportional to the
bunch linear density λb(s− vt) and depends on the transverse coordinates of
electrons in the combinations x and y − yb(s− vt, s). Averaging equations of
motion for individual electrons, we obtain the equations describing the evo-
lution of the cloud centroids. For the linear vertical oscillations this equation
reads

d2yc

dt2
= −ω2

cg (z) [yc(t, s) − yb (z, s)] , g (z) =
λb (z)
λb (0)

. (2)

The value of the frequency ωc in this equation as well as its dependencies
on transverse sizes of the bunch and of the cloud depends on the model
which is used to obtain Eq.(2) (see, e.g. in Ref.[9]). Generally, the force
acting on electrons is a nonlinear function of the electron coordinates. The
result of the averaging depends on the consequence of the averaging and of
the linearization of the equation. If we average the linearized equations for
electrons then, the frequency ωc depends on the transverse sizes of the bunch
only. For example, if the transverse distribution in the bunch is a Gaussian,
we obtain

ω2
c =

2Nbe
2λb (0)

mσy(σx + σy)
. (3)

On the contrary, if we average nonlinear equations of motion and then calcu-
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late the linear part of the average force, we shall find that the parameter ωc

depends on the transverse sizes of the bunch and of the cloud. For example,
if the transverse distributions in the bunch and in the cloud are Gaussian,
the parameter ωc reads

ω2
c =

2Nbe
2λb (0)

mΣy(Σx + Σy)
. (4)

Here, Σ2
x = σ2

x+σ2
xc and Σ2

y = σ2
y+σ2

yc, σxc and σyc are the rms horizontal and
vertical cloud sizes. More complicated dependencies of ωc on the transverse
bunch and cloud sizes can be obtained for non-Gaussian density distributions
in the cloud. For any transverse cloud density distribution we conclude that
in this model the parameter ωc will depend on the transverse cloud sizes
only, if the cloud is wider than the bunch. In the last case, the parameter ωc

will depend on z provided that transverse cloud sizes vary during the bunch
passage. In this paper we simplify calculations assuming that equations of
motion of electrons are linearized before their averaging. Correspondingly,
we define ωc using Eq.(3).

Now, we note that at a given position on the closed orbit s the driving
force in Eq.(2) depends on time only in the combination z = s − vt. Taking
in Eq.(2) z as a new independent variable, we obtain

d2yc(z, s)
dz2

+ k2
cg (z) yc(z, s) = k2

cg (z) yb (z, s) , (5)

where kc = ωc/v. Assuming that the width of the function g(z) is determined
by the bunch length σs and defining

x =
z

σs
, q2 = k2

cσ2
s , (6)

we rewrite Eq.(5) in the form:

y′′
c (x, s) + q2g (x) yc(x, s) = q2g (x) yb (x, s) , (7)

where y′ = dy/dx. In this paper we neglect all effects of multibunch interac-
tions as well as noise excitations of coherent oscillations of the electron cloud.
Then, Eq.(5) should be solved using zero initial conditions.

yc(∞, s) = 0, y′
c(∞, s) = 0. (8)

Following the paper [5], we shall calculate solutions to Eq.(7) using two
linearly independent solutions to the homogeneous part of Eq.(7):

y′′
1,2(x, s) + q2g (x) y1,2(x, s) = 0. (9)
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This equation shows that conditions for free coherent oscillations of electrons
do not depend on s. Therefore, below we can write y1,2(x, s) = y1,2(x).
The functions y1,2 will be normalized using any convenient value for their
Wronskian:

W = y1(x)y′
2(x) − y′

1(x)y2(x). (10)

For bunches with smooth linear densities the function g(x) is defined in the
interval |x| ≤ ∞. Since W is an integral of motion (dW/dx = 0), one of the
functions y1,2(x), or both of them can infinitely grow, when |x| → ∞. Below,
we shall also use the following limiting conditions for the functions y1,2:

y10 = lim
x→∞ y1(x) = 1, lim

x→∞

[
dy1(x)

dx
y2(x)

]
= 0, (11)

and
y′
20 = lim

x→∞
dy2(x)

dx
= W. (12)

Solutions to Eq.(7) read

yc (x, s) = A(x)y1(x) + B(x)y2(x). (13)

Substituting this expression in Eq.(7), using the condition y′ = A(x)y′
1(x) +

B(x)y′
2(x) and initial conditions from Eq.(8), we find

yc (x, s) = −
∫ ∞

x

dx1g(x1)K(x, x1)yb (x1, s) , (14)

where the kernel K(x, x1) reads

K(x, x1) = πq2 (y1(x)y2(x1) − y2(x)y1(x1)) , (15)

and we took W = −1/π. We note that K(x, x) = 0 and that for close
longitudinal coordinates in the bunch (x1 = x + δx, δx � x)

K(x, x1) = −q2(x1 − x) + O[(x1 − x)3], (16)

the kernel K(x, x1) linearly depends on x1−x. Outside this region the kernel
K(x, x1) in Eq.(14) does not depend on the difference x1−x unless the linear
density (g(x)) is constant along the bunch (see e.g. in the Appendix 7).
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3 Oscillations of the bunch centroids
Within the framework of the rigid bunch model and within the smoothed fo-
cusing approximation the dipole coherent oscillations of the relativistic bunch
(γ � 1) are described using the following centroid equation:

d2yb(x, s)
ds2

+ k2
βyb(x, s) = −k2

b (x) [yb(x, s) − yc(x, s)] . (17)

