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Abstract

Radiation from high energy electrons in an oriented crystal can be
considered in a frame of the quasiclassical operator method which ap-
pears to be a most satisfactory approach to the problem. Under some
quite generic assumptions the general expression is derived for the prob-
ability of circularly polarized photon emission from the longitudinally
polarized electron in oriented crystal. The particular mechanism of
radiation depends on interrelation between the angle of incidence ϑ0

(angle between the momentum of initial electron and axis (plane) of
crystal) and angle ϑv ≡ V0/m (V0 is the scale of a potential of axis or
a plane relative to which the angle ϑ0 is defined). When ϑ0 � ϑv one
has magnetic bremsstrahlung type of radiation (with corrections ∝ ϑ2

0

which are due to inhomogeneous character of field in crystal). When
ϑ0 � ϑv one obtains the theory of coherent bremsstrahlung, while for
ϑ0 ≥ ϑv one arrives to the modified theory of coherent bremsstrahlung.
At high energy radiation in oriented crystals is strongly enhanced com-
paring with standard bremsstrahlung.

c©Budker Institute of Nuclear Physics SB RAS
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1 Introduction
The quasiclassical operator method developed by authors [1]-[3] is adequate
for consideration of the electromagnetic processes at high energy. The prob-
ability of photon emission has a form (see [4], p.63, Eq.(2.27); the method is
given also in [5],[6])

dw =
e2

(2π)2
d3k

ω

∫
dt2

∫
dt1R

∗(t2)R(t1) exp
[
− iε
ε′

(kx(t2) − kx(t1))
]
,

(1.1)
where kµ = (ω,k) is the 4-momentum of the emitted photon, k2 = 0, xµ(t) =
(t, r(t)), t is the time, and r(t) is the particle location on a classical trajectory,
kx(t) = ωt − kr(t), ε′ = ε − ω, we employ units such that � = c = 1. The
matrix element R(t) is defined by the structure of a current. For an electron
(spin 1/2 particle) one has

R(t) =
m√
εε′

usf
(p′)ê∗usi(p) = ϕ+

sf
(A(t) + iσB(t))ϕsi ,

A(t) =
1
2

(
1 +

ε

ε′
)
e∗ϑ(t),

B(t) =
ω

2ε′

(
e∗ ×

(
n
γ
− ϑ(t)

))
, (1.2)

here e is the vector of the polarization of a photon (the Coulomb gauge
is used),the four-component spinors usf

, usi and the two-component spinors
ϕsf

, ϕsi describe the initial (si) and final (sf ) polarization of the electron,
v=v(t) is the electron velocity, ϑ(t) = (v − n) � v⊥(t), v⊥ is the component
of particle velocity perpendicular to the vector n = k/|k|, γ = ε/m is the
Lorentz factor. The expressions in Eq.(1.2) are given for radiation of ultra-
relativistic electrons, they are written down with relativistic accuracy (terms
∼ 1/γ are neglected) and in the small angle approximation.

The important parameter χ characterizes the quantum effects in an ex-
ternal field, when χ � 1 we are in the classical domain and with χ ≥ 1 we
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are already well inside the quantum domain

χ =
|F|γ
F0

, F = E⊥ + (v × H), E⊥ = E− v(vE), (1.3)

where E(H) is an electric (magnetic) field, F0 = m2/e = (m2c2/e�)
is the quantum boundary (Schwinger) field: H0 = 4.41 · 1013Oe,
E0 = 1.32 · 1016V/cm.

The quasiclassical operator method is applicable when H � H0, E � E0

and γ � 1.
The general expression for combination R∗(t2)R(t1) = R∗

2R1 with all
polarization taken into account is

R∗
2R1 ≡ N21(ζi, ζf , e)

=
1
4
Tr
[
(1 + ζiσ) (A∗

2 − iσB∗
2) (1 + ζfσ) (A1 + iσB1)

]
, (1.4)

where we use for the description of electron polarization the vector ζ describ-
ing the polarization of the electron (in its rest frame), ζi is the spin vector
of initial electron, ζf is the spin vector of final electron. Summing over final
spin states we have∑

ζf

R∗
2R1 = A∗

2A1 +B∗
2B1 + i [A∗

2(ζiB1) − A1(ζiB
∗
2) + ζi (B∗

2 × B1)] , (1.5)

where the two first terms describe the radiation of unpolarized electrons and
the last terms is an addition dependent on the initial spin.

