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Abstract

The kernel of the BFKL equation for non-zero momentum transfer
is found at next-to-leading order. It is presented in various forms de-
pending on the regularization of the infrared singularities in “virtual"
and “real" parts of the kernel. The infrared safety of the total kernel
is demonstrated and a form free from the singularities is suggested.
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.

The kernel of the BFKL equation [1] for the case of forward scattering,
i.e. for the momentum transfer t = 0 and vacuum quantum numbers in
the t−channel, was found at next-to-leading order (NLO) already five years
ago [2]. Unfortunately, the NLO calculation of the kernel for non-forward
scattering was not completed till now. We remind that the kernel depends
on the representation of the colour group in the t-channel; however for any
representation R it is given by the sum of “virtual" and “real" contribu-
tions [3]. The “virtual" contribution is universal (does not depend on R).
It is expressed through the NLO gluon Regge trajectory [4] and is known.
The “real" contribution is related to particle production in Reggeon-Reggeon
collisions and consists of parts coming from one-gluon, two-gluon and quark-
antiquark pair production. The first part is expressed through the effective
Reggeon-Reggeon-gluon NLO vertex [5]. Apart from a colour coefficient this
part is also universal. It was found in Refs. [6] and [7] for the quark and
gluon contributions respectively. Each of last two parts for any R can be
presented as a linear combination of two independent pieces, one of which
can be determined by the antisymmetric colour octet representation R = 8a

(we shall call it gluon channel) and the other by the colour singlet representa-
tion R = 1 (Pomeron channel). For the case of quark-antiquark production
both these pieces are known [6]. Instead, only the piece related to the gluon
channel is known for the case of two-gluon production [7].

The only missing piece of the non-forward kernel was then the two-gluon
production contribution in the Pomeron channel. We have calculated this
contribution and therefore have solved the problem of finding the non-forward
kernel at NLO for an arbitrary colour state in the t-channel. Details of the
calculation will be given elsewhere. Here we present the NLO kernel for the
most important Pomeron channel. Note that for the case of the scattering
of physical (colourless) particles only the Pomeron channel exists. Since the
quark contribution to the non-forward kernel is known [6] for any R, we shall
consider in the following only the gluon contribution, i.e. pure gluodynamics.

Making use of the conventional dimensional regularization with the space-
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time dimension D = 4 + 2ε, the BFKL equation for the Mellin transform of
the Green’s function of two Reggeized gluons in the t-channel is written as

ωG (~q1, ~q2; ~q ) = ~q 2
1 ~q ′ 21 δ(D−2) (~q1 − ~q2)+

∫
dD−2r

~r 2(~r − ~q)2
K (~q1, ~r; ~q)G (~r, ~q2; ~q ) ,

(1)
where qi and q′i ≡ qi − q , (i = 1 ÷ 2) are the Reggeon (Reggeized gluon)
momenta, q ' q⊥ is the total t-channel momentum, q2 ' q2

⊥ = −~q 2 = t and
the vector sign is used for denoting the components of momenta transverse
to the plane of initial momenta. The kernel

K (~q1, ~q2; ~q ) =
[
ω

(−~q 2
1

)
+ ω

(−~q ′ 21

)]
~q 2
1 ~q ′ 21 δ(D−2) (~q1 − ~q2) +Kr (~q1, ~q2; ~q)

(2)
is given by the sum of the “virtual" part, determined by the gluon Regge
trajectory ω(t) (actually the trajectory j(t) = 1 + ω(t)), and the “real" part,
related to particle production in Reggeon-Reggeon collisions. In the limit
ε → 0 we have [4]

ω(t) = −2ḡ2
µ

(
1
ε

+ ln
(−t

µ2

))
− ḡ4

µ

[
11
3

(
1
ε2
− ln2

(−t

µ2

))
+

(
67
9
− 2ζ(2)

)

×
(

1
ε

+ 2 ln
(−t

µ2

))
− 404

27
+ 2ζ(3)

]
. (3)

Here

ḡ2
µ =

g2
µNcΓ(1− ε)

(4π)2+ε
, (4)

gµ being the renormalized coupling in the MS scheme, Nc is the number
of colors, Γ(x) is the Euler function and ζ(n) is the Riemann zeta function,
(ζ(2) = π2/6).