Here, kβ = νβ/R0, νβ is the frequency of betatron oscillations of the bunch
particles in the storage ring, Π = 2πR0 is the perimeter of the closed orbit and
s is an independent variable. The coupling coefficient kb should be calculated
within the same approach as the parameter ωc in Eq.(2). If equations of
motion are linearized prior to their averaging and if we define as n0 the
density of the cloud at the closed orbit, the parameter kb reads

k2
b =

2πn0r0

γ
. (18)

Here, r0 = e2/mc2 is the classical radius of a bunch particle. For simplicity
we assume that the conditions of the cloud electron productions are uniform
along the closed orbit. It means that the unperturbed value of n0 does not
depend on s. During the bunch passage of a point s on the closed orbit the
cloud density n0 increases due to approaching to the closed orbit of electrons
kicked by previous parts of the bunch (the cloud pinching). For this reason,
the values n0 and k2

b in Eq.(18) at the point s depend on x.
Substituting in Eq.(17) the value of yc(x, s) from Eq.(14), we obtain

d2yb(x, s)
ds2

+ k2
βyb(x, s) = − k2

b (x)yb(x, s)

− k2
b (x)

∫ ∞

x

dx1g(x1)K(x, x1)yb(x1, s). (19)

Now, we define

ζ1 =
1
kβ

dyb

ds
− iyb, ζ−1 =

1
kβ

dyb

ds
+ iyb, yb =

ζ−1 − ζ1

2i
. (20)

In the smoothed focusing approximation the absolute value of the coordinates
ζ±1 gives the amplitude of the dipole oscillations of the bunch:

|ζ±1|2 =
(

1
kβ

dyb

ds

)2

+ y2
b . (21)
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According to Eq.(20) the value ζ1 obeys the following equation:

dζ1

ds
= −ikβζ1 − k2

b

kβ

[ζ−1(x, s) − ζ1(x, s)]
2i

(22)

− k2
b

kβ

∫ ∞

x

dx1g(x1)K(x, x1)
ζ−1(x1, s) − ζ1(x1, s)

2i
.

Assuming that the interaction with the cloud results in the frequency shifts
which are substantially smaller than the frequency of unperturbed betatron
oscillations of particles (k2

b � k2
β), we neglect in the right-hand side of Eq.(22)

the contributions of the rapidly varying terms. This yields

dζ1

ds
= −i

[
kβ +

k2
b (x)
2kβ

]
ζ1(x, s) − i

k2
b (x)
2kβ

∫ ∞

x

dx1g(x1)K(x, x1)ζ1(x1, s).

(23)
The second term in the square brackets gives the tuneshift of coherent os-
cillations of the bunch due to their perturbations by the cloud space charge
fields

∆νβ =
k2

b (x)R0

2kβ
=

n0(x)r0βavΠ
2γ

, (24)

where βav = R0/νβ is the average value of the β-function of the ring. Using

ζ1(x, s) = e−ikβsX(x, s), (25)

and defining as a new independent variable the value

u =
(k2

b )max

2kβ
s, (26)

where (k2
b )max is the value of the parameter k2

b corresponding e.g. to the
maximum value of the cloud density at the point s during the bunch passage,
we replace Eq.(26) by the following:

dX(x, u)
du

= −ir(x)X(x, u) − ir(x)
∫ ∞

x

dx1g(x1)K(x, x1)X(x1, u). (27)

Here, r(x) = k2
b (x)/

(
k2

b

)
max

. This equation can be solved using the Fourier
transform in the variable u. Substituting in Eq.(27)

X(x, ω) =
∫ ∞

0

duX(x, u)eiωu, (28)

X(x, u) =
∫ ∞

−∞

dω

2π
X(x, ω)e−iωu, Imω > 0, (29)
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and integrating both sides in this equations with eiωu over u from zero to
infinity, we obtain

X(x, ω) =
iX(x, 0)
ω − r(x)

+
r(x)

ω − r(x)

∫ ∞

x

dx1g(x1)K(x, x1)X(x1, ω). (30)

Here, the function X(x, 0) denotes the initial distribution of X(x, u) along
the bunch. Now, we define

X(x, ω) =
iX(x, 0)
ω − r(x)

+
r(x)

ω − r(x)
P (x, ω), (31)

where
P (x, ω) =

∫ ∞

x

dx1g(x1)K(x, x1)X(x1, ω). (32)

Calculating the second derivative of P with respect to x and using Eq.(31),
we find that P obeys the differential equation 1:

d2P

dx2
+ q2g(x)

ω

ω − r(x)
P (x, ω) =

−iq2g(x)
ω − r(x)

X (x, 0) . (33)

By its definition and since limx→∞ g(x) = 0, the function P (x, ω) obeys the
border conditions:

P (∞, ω) = 0,

(
dP

dx

)
x=∞

= 0. (34)

Similar to Eq.(7), we express the formal solution to Eq.(33) using the linearly
independent solutions to the homogeneous part of this equation:

d2P1,2

dx2
+ q2g(x)

ω

[ω − r(x)]
P1,2 (x, ω) = 0. (35)

Assuming for P1,2(x) the limiting conditions similar to that in Eqs.(11) and
(12):

P10 = lim
x→∞ y1(x) = 1, lim

x→∞

[
dP1(x)

dx
P2(x)