A combination of matrix elements R∗
2R1 for spin-flip transition follows

from Eq.(1.4) after substitution ζi = ζ, ζf = −ζ

N21(ζ,−ζ, e) = B∗
2B1 − (ζB∗

2)(ζB1) − iζ (B∗
2 × B1) . (1.6)

It depends on the spin-flip amplitudes B1,2 only.
After summing in Eq.(1.5) over the polarization of emitted photon λ we

obtain for unpolarized electrons
∑
λ,ζf

R∗
2R1 → 1

2ε′2

[
ω2

γ2
+
(
ε2 + ε′2

)
ϑ1ϑ2

]
. (1.7)

For the longitudinally polarized initial electron and for circular polarization
of emitted photon we have

∑
ζf

R∗
2R1 =

1
4ε′2

{
ω2

γ2
(1 + ξ) +

[
(1 + ξ)ε2 + (1 − ξ)ε′2

]
ϑ1ϑ2

}
, (1.8)
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where ξ = λζ, λ = ±1 is the helicity of emitted photon, ζ = ±1 is the
helicity of the initial electron. In this expression we omit the terms which
vanish after integration over angles of emitted photon.

Just for selected polarizations there are the strong effects in the radiation
probability in high-energy limit: in the hard part of spectrum the longitudi-
nally polarized initial electron emits mainly circularly polarized photon. This
is a particular example of helicity transfer.

2 General approach to radiation in oriented
crystals

The theory of high-energy electron radiation and electron-positron pair cre-
ation in oriented crystals was developed in [7]-[8], and given in [4]. In these
publications the radiation from unpolarized electrons was considered includ-
ing the polarization density matrix of emitted photons. Since Eq.(1.8) has the
same structure as Eq.(1.7), below we use systematically the methods of men-
tioned papers to obtain the characteristics of radiation from longitudinally
polarized electron.

Let us remind that along with the parameter χ which characterizes the
quantum properties of radiation there is another parameter


 = 2γ2
〈
(∆v)2

〉
, (2.1)

where
〈
(∆v)2

〉
=
〈
v2
〉 − 〈v〉2 and 〈. . .〉 denotes averaging over time. In the

case 
 � 1 the radiation is of a dipole nature and it is formed during the
time of the order of the period of motion. In the case 
 � 1 the radiation
is of magnetic bremsstrahlung nature and it is emitted from a small part of
the trajectory.

In a crystal the parameter 
 depends on the angle incidence ϑ0 which is the
angle between an axis (a plane) of crystal and the momentum of a particle. If
ϑ0 ≤ ϑc (where ϑc ≡ (2V0/ε)1/2, V0 is the scale of continuous potential of an
axis or a plane relative to which the angle ϑ0 is defined) electrons falling on
a crystal are captured into channels or low above-barrier states, whereas for
ϑ0 � ϑc the incident particles move high above the barrier. In later case we
can describe the motion using the approximation of the rectilinear trajectory,
for which we find from Eq.(2.1) the following estimate


(ϑ0) = (2V0/mϑ0)
2 , (2.2)

5



For angles of incidence in the range ϑ0 ≤ ϑc the transverse (relative to an axis
or a plane) velocity of particle is v⊥ ∼ ϑc and the parameter obeys 
 ∼ 
c

where

c = 2V0ε/m

2. (2.3)

This means that side by side with the Lindhard angle ϑc the problem un-
der consideration has another characteristic angle ϑv = V0/m and 
c =
(2ϑv/ϑc)2.

We consider here the photon emission in a thin crystal when the condition

c � 1 is satisfied. In this case the extremely difficult task of averaging of
Eq.(1.1) and Eqs.(1.4)-(1.8), derived for a given trajectory, over all possible
trajectories of electrons in a crystal simplifies radically. In fact, if 
c � 1 then
in the range where trajectories are essentially non-rectilinear (ϑ0 ≤ ϑc, v⊥ ∼
ϑc) the mechanism of photon emission is of the magnetic bremsstrahlung
nature and the characteristics of radiation can be expressed in terms of local
parameters of motion. Then the averaging procedure can be carried out
simply if one knows the distribution function in the transverse phase space
dN(
,v⊥), which for a thin crystal is defined directly by the initial conditions
of incidence of particle on a crystal. For a given angle of incidence ϑ0 we have
dN/N = d3rF (r, ϑ0)/V , where V is the volume of a crystal and N is the total
number of particles. In the axial case the function F (r, ϑ0) is of the form

Fax(�, ϑ0) =
∫

d2
0

S(ε⊥(�0))
ϑ((ε⊥(�0) − U(�)), (2.4)

where U(�) is the continuous axial potential dependent on the transverse
coordinate � normalized so that U(�) = 0 at the boundary of a cell;