The remarkable properties of the “real" part of the kernel, which follow
from general arguments, are

Kr(0, ~q2; ~q ) = Kr(~q1, 0; ~q ) = Kr(~q, ~q2; ~q ) = Kr(~q1, ~q; ~q ) = 0 (5)

and
Kr(~q1, ~q2; ~q ) = Kr(−~q ′1,−~q ′2; ~q ) = Kr(−~q2,−~q1;−~q ) . (6)

The properties (5) imply that the kernel turns into zero at zero transverse
momenta of the Reggeons and appear as consequences of the gauge invariance;
in turn the properties (6) are the consequence of cross-invariance.
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In pure gluodynamics the “real" part Kr is given by sum of one-gluon- and
two-gluon-production contributions. The first of them differs from the corre-
sponding contribution in the gluon channel only by a colour group coefficient.
As for the second one, it occurs to be much more complicated in the Pomeron
channel than in the gluon one. The simplicity of the gluon channel is related
to the gluon Reggeization. Technically it is determined by the cancellation of
contributions of non-planar diagrams due to the colour group algebra. The
complexity of contributions of non-planar diagrams is well known since the
calculation of the non-forward kernel for the QED Pomeron [8] which was
found only in the form of a two-dimensional integral. In QCD the situation
is greatly worse because of the existence of cross-pentagon and cross-hexagon
diagrams in addition to QED-type cross-box diagrams. It requires the use
of additional Feynman parameters. At arbitrary D no integration over these
parameters at all can be done in elementary functions. It occurs, however,
that in the limit ε → 0 the integration over additional Feynman parameters
can be performed, so that the result can be written as a two-dimensional
integral, as well as in QED.

Let us present the kernel Kr in the limit D = 4 + 2ε → 4 as sum of two
parts:

Kr = Ksing
r +K(reg)

r . (7)

Here the first contains all singularities:

Ksing
r (~q1, ~q2; ~q) =

2ḡ2
µµ−2ε

π1+εΓ(1− ε)

(
~q 2
1 ~q ′ 22 + ~q ′ 21 ~q 2

2

~k 2
− ~q 2

) {
1 + ḡ2

µ

[
11
3ε

+

(
~k 2

µ2

)ε {
−11

3ε
+

67
9
− 2ζ(2) + ε

(
−404

27
+ 14ζ(3) +

11
3

ζ(2)
)}]}

, (8)

where ~k = ~q1 − ~q2 = ~q ′1 − ~q ′2 . The second, putting ε = 0 and
ḡ2

µ = αs(µ2)Nc/(4π) , is given by

Kreg
r (~q1, ~q2; ~q) =

α2
s(µ2)N2

c

16π3

[
2(~q 2

1 +~q 2
2 −~q 2)

(
ζ(2)− 50

9

)
− 11

3

(
~q 2
1 ln

(
~q 2
1

~k 2

)

+~q 2
2 ln

(
~q 2
2

~k 2

)
− ~q 2 ln

(
~q 2
1 ~q 2

2

~k 4

)
− ~q 2

1 ~q ′ 22 − ~q 2
2 ~q ′ 21

~k 2
ln

(
~q 2
1

~q 2
2

))
+~q 2

(
1
2

ln2

(
~q 2
1

~q 2
2

)

+ ln
(

~q 2
2

~q 2

)
ln

(
~q ′22

~q 2

)
+ ln

(
~q 2
1

~q 2

)
ln

(
~q ′21

~q 2

))
+ ln

(
~q 2
1

~q 2
2

)(
~q ′21

2
ln

(
~q 2
2

~k 2

)
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−~q ′22

2
ln

(
~q 2
1

~k 2

)
− ~q 2

1 ~q ′ 22 + ~q 2
2 ~q ′ 21

2~k 2
ln

(
~q 2
1

~q 2
2

)
+

~q ′ 21 (~q 2
1 − 3~q 2

2 )