]
= 0,

P ′
20 = lim

x→∞
dP2(x)

dx
= W = − 1

π
,

1Equation (33) differs from relevant equations for the bunch centroid obtained in Ref.[5]
(e.g. Eq.(A2)) for two reasons. First, according to Eqs.(14) and (17) in Ref.[5] the authors
assume that the force perturbing the bunch centroids is proportional to the cloud centroid
and vice versa. Contrary to our calculations, this assumption eliminates in Eq.(A2) of
Ref.[5] the terms describing possible BNS-damping of the bunch oscillations. The second,
wrong solution in Ref.[5] of Eqs.(38), or (41) cancels the right-hand side in Eq.(A2) of
Ref.[5]. Corrections of these calculations result in Eq.(33) of this paper.
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where
W = P1

dP2

dx
− P2

dP1

dx
,

we find

P (x, ω) = − iq2

W
P1(x)

∫ ∞

x

g(x1)
ω − r(x1)

X (x1, 0)P2(x1)dx1

+
iq2

W
P2(x)

∫ ∞

x

g(x1)
ω − r(x1)

X (x1, 0)P1(x1)dx1. (36)

and

X(x, ω) =
iX(x, 0)
ω − r(x)

+
iπq2r(x)P1(x, ω)

ω − r(x)

∫ ∞

x

g(x1)X (x1, 0)P2(x1, ω)
ω − r(x1)

dx1

− iπq2r(x)P2(x, ω)
ω − r(x)

∫ ∞

x

g(x1)X (x1, 0)P1(x1, ω)
ω − r(x1)

dx1. (37)

If the functions P1,2(x, ω) are known, this equation together with Eq.(29)
enables the calculation of the bunch centroid accounting the cloud pinching
and associated BNS damping of the electron cloud instability. The obtained
expression for X(x, ω) is simplified for initial conditions where X(x, 0) =
X0δ(x − x0), or for the initial condition where X(x, 0) = 1. In the last case,
simple calculations yield

X(x, ω) =
i

ω − r(x)
− ir(x)

[ω − r(x)] ω
[1 − P1(x, ω)] . (38)

So that the oscillation amplitude X(x, ω) is obtained using of the function
P1(x, ω) only.

4 No cloud pinching
The calculations on the electron cloud instability are simplified in the cases,
when the cloud pinching can be neglected. Although this implies certain
limitations on the region of the problem parameters, this approximation is
frequently used in analytic calculations relating the electron cloud instability
of coherent oscillations (see, e.g. in Ref.[6]). We shall obtain such solutions to
compare the features of coherent oscillations of the bunch calculated taking
into account the cloud pinching and calculated ignoring this effect.

If we neglect the variations of the transverse cloud sizes during the
bunch passages, then we put in all relevant equations of the previous Section
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r(x) = 1. Substituting this value in e.g. Eq.(35) and shifting in this equation
ω by 1 (ω → ω + 1), we obtain

d2P1,2

dx2
+ p2g(x)P1,2 (x, ω) = 0, p2 = q2

(
1 +

1
ω

)
. (39)

This equation has the same form as Eq.(9). If we define the linearly indepen-
dent solutions to Eq.(9) as y1,2(q, x), then the linearly independent solutions
to Eq.(39) are obtained using

P1,2(x, ω) = y1,2(p, x). (40)

So that coherent oscillations of the cloud and of the bunch are determined
using the same couple of the linearly independent functions y1,2(κ, x). For
the cloud oscillations we substitute κ2 = q2, while for the bunch oscillations
we should use κ2 = p2. Substituting Eq.(40) in Eq.(37), we obtain

X(x, ω) =
iX(x, 0)

ω
+

iπq2

ω2
y1(p, x)

∫ ∞

x

g(x1)X (x1, 0) y2(p, x1)dx1

− iπq2

ω2
y2(p, x)

∫ ∞

x

g(x1)X (x1, 0) y1(p, x1)dx1. (41)

Provided that the functions y1,2(q, x) are known, Eq.(41) yields an exact
expression for the Fourier-amplitudes of the centroid of the positron bunch
interacting with electron cloud without pinching. The right-hand side in
Eq.(41) can be simplified for several special initial distributions X(x, 0).

1. If we take
X(x, 0) = X0δ(x − x0), (42)

where δ(x) is the Dirac δ-function, then Eq.(41) results in

X(x, ω) =
iX0δ(x − x0)

ω
+ δX(x, ω), (43)

where

δX(x, ω) = 0, x > x0

δX(x, ω) =
iπq2

ω2
X0g(x0) [y1(p, x)y2(p, x0) − y2(p, x)y1(p, x0)] , x ≤ x0

(44)

According to this expression the amplitudes of the excited oscillations are
smaller, if initial displacement (or, initial kick) in the bunch is shifted towards
to its head.
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2. If we take X(x, 0) = 1, then using Eq.(54) we obtain

X(x, ω) =
i

ω + 1
+

iy1(p, x)
ω (ω + 1)

. (45)

In this case, we can calculate X(x, u), if we know the function y1(q, x) only.
3. Since

p2

∫ ∞

x

g(x1)X (x1, 0) y2(p, x1)dx1 = X (x, 0)
dy2(p, x)

dx
− X (∞, 0) y′

20 (46)

+ lim
x→∞

[
dX (x, 0)

dx
y2(p, x)

]
− dX (x, 0)

dx
y2(x) −

∫ ∞

x

d2X (x1, 0)
dx2

1

y2(p, x1)dx1,

a special case may present the initial conditions where

d2X (x, 0)
dx2

= −q2g(x)X(x, 0), (47)

or X(x, 0) = Ay1(q, x). For finite values of X(∞, 0) the function y2(q, x)
may not contribute to X(x, 0). Substituting this initial condition in Eq.(46)
and then, in Eq.(41), using the conditions in Eqs.(11), (12), after simple
calculations we obtain

X(x, ω) =
Ay1(p, x)

−iω
. (48)

The inverse Fourier transform yields the value X(x, u):

X(x, u) = e−iu

∫ ∞

−∞

dω

2π
X(x, ω)e−iωu, Imω > 0. (49)

All these expressions are useful only in the cases, when the functions
can be calculated analytically. Apart from special distributions of the lin-
ear density along the bunch, that can be done calculating the asymptotic
behavior of X(x, u) at large times. For simplicity we take the initial condi-
tion in the form X(x, 0) = y1(q, x). Substituting Eq.(48) in Eq.(49), we find
(Z(x, u) = eiuX(x, u))

Z(x, u) =
∫ ∞

−∞

dω

−2πiω
y1

(
q

√
1 +

1
ω

, x

)
e−iωu.