S(ε⊥(�0)) =
∫
ϑ((ε⊥(�0) − U(�))d2
, ε⊥(�0) =

εϑ2
0

2
+ U(�0), (2.5)

where ϑ(x) is the Heaviside function:ϑ(x) = 0 if x < 0 and ϑ(x) = 1 if x > 0.
For the planar case we have

Fpl(x, ϑ0) =
∫
ϑ(ε⊥0 − U(x))dx0

v(ε⊥0, x)

[∫
ϑ(ε⊥0 − U(y))dy

v(ε⊥0, y)

]−1

, (2.6)

where U(x) is the continuous potential of plane dependent on the coordinate
x, v(ε⊥0, x) = [2(v(ε⊥0 − U(x))/ε]1/2 is the transverse velocity of an electron,
and ε⊥0 = εϑ2

0/2+U(x0). It should be noted that in the case when ε⊥(�0) >
U0 (the above-barrier particles) the distribution Eq.(2.4) becomes uniform,
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whereas the distribution Eq.(2.6) becomes uniform only if ε⊥0 � U0, U0 is
the depth of potential well.

Substituting Eq.(1.8) into Eq.(1.1) we find after integration by parts of
terms nv1,2 (nv1,2 → 1) the general expression for energy loss of radiating
electron (dEξ = ωdwξ)

dEξ = −αm
2

8π2

d3k

εε′

∫
d3r

V
F (r, ϑ0)

×
∫
e−iA

[
ϕ1(ξ) +

1
4
ϕ2(ξ)γ2 (v1 − v2)

2

]
dt1dt2,

A =
ωε

2ε′

∫ t2

t1

[
1
γ2

+ (n − v(t))2
]
dt,

ϕ1(ξ) = 1 + ξ
ω

ε
, ϕ2(ξ) = (1 + ξ)

ε

ε′
+ (1 − ξ)

ε′

ε
. (2.7)

where α = e2 = 1/137, the vector n is defined in Eq.(1.1), the helicity of
emitted photon ξ is defined in Eq.(1.8).

The circular polarization of radiation is defined by the Stoke’s parameter
ξ(2):

ξ(2) = Λ(ζv), Λ =
dE+ − dE−
dE+ + dE−

, (2.8)

where the quantity (ζv) defines the longitudinal polarization of the initial
electrons, dE+ and dE− is the energy loss for ξ=+1 and ξ=-1 correspond-
ingly. In the limiting case ω � ε one has ϕ2(ξ) � 2(1 + ξω/ε) = 2ϕ1(ξ). So
the expression for the energy loss dEξ contains the dependence on ξ only as a
common factor ϕ1(ξ) only. Substituting in Eq.(2.8) one obtains the universal
result independent of a particular mechanism of radiation

ξ(2) =
ω

ε
(ζv). (2.9)

The periodic crystal potential U(r) can be presented as the Fourier series
(see e.g.[4], Sec.8 )

U(r) =
∑
q
G(q)e−iqr, (2.10)

where q = 2π(n1, n2, n3)/l; l is the lattice constant. The particle velocity can
be presented in a form v(t) = v0 + ∆v(t), where v0 is the average velocity.
If ϑ0 � ϑc, we find ∆v(t) using the rectilinear trajectory approximation

∆v(t) = −1
ε

∑ G(q)
q‖

q⊥ exp[−i(q‖t+ qr)], (2.11)
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where q‖ = (qv0), q⊥ = q − v0(qv0). If 
c � 1, there is a range of angles
ϑ0 which satisfies ϑc � ϑ0 � ϑv, where both the magnetic bremsstrahlung
description and the rectilinear trajectory approximation are valid. However,
since the magnetic bremsstrahlung approach provides the same description
for all angles ϑ0 � ϑv, the formula obtained in some range of ϑ0 remain valid
up to ϑ0 = 0. It is known that in range ϑ0 ≥ ϑv the rectilinear trajectory
approximation is valid as well for 
c � 1. So, after integration in Eq.(2.7)
over u = n−v0 (d3k = ω2dωdu) using Eq.(2.11) and passing to the variables
t, τ : t1 = t − τ, t2 = t + τ , we obtain after simple calculations the general
expression for the intensity of radiation valid for any angle of incidence ϑ0

dIξ ≡ dEξ

dt
=
iαm2

4πε2
ωdω

∫
d3r

V
F (r, ϑ0)

∫
dτ

τ − i0

[
ϕ1(ξ) − ϕ2(ξ)