2~k 2
ln

(
~k 2

~q 2
2

)

+
~q ′ 22 (3~q 2

1 − ~q 2
2 )

2~k 2
ln

(
~k 2

~q 2
1

))
+

(
~q 2(~k 2 − ~q 2

1 − ~q 2
2 ) + 2~q 2

1 ~q 2
2 + ~q 2

1 ~q ′ 21 + ~q 2
2 ~q ′ 22

− (~q 2
1 − ~q 2

2 )(~q 2
1 + ~q 2

2 )(~q ′ 21 − ~q ′ 22 )

2~k 2
−

~k 2

2
(~q ′ 21 + ~q ′ 22 )

)
I(~k 2, ~q 2

2 , ~q 2
1 )

−2J(~q1, ~q2; ~q)− 2J(−~q2,−~q1;−~q)

]
+

{
~qi ←→ ~q ′i

}
. (9)

In expression (9) two quantities appear, precisely

I(a, b, c) =
∫ 1

0

dx

a(1− x) + bx− cx(1− x)
ln

(
a(1− x) + bx

cx(1− x)

)
(10)

and

J(~q1, ~q2; ~q) =
∫ 1

0

dx

∫ 1

0

dz

{
~q1~q

′
1

(
(2− x1x2) ln

(
Q2

~k 2

)
− 2

x1
ln

(
Q2

Q2
0

))

− 1
2Q2

x1x2(~q 2
1 − 2~q1~p1)(~q ′21 − 2~q ′1 ~p2)

+
2
x1

[(
x2~q1~q

′
1 (~p1(~q ′1 − ~p2))− ~q ′ 21 ~q1~p2

) 1
Q2

+
(
z(1− z)~q ′ 22 ~q1~q

′
1 + ~q ′ 21 (z~q1

~k + (1− z)~q1~q
′
1)

) 1
Q2

0

]
− 1

Q2

(
~q ′ 21 ~q1 (~p1 − 2~q ′1)

+4x1~q
2
1 (~q ′1~p2) + ~q ′1~q1(~q ′1~q1 − ~q ′1~p1 − ~q1~p2) + 2(~q ′1~p1)(~q1~p2)− 2(~q ′1~p2)(~q1~p1)

)

+~q ′ 21

[ −1
µ2

2Q
2

(
2
x2

x1
(~q1~p2)~q ′1~k + x2(~q ′1~p2)(~q 2

2 − ~k 2) + 2(~q2~p2)~q1~q

)

+
2

µ2
0Q

2
0

1
x1

(~q1~p0)~q ′1~k −
~q1(~q ′1 + ~k)

x1

(
x2

~p 2
2

ln
(

Q2

µ2
2

)
− 1

~p 2
0

ln
(

Q2
0

µ2
0

))

+
1
~p 2
2

(
1
~p 2
2

ln
(

Q2

µ2
2

)
+

1
Q2

)(
2
x2

x1
(~q1~p2)(~q ′1 + ~k)~p2 − 2((x2~q

′
1 + ~q2)~p2)~q1~p2

)

− 1
~p 2
0

(
1
~p 2
0

ln
(

Q2
0

µ2
0

)
+

1
Q2

0

)(
2

1
x1

(~q1~p0)(~q ′1 + ~k)~p0

)
+

(x2~q
′
1 + ~q2)~q1

~p 2
2

ln
(

Q2

µ2
2

)
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+
~q 2
1

d

(
(~q2

~k)(~q ′2~k)
(

Q2

d
L − 1

~k 2

)
+ (~q2~p2)(~q ′2~k)

(
1
µ2

2

− µ2
1

d
L

)
+ (~q2

~k)(~q ′2~p1)