Changing here the integration variable w = ωu, we rewrite this formula in
the following form

Z(x, u) =
∫ ∞

−∞

dw

−2πiw
y1

(
q

√
1 +

u

w
, x

)
e−iw. (50)
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According to Eq.(39) the function y1(p, x) in the integrand obeys the equation

d2y

dx2
+ Q2(x)y = 0, Q2 = q2

(
1 +

u

w

)
g(x). (51)

In the asymptotic region (u � |w|; we shall define the asymptotic region
more precisely a bit later) we write

Q2 � q2u

w
g(x). (52)

Then, the linearly independent solutions to Eq.(51) can be found using the
WKB method (e.g. in Ref.[10]). Simple calculations result in

y1(p, x) � (w/u)1/4

√
πq1

cos
(

q1

√
u

w
− π

4

)
, u � |w| . (53)

and

y2(p, x) � (w/u)1/4

√
πq1

sin
(

q1

√
u

w
− π

4

)
, u � |w| . (54)

where we defined
q1 = q

∫ ∞

x

√
g(x1)dx1. (55)

Substituting Eq.(53) in Eq.(50), we obtain

Z(x, u) � 1
−i(2π)3/2u1/4

√
2q1

∫ ∞

−∞

dw

w3/4

[
e−iΦ+(w) + e−iΦ−(w)

]
, (56)

where

Φ+(w) = w + q1

√
u

w
− π

4
, Φ−(w) = w − q1

√
u

w
+

π

4
. (57)

The integration contour in Eq.(56) should not enter the regions where q2
1u �

|w|. In the asymptotic region the main contribution to the integral in the
right-hand side of Eq.(56) gives the vicinity of the saddle point (dΦ±/dw = 0)

w1 = w0
−1 + i

√
3

2
, w0 =

(
q2
1u

4

)1/3

� 1 (58)

Calculating Gaussian integrals, we obtain

Z(x, u) � i

2π
√

3

(
4

q2
1u

)1/3

exp

[(
q2
1u

4

)1/3 3i + 3
√

3
2

]
, (59)

(
q2
1u

4

)1/3

� 1,

(
2u

q1

) 2
3

� 1.
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The condition w0 � 1 provides large values of the oscillation phases in
Eqs.(53) and (54) which is required by the WKB approximation. In these
calculations we also used the condition u � w. It holds at the saddle point
provided that (u/w0) = (2u/q1)2/3 � 1, or u � q1/2. The last condition
determines the lower border of the asymptote in Eq.(59), in the regions where
q1 > 2.

According to Eq.(59), in the asymptotic region the amplitude of the bunch
centroid |Z(x, u)| increases in the time proportional to exp

[
(t/τ)1/3

]
, where

1
τ

= ω0 (∆νβ)max

Nbr0λb (0)σ2
s

2σy(σx + σy)

(∫ ∞

x

√
g(x1)dx1

)2

, (60)

(∆νβ)max is calculated using Eq.(24) and ω0 is the revolution frequency of
positrons in the ring. The fact that the instability growthrate depends on the
position in the bunch is one of the specific features of the beam breakup insta-
bilities (see, e.g. in Ref.[9]). The asymptotic behavior of Z(x, u) described in
Eq.(59) qualitatively agrees with that calculated for the beam breakup insta-
bility due to the interaction of the bunch with a sequence of resonant cavities
(see, e.g. in Ref.[11]). This coincidence occurs due to similar linear initial
increase in the wakefields responsible for the electron cloud instability (see in
Eq.(16)) and for the instability calculated in Ref.[11]. On the other hand, this
asymptote disagrees with results of calculations of the asymptotic growth of
the amplitudes of the bunch centroid due to the electron cloud instability re-
ported in Ref.[5] and predicted the growth |Z(x, t)| ∝ exp

(√
t/τ
)
. The last

asymptote is rather specific for a sudden switching on of the bunch wakefields.
We remind the reader that simple asymptotic expression in Eq.(59) was cal-
culated using a simplified initial distribution of the bunch centroid along
the bunch. For more general initial conditions the asymptotic growth of the
bunch centroid should be calculated substituting y1,2(p, x) from Eqs.(53) and
(54) in Eq.(41) directly.

5 The solvable model
Apart from other cases, Eq.(9) can be solved analytically, if we assume that
the linear density of the bunch is given by the exponential function:

λb(z) =
1

2σs
exp

(
−|z|

σs

)
. (61)
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This function has smooth tails and decays quickly enough when |x| → ∞.
Substituting this expression in Eq.(2), we rewrite Eq.(9) in the following
form:

y′′
1,2 + q2e−|x|y1,2 = 0. (62)

Using

W = y1(x)
dy2(x)

dx
− dy1(x)

dx
y2(x) = − 1

π
,

we find that Eq.(62) has the following linearly independent solutions:

y1(q, x) =
{

J0

(
2qe−

x
2
)
, x > 0,

aJ0

(
2qe

x
2
)

+ bN0

(
2qe

x
2
)
, x < 0,

(63)

y2(q, x) =
{

N0

(
2qe−

x
2
)
, x > 0,

cJ0

(
2qe

x
2
)− aN0

(
2qe

x
2
)
, x < 0.

(64)

Here, J0(x) and N0(x) are the Bessel and Neumann functions of the zero
order (see, e.g. in Ref.[12]) and

a = −πq (J0 (2q)N1 (2q) + J1(2q)N0 (2q)) , (65)
b = 2πqJ1(2q)J0 (2q) , c = −2πqN1(2q)N0 (2q) .

Substituting these functions in Eq.(15), we can calculate the kernel K(x, x1)
and other relevant functions defined in the previous Sections 2 . For exam-
ple, let us calculate the function X(x, u) neglecting the cloud pinching. For
simplicity, we assume that initially the bunch centroid is constant along the
bunch X(x, 0) = 1. Then, according to Eq.(45) the amplitude X(x, ω) reads

X(x, ω) =
i

ω + 1
+

iy1(p, x)
ω (ω + 1)

, p2 = q2 ω + 1
ω

, (66)

while
Z(x, u) = 1 +

∫ ∞

−∞

dω

2πi

1 − y1(p, x)
ω (ω + 1)

e−iωu, Imω > 0 (67)

2One more solvable example present the case, where the linear density of the bunch
reads

λ(z) =
1

2σ cosh2(z/σ)
, g(x) =

1

cosh2(x)
.

and where y1(q, x) = Pµ(tanh(x)), y2(q, x) = Qµ(tanh(x)) , µ =
��

4q2 + 1 − 1
�

/2, while
Pµ(z) and Qµ(z) are the Legendre finctions of the first and of the second kind, W = 1.
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The value of the integral in the right-hand side of this expression is deter-
mined by the residue of the integrand at the essential singularity point ω = 0.

Simple expressions for Z(x, u) can be obtained in the region x > 0 (the
head-on part of the bunch). Substituting in Eq.(67) the first line of Eq.(63)
and using

1 − y1(p, x) =
∞∑

m=1

(−qe−x)m

(m!)2
(1 + ω)m

ωm
,

we obtain

Z(x, u) = 1 +
∞∑

m=1

(−q2e−x
)m

(m!)2
[Lm(iu) − Lm−1 (iu)] . (68)

Here,

Lm(x) =
1
m!

ex dm

dxm

[
xme−x

]
= m!

m∑
k=0

(−x)k

(k!)2 (m − k)!
(69)

are Laguerre polynomials (see in Ref.[12]). Since

Lm(iu) − Lm−1 (iu)
m!

=
m∑

k=1

(−iu)k

(k!)2 (m − k)!
k

m
,

we can also rewrite Eq.(68) in the following form:

Z (x, u) = 1 +
∞∑

m=1

Zm(x, u), (70)

where

Zm(x, u) =

(−q2e−x
)m

m!

m∑
k=1

(−iu)k

(k!)2 (m − k)!
k

m
. (71)

The relative importance of subsequent terms in the series in Eq.(70) can be
estimated using the picture in Fig. 1. This graph shows that the series in
Eq.(70) converges well even for very large values of u.

Although the series in the right-hand side of Eq.(68) converges well, this
expression is not very convenient for fast analytic calculations of X(x, u) in
the asymptotic region u � 1. To evaluate this asymptote we rewrite Eq.(67)
like follows:

Z(x, u) = 1 + u

∫ ∞

−∞

dw

2πi

1 − J0

(
qe−x/2

√
1 + (u/w)

)
w (w + u)

e−iw, Imw > 0, (72)
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and
repeat
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calculations
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at
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end

of
the

previous
Section.

A
ssum

ing
that

the
integration

contour
lies

in
the

region
w

here
u
�

|w|
and

q
2e −

xu
�

|w|,
using

the
asym

ptotic
expressions

for
the

B
essel

function,
w

e
obtain

(w
0

=
[q

2e −
xu] 1

/
3)

Z
(x

,u)�
i

π √
6
w

0

exp [−
i 32

w
0

+
3 √

3
2

w
0 ]

,
w

0 �
1
,

u�
w

0 .
(73)

In
our

solvable
m

odelthe
function

q
1

from
E

q.(55)
reads

q
1

=
2
qe −

x
/
2

(x
>

0).
C

om
paring

E
qs.(73)

and
(59),

w
e

find
that

the
asym

ptote
in

E
q.(73)

differs
from

that
in

E
q.(59)

only
by

the
factor

of √
2

and,
therefore,

both
asym

ptotes
alm

ost
coincide.

So
that

these
solutions

do
not

indicate
strong

dependencies
on

initialdistributions
X

(x
,0)

along
the

bunch
3.

A
s

is
seen

in
F
ig.

2,
E

q.(73)
and

E
q.(70)

predict
sim
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behavior

of
|Z

(x
,u)|
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asym
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w

= (q
2e −

xu )
1
/
3

�
1

w
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obtained
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E

q.(70)
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E
q.(73).

H
ow

ever,
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depicted
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F
ig.

2
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in
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of|Z

(x
,u)|
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E
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(73)
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w
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20%
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w
.