×
(

1
µ2

1

− µ2
2

d
L

)
+ (~q2~p2)(~q ′2~p1)

(
~k 2

d
L − 1

Q2

)
+

(~q2~q
′
2)

2
L

)]}
. (11)

Here we make use of the following positions:

~p1 = zx~q1 + (1− z)(x~k − (1− x)~q ′2),

~p2 = z((1− x)~k − x~q2) + (1− z)(1− x)~q ′1 ; ~p1 + ~p2 = ~k,

Q2 = x(1− x)(~q 2
1 z + ~q ′21 (1− z)) + z(1− z)(~q 2

2 x + ~q ′22 (1− x)− ~q 2x(1− x)),

µ2
i = Q2+~p 2

i , ~p0 = z~k+(1−z)~q ′1 ; Q2
0 = z(1−z)~q ′ 22 , µ2

0 = z~k 2+(1−z)~q ′ 21 ,

d = µ2
1µ

2
2−~k 2Q2 = z(1−z)x(1−x)

(
(~k 2 − ~q 2

1 − ~q ′ 22 )(~k 2 − ~q ′ 21 − ~q 2
2 ) + ~k 2~q 2

)

+~q 2
1 ~q 2

2 xz(x+z−1)+~q ′ 21 ~q ′ 22 (1−x)(1−z)(1−x−z), L = ln
(

µ2
1µ

2
2

~k 2Q2

)
. (12)

Note that the integral I(a, b, c) is invariant with respect to any permutation
of its arguments, which can be seen from the representation

I(a, b, c) =
∫ 1

0

∫ 1

0

∫ 1

0

dx1dx2dx3δ(1− x1 − x2 − x3)
(ax1 + bx2 + cx3)(x1x2 + x1x3 + x2x3)

. (13)

In particular, I(k2, q2
2 , q2

1) does not change performing the substitution
q1 ↔ −q2.

As far as the quantity J is concerned, its expression (11) is rather cum-
bersome. Unfortunately, till now our attempts to find a more simple repre-
sentation for it have been unsuccessful.

All singularities of Kr are present only in its first part Ksing
r . We recall

that the one-gluon- and two-gluon-production contributions to Kr separately
contain first and second order poles at ε = 0. When summing these two
contributions the pole terms cancel, so that at fixed nonzero ~k2, when the
term

(
~k 2/µ2

)ε

in expression (8) of the kernel can be expanded in ε, the

sum is finite at ε = 0. However expression (8) is singular at ~k 2 = 0 so
that, when it is integrated over q2, the region of so small ~k 2, such that
ε| ln

(
~k 2/µ2

)
| ∼ 1, does contribute. Therefore the expansion of

(
~k 2/µ2

)ε

is
not done in expression (8). Moreover, the terms ∼ ε are taken into account
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in the coefficient of the expression divergent at ~k 2 = 0, in order to save all
contributions non-vanishing in the limit ε → 0 after integration.

The part K(reg)
r is finite in the limit ε = 0. Moreover, integration of this

part in Eq. (1) for the Green’s function does not create singularities at ε = 0
as well. Indeed, the points ~r = 0 and ~r ′ = 0, which at first glance could
give the singularities in Eq. (1), are not dangerous because of the “gauge
invariance" properties (5) of the kernel Kr. It follows from formula (7) that
if one of two parts (K(sing)

r or K(reg)
r ) of the kernel possesses these properties,

the same is valid for the other. “Gauge invariance" of K(sing)
r is evident from

expression (8), therefore K(reg)
r also turns into zero at zero Reggeon momenta.

It is worthwhile to say that the fulfillment of these properties for K(reg)
r can

be shown directly using the explicit expression (9), although this is far from
to be evident.