So
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3In
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o
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proportionalto
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0
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u
)Z

(x
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)
w
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but
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T
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calculation
ofthe

integralin
E

q.(67)
in

the
region

x
<

0
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a

m
ore

com
plicated

expression:

Z
(x

,u)
=

1
+

3
iu

x
q
2
+

∞∑r
=

1 (−
q
2e

x )
r
+

1

((r
+

1)!)
2

[L
r
+

1 (iu)−
L

r (iu)]
(74)

+
∞∑r
=

1 (−
q
2 )

r[L
r
+

1
(iu)−

L
r (iu)] {2

x
q
2H

r (x)
+

4
q
2U

r (x) }
,

x
<

0
.

H
ere,

H
r (x)

=
r
∑m

=
0

F
(−

m
,−

m
−

1
,1

,e
x)

m
!(m

+
1)!(r−

m
)! 2

,
(75)

U
r (x)

=
r−

1
∑m

=
0

F
(−

m
,−

m
−

1
,1

,e
x)−

e
(r−

m
)x

(2
m

+
1
)!

m
!(m

+
1
)!

m
!(m

+
1)!(r−

m
)! 2

h
r−

m
,

(76)
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F (a, b, c, x) is the hypergeometric function and hk =
∑k

l=1 1/l, k = 1, 2, . . .
As could be expected in advance, the value |Z(x, u)| increase proportional to
|x|, when x → −∞.

6 Effects of the cloud pinching
Effects of the cloud pinching on the beam breakup instability of the bunch
interacting with the electron cloud was studied solving Eq.(27) numerically.
The kernel K(x, x1) in this equation was calculated using the described in
the previous Section model with the exponential linear density of the bunch.
In this case, Eq.(27) reads

dX(x, u)
du

= −ir(x)X(x, u) − ir(x)
∫ ∞

x

dx1e
−|x1|K(x, x1)X(x1, u) (77)

The integral in the right-hand side of Eq.(77) was calculated using the trape-
zoidal rule. For that purpose, in the region −5 ≤ x ≤ 5 the bunch was
divided on 500 slices and the integral was replaced by relevant finite sum.
Correspondingly, Eq.(77) was replaced by the system of the differential equa-
tions:

dXn

du
= − ir(xn)Xn(u)

− ir(xn)h

(
n−1∑
m=2

e−|xm|K(xn, xm)Xm +
1
2
e−|x1|K(xn, x1)X1

)
.

(78)

Here, Xn(u) = X(xn, u) are the slices centroids, the matrix K(xn, xm) was
calculated substituting in Eq.(15) the functions y1,2(q, xn) from Eqs.(63) and
(64), h = 1/50.

The factors r(xn) in the right-hand side of Eq.(78) were calculated using
a simplified tracking program. In this program we traced the transverse
motions of 500000 electrons placed in the central plane of the cylinder of
the height h due to the space charge forces of the bunch with the linear
density given in Eq.(61) and having a Gaussian round cross section. The
rms radius of the bunch was taken as σ2

b = σxσy . For the calculations in the
smoothed focusing approximation we used σx =600 mkm and σy = 60 mkm
which is close to the bunch parameters in KEKB. Typically, the number of
particles in the bunch was taken as 7×1010, the bunch length was taken as
σs = 7 mm. These parameters correspond to q =4.365. Initially the electrons
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were uniformly distributed within the disk with the radius of 50σb � 1 cm.
Initial kinetic energies of electrons (Ee) were uniformly distributed within
the range 5 eV≤ Ee ≤ 200 eV which qualitativelly agrees with results of
measurements reported in Ref.[4]. The program calculated the ratio of the
density of the cloud on the closed orbit n(x) to the unperturbed density of
the cloud n0 accounting the electrons within the radius of 0.3σb near the
closed orbit of the bunch. The result of such calculations is shown in Fig. 3.
The factors r(xn) were calculated normalizing the data depicted in Fig. 3 to
one.
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Figure 3: Dependence of the central density of the cloud n(x)/n0 on the
longitudinal distance in the bunch.

Equations in (78) were solved using the Runge-Kutta fifth-order and sixth-
order method. The relative accuracy in these calculations was set as 0.01 %.
In the most of calculations below we assumed that the initial cloud den-
sity is defined using the charge compensation condition n0 = N/(πσ2

bLb),
where Lb is the bunch spacing in the beam. For simplicity, in all numer-
ical calculations below we took as initial condition the values Z(x, 0) = 1
(Z(x, u) = eiuX(x, u)). Since numerical results below are obtained solv-
ing the linear differential equations the results for all other (equal along the
bunch) initial values of Z can be obtained scaling the reported data by a rel-
evant factor. For this reason, in the figure captions below we mark units for
Z as arbitrary units. Test calculations which were run neglecting the cloud
pinching (r(x) = 1) resulted in the asymptotes |Z(x, u)| ∝ exp([u/uτ ]1/3)
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via the cloud excite the oscillations of the subsequent slices by the preceding
ones. The BNS damping begins to suppress the oscillations only after the time
interval corresponding to the betatron frequency deviation in the bunch. On
the other hand, the cloud pinching together with the BNS damping increases
the strength of the excitation of the oscillations of the coupled slices resulting
in larger initially excited amplitudes.

In both cases and in agreement with general theory of the beam breakup
instability, the amplitudes of oscillations in the tail-on regions of the bunch
substantially exceed that in the head-on parts of the bunch. However, in
the case of the calculations ignoring the cloud pinching such an increase is
described by smooth monotonous functions of x. On the contrary, the cloud
pinching results in the appearance in the dependence of |Z(x, u)| on x of
sharp peaks.
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Figure 7: Dependence of the amplitudes of the bunch centroid on time (on
the turn number). Cloud pinching, from top to bottom at 10 turns: |Z(x, u)|
with x = −2, −1, 0, 1.