As we have already seen, at ε = 0 divergencies can come from the region
of small ~k. Nevertheless, it is not difficult to check from expression (9) for
K(reg)

r that non-integrable singularities at ~k = 0 are absent.
The total kernel for the Pomeron channel must be infrared safe. Infrared

singularities of Kr must be cancelled by singularities of the gluon trajectory
after integration of the total kernel with any function nonsingular at ~k = 0.
Indeed, one can easily see that this is the case using Eqs. (3) and (8).

It is convenient to present the total kernel in such a form that the cancel-
lation of singularities between real and virtual contributions becomes evident.
To this aim let us first switch from the dimensional regularization to the cut-
off ~k2 > λ2, with λ → 0, which is more convenient for practical purposes.
With such regularization we can pass to the limit ε → 0 in the real part of
the kernel, so that for its singular part we get

Ksing
r (~q1, ~q2; ~q) → Kλ

r (~q1, ~q2; ~q) =
αs(µ2)Nc

2π2

(
~q 2
1 ~q ′ 22 + ~q ′ 21 ~q 2

2

~k 2
− ~q 2

)

×
{

1− αs(µ)Nc

4π

(
11
3

ln

(
~k 2

µ2

)
− 67

9
+ 2ζ(2)

)}
θ((~q1 − ~q2)2 − λ2) . (14)

The trajectory must be transformed in such a way that the cut-off regular-
ization yields the same result as the ε regularization does:

ω(t) → ωλ(t) = lim
ε→0

(
ω(t) +

1
2

∫
d2+εq2

~q 2
2 ~q ′ 22

K(1)
r (~q1, ~q2; ~q)θ(λ2 − (~q1 − ~q2)2)

)

= −αs(µ2)Nc

2π

{
ln

(−t

λ2

)
− αs(µ2)Nc

4π

[
11
6

(
ln2

(−t

µ2

)
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− ln2

(
λ2

µ2

))
−

(
67
9
− π2

3

)
ln

(−t

λ2

)
+ 6ζ(3)

]}
. (15)

It is easy to check that by integrating over d2q2 any function non-singular
for ~k = 0 with the total kernel (2) at ω(t) → ωλ(t) and Ksing

r (~q1, ~q2; ~q) →
Kλ

r (~q1, ~q2; ~q) one obtains a λ -independent result in the limit λ → 0. Moreover,
it is also easy to find a form of the kernel which does not contain λ at all. It
is sufficient to find a representation

ωλ(−~q 2
1 ) =

∫
d2q2fω(~q1, ~q2)θ((~q1 − ~q2)2 − λ2) (16)

with a function fω such that the non-integrable singularities at ~k = ~q1−~q2 =
~q ′1 − ~q ′2 = 0 are cancelled in the “regularized virtual kernel"

Kreg
v (~q1, ~q2; ~q) = fω(~q1, ~q2) + fω(~q ′1 , ~q ′2) +

Ksing
r (~q1, ~q2; ~q)|ε=0

~q 2
2 ~q ′ 22

. (17)

After that we can proceed to the limit λ = 0:
(
K̂Ψ

)
(~q1) =

∫
d2q2

{
Kreg

v (~q1, ~q2; ~q)Ψ(~q1)

+
Ksing

r (~q1, ~q2; ~q)|ε=0

~q 2
2 ~q ′ 22

(Ψ(~q2)−Ψ(~q1)) +
Kreg

r (~q1, ~q2; ~q)
~q 2
2 ~q ′ 22

Ψ(~q2)
}

. (18)

Of course, the choice of the function fω contains a large arbitrariness. A
simple choice is

fω(~q1, ~q2) = −αs(µ2)Nc

2π2

~q1
2

~k 2(~q1
2 + ~k 2)

×
{

1− αs(µ)Nc

4π

(
11
3

ln

(
~k 2

µ2

)
− 67

9
+ 2ζ(2)

+
(

6ζ(3)− 11
3

ζ(2)
) ~k 2

(~q1
2 + ~k 2)

)}
. (19)

In a subsequent paper we shall present the results of the investigation of
properties of the kernel.
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