The BNS damping due to the electron cloud pinching changes the char-
acter of the time dependence of the bunch centroid oscillation amplitudes
(Fig. 7). Without the cloud pinching these dependencies are proportional
to quasi-exponential functions (see, e.g. in Eq.(73)). As is seen in Fig. 7,
due to the cloud pinching the oscillation amplitudes in the tail-on part of the
bunch (x ≤ 0) and at large times become proportional to the power functions
of the time. For example, for the turn number exceeding 300 the oscillation
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δ = R0
d ln |Z(x, u)|

ds
. (79)

Since the beam breakup instability has no eigenvalue solutions, the values
δ(x, u) depend both on the position along the bunch and on the time (u).
We calculated the growthrates of the discussed instabilities using the data
depicted in Figs. 7 and 4. As is seen in Fig. 9, the maximum value of the
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10-1

δ(
-0

.7
6,

u)

Turn number

Figure 9: Dependence of the growthrate of the bunch centroid at x = −0.76
on time (on the turn number). Full circles - cloud pinching, open circles - no
cloud pinching, only increments are shown.

growthrate δ(−0.76, u) is approximately four times lower than (∆ν0)max for
the bunch interacting with the pinched cloud

[δ(−0.76, u)]max � 0.140, (∆ν0)max � 0.544. (80)

For the case without the cloud pinching, the value [δ(−0.76, u)]max = 0.031
about two times exceeds ∆νβ � 0.014.

Inspecting the growths of the bunch oscillating amplitudes in time for
different bunch intensities (Fig. 10), we find that for low bunch intensities
(the lower curve in Fig. 10) the instability is depressed by the BNS damping.
Without the cloud pinching the oscillation amplitude of this slice increases
proportional to exp([u/uτ ]1/3) and within the range shown in Fig. 10 reaches
substantial values. As is seen in Fig. 10, the oscillations of high intensity
bunches (N ≥ 3 × 1010) grow systematically especially during initial period

27



10
0

10
1

10
2

10
3

10
4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

|Z(-1,u)| [Arb. u.]

u

F
igure

10:
D

ependence
of|Z

(x
,u)|at

x
=

−
1

(an
exam

ple)
on

tim
e

u.
C

loud
pinching,from

top
to

bottom
:

N
/10

1
0

=
7,6.5,5,3

and
1.

of
the

instability.
Since

the
am

plitudes
increase

proportional
pow

ers
of

the
tim

e,
this

fact
can

explain
an

existence
of

the
threshold

bunch
current

for
the

bunch
transverse

sizes
blow

ups
phenom

enon.
P
articular

value
of

this
threshold

depends
on

the
oscillation

dam
ping

m
echanism

.
In

F
ig.

10
w

e
used

u
as

an
independent

variable.
W

ith
accepted

here
assum

ptions,
the

tim
e

dependencies
of

the
oscillation

am
plitudes

show
n

in
this

graph
depend

only
on

the
bunch

density
and

do
not

depend
on

the
initial

cloud
density.

If
ν

s
is

the
tune

of
the

synchrotron
oscillations

of
the

bunch
particles,

the
beam

breakup
description

ofcoherent
oscillations

ofthe
bunch

holds
for

the
turn

num
bers

w
hich

are
substantially

low
er

than
1
/
ν

s .
For

exam
ple,for

K
E

K
B

ν
s

=
0
.025,

so
that

for
this

ring
the

beam
breakup

approxim
ation

m
ay

give
reliable

descriptions
ofcoherent

oscillations
only

during
the

first
10

turns.
In

the
realistic

case,
w

hen
the

cloud
pinching

is
taken

into
account,

the
grow

thrates
of

the
am

plitudes
of

dipole
oscillations

exceed
the

value
ν

s

(F
ig.

9).
A

s
is

seen
in

F
ig.

7,
the

grow
thrates

in
the

central
part

of
the

bunch
(|x|→

0)
and

of
the

head-on
parts

of
the

bunch
are

low
er

than
the

m
entioned

num
bers.

T
he

beam
breakup

description
of

coherent
oscillations

ofthese
parts

of
the

bunch
dem

ands
substantially

low
er

values
of

ν
s .

A
nother

application
ofthese

calculation
is

the
description

ofthe
coherent

fluctuations
w

ith
the

average
generation

frequency
exceeding

the
frequency

ofthe
synchrotron

oscillations
ω

0 ν
s .

Such
fluctuations

(coherent
oscillations

28



of the bunch and of the cloud with random amplitudes and phases) can be
generated due to frequency spreads of the bunch and of the cloud These
spreads substantially exceed the frequency of the synchrotron oscillations of
particles.

7 Conclusion
We have studied both analytically and numerically several aspects of the sin-
glebunch dipole beam breakup instability of the positron bunch due to its
interaction with electron clouds. The linear density of the bunch was as-
sumed to be a smooth function of the longitudinal coordinate of the positron
in the bunch. For particular calculations we used the linear density defined
by the exponential function in Eq.(61). In this case, the fundamental solu-
tions for the electron cloud oscillations y1,2(q, x) can be found analytically.
That can simplify both analytical and numerical studies of the beam breakup
oscillations of the positron bunch interacting with the electron cloud.

Without the cloud pinching the expressions describing the distribution of
the bunch centroids along the bunch as well as their dependencies on time are
calculated analytically using the set of the fundamental solutions y1,2(p, x),
where p = q

√
(1 + ω)/ω, Imω > 0. Although, generally, the oscillation

amplitudes are described by complicated expressions those can be simplified
in the asymptotic region in time (

[
q2
1u/4

]1/3 � 1) where the amplitudes
grow proportional to exp([t/τ ]1/3). This behavior qualitatively agrees with
results of calculations obtained in Ref.[11] for the beam breakup instability of
a bunch in linacs and disagrees with results of the calculations concerning the
electron cloud instability reported in Ref.[5] where it was found that in the
asymptotic region the amplitudes grow proportional to exp

(√
t/τ
)
. The

asymptotic behavior calculated in this paper and in Ref.[11] occur due to
linear increase in the wakefields in the cloud at small distances |x − x1|. This
case occurs in the case of the electron cloud instability. On the contrary, the
result of the paper [5] corresponds to a sudden switching-on of the wakefields.
This discrepancy is a result of incorrect calculations with basic equations in
Ref.[5].

One of the main objectives of this paper was the study of the influence
of the electron cloud pinching and of the associated modulation of the tunes
of betatron oscillations of positrons on the stability of coherent oscillations
of the bunch. The calculations show that the cloud pinching substantially
increases the tuneshifts of positrons due to the space charge fields of the cloud.
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These tuneshifts are so big that the space charge fields of the cloud may result
in the instability of incoherent oscillations of positrons and in corresponding
increase in the transverse sizes of the bunch. For coherent oscillations of the
bunch the electron cloud pinching results in the BNS damping of coherent
oscillations of the bunch. However, the BNS damping affects the oscillation
amplitudes after large time intervals. Initially, the pinching of the cloud
makes the instability more rapid. Contrary to the case of ordinary BNS
damping (see, e.g. in Ref.[8]), in the electron cloud instability the cloud
pinching yields both the deviations of the betatron tunes along the bunch
and the modulation (as well as an increase) along the bunch of coherent tune
shifts of the slices. Moreover, the betatron tunes due to the cloud pinching
are not a monotonous functions of x. Therefore, the tunes of some slices along
the bunch can coincide. The interactions of such slices is resonant. For this
reasons, the BNS damping due to the cloud pinching does not suppress the
instability, but makes it substantially weaker at large time intervals. Besides,
this damping changes the growth-law of the oscillation amplitudes from the
quasi-exponential to the power function of the time.

More generally, the cloud pinching leads to the modulations of the beta-
tron tunes of particles by their synchrotron oscillations. Beyond the beam
breakup approximation and if the pinching is strong, that may result in addi-
tional couplings of the synchro-betatron modes of coherent oscillations of the
bunch which may change the thresholds of the mode-coupling instabilities of
the bunch.

I am indebted to N. Dikansky, H. Fukuma, S. Kurokawa, K. Ohmi and
K. Oide for their valuable comments and discussions.
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Appendix A

The limit to the rectangular bunch linear density
According to Eqs.(15) and (19) if the linear density of the bunch is a smooth
function of z, then the wake function of the bunch due to its interactions with
the electron cloud, generally, is not a function of z′ − z. That occurs only in
a special case, where the linear density of the bunch is a step function of z,
so that

g(z) =
{

1, |z| ≤ σs,
0, |z| > σs.

(A.1)

Here, 2σs is the bunch length. For the bunch with such a linear density
Eq.(9) is reduced to

d2y

dz2
+ k2

cy = 0, kc =
ωc

v
, (A.2)

while the functions y1 and y2 read

y1 = eikcz, y2 = e−ikcz, (A.3)

with
W = y1

dy2

dz
− dy1

dz
y2 = −2ikc. (A.4)

Substituting these functions in Eq.(15), we obtain the kernel which was pre-
viously calculated for this case in Ref.[6]:

K0(z, z′) =
k2

c

−2ikc
[exp (−ikc [z′ − z]) − exp (ikc [z′ − z])]

= kc sin (kc [z′ − z]) . (A.5)

Now, we expect that similar kernel can be obtained in some special region
of the problem parameters substituting the functions y1,2(q, x) defined in
Eqs.(63) and (64) in Eq.(15). Namely, we inspect the case, where q � 1 and
|z| � σs, so that the arguments of the Bessel functions in Eqs.(63) and (64)
reach the asymptotic region. For simplicity, we present the calculations for
the region where x > 0 and x′ > 0 (all other regions give similar results). In
the region of the interest we write:

y1(x) = J0

(
2qe−x/2

)
, y2(x) = N0

(
2qe−x/2

)
, x =

z

σs
, q = kcσs, (A.6)
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and [12]

J0

(
2qe−x/2

)
�
√

1
πq

ex/4 cos
(
2qe−x/2 − π

4

)
, (A.7)

N0

(
2qe−x/2

)
�
√

1
πq

ex/4 sin
(
2qe−x/2 − π

4

)
. (A.8)

Substituting these expressions in Eq.(15), we obtain

K0(x, x′) = −πq2e−x′
[y2 (x′) y1 (x) − y2 (x) y1 (x′)] (A.9)

= −qe−x′

√
exp

(
x′ + x

2

)
sin
(
2qe−x′/2 − 2qe−x/2

)
. (A.10)

In the region x, x′ � 1 we replace

e−x/2 � 1 − z

2σs
,

and
exp

(
x + x′

2

)
� 1, e−x′ � 1,

to find
K0(x, x′) � q sin (kc [z′ − z]) , (A.11)

or using the variables z and z′

K0(z, z′) � kc sin (kc [z′ − z]) , (A.12)

which agree with Eq.(A.5). According to these calculations we conclude that
for the bunches with smooth dependencies of the linear density on z the simple
expression for the wake fields obtained in Ref.[6] (Eq.(A.5), or similar) can
be used only for central slices (|z| � σs) in very long bunches (kcσs � 1).
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