×
(∑

q

G(q)
mq‖

q⊥ sin(q‖τ)e−iqr

)2 ]
e−iA2 , (2.12)

where

A2 =
m2ωτ

εε′


1 +

∑
q,q′

G(q)G(q′)
m2q‖q′‖

(q⊥q′
⊥)Ψ(q‖, q′‖, τ) exp[−i(q + q′)r]




Ψ(q‖, q′‖, τ) =
sin(q‖ + q′‖)τ

(q‖ + q′‖)τ
− sin(q‖τ)

q‖τ

sin(q′‖τ)

q′‖τ
. (2.13)

3 Radiation for ϑ0 � V0/m (magnetic
bremsstrahlung limit)

The behavior of intensity I Eq.(2.12) for various entry angles and energies
is determined by the dependence on these parameters of the phase A2 given
Eq.(2.13). Here we consider the axial case for ϑ0 � V0/m ≡ ϑv. The
direction of crystal axis we take as z−axis of the coordinate system. The
order of magnitude of the double sum in A2 is (G/m)2(q⊥/q‖)2Ψ(q‖, q′‖, τ).
For the vector q lying in the plane (x, y) we introduce notation qt, for such
vectors one has qz = 0 and the quantities in Eq.(2.13) can be estimated in
the following way:

G(q) ∼ V0, q⊥ ∼ 1/a, q‖ ∼ ϑ0/a, (3.1)
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where a is the size of the region of action of the continuous potential. For all
remaining vectors q⊥ ∼ q‖ ∼ 1/a. Then the contribution to the sum of the
terms with qz 
= 0 will be ∼ (V0/m)2Ψ ≤ (V0/m)2. Since (V0/m)2 � 1 this
contribution can be neglected. Thus, we keep in the sum only terms with qt

for which its value is ∼ (V0/mϑ0)2Ψ. The large value of the phase A2 leads to
an exponential suppression of intensity I. Therefore the characteristic value
of the variable τ in the integral Eq.(2.12) (which have the meaning of the
formation time (length) of the process) will be adjusted in a such way that
the large factor (V0/mϑ0)2 will be compensated by the function Ψ(q‖, q′‖, τ),
i.e. for small entry angles the contribution gives region where q‖τ � 1.
Expanding the phase A2 correspondingly we find an approximate expression
for ϑ0 � ϑv

A2 � m2ωτ

εε′

{
1 − τ2

3

∑
qt,q′

t

G(qt)G(q′
t)

(qtq′
t)

m2
exp [−i(qt + q′

t)�]

×
[
1 − τ2

10

(
(qtν)2 + (q′

tν)2 +
2
3
(qtν)(q′

tν)
)]}

, (3.2)

here ν = v0/v0 is the direction of entry of the initial electron, � = rt. We
cam rewrite Eq.(3.2) in the terms of the average potential of atomic string
U(�) =

∑
qt

G(qt) exp(−iqt�):

A2 =
m2ωτ

εε′

{
1 +

τ2

3
b2τ2 +

τ4

15

[
(b(ν∇)2b) +

1
3
((ν∇)b)2

]}
, (3.3)

where b = ∇U(�)/m, ∇ = ∂/∂�. For the pre-exponential factor in
Eq.(2.12) we find

[. . .] � ϕ1(ξ) − ϕ2(ξ)τ2

[
b2 +

τ2

3
(b(ν∇)b)

]
. (3.4)

Taking the integral over τ we obtain the spectral intensity for ϑ0 � V0/m.

dIF
ξ (ω) =

αm2ωdω

2
√

3πε2

∫
d2


s

{∫
d2
0

s(ε⊥(�0))
ϑ((ε⊥(�0) − U(�))R0(λ)

− (b(ν∇)2b)
3b4 R1(λ) +

λ

30b4

[
((ν∇)b)2 + 3(b(ν∇)2b)

]
R2(λ)

}
, (3.5)

9



where

R0(λ) = ϕ2(ξ)K2/3(λ) − ϕ1(ξ)
∫ ∞

λ

K1/3(y)dy,

R1(λ) = ϕ2(ξ)
(
K2/3(λ) − 2

3λ
K1/3(λ)

)
,

R2(λ) = ϕ1(ξ)
(
K1/3(λ) − 4

3λ
K2/3(λ)

)

+ϕ2(ξ)
(

4
λ
K2/3(λ) −

(
1 +

16
9λ2

)
K1/3(λ)

)
, (3.6)

here λ =
2m2ω

3εε′|b| , Kν(σ) is the modified Bessel function (McDonald’s func-

tion). Since the expression for dIF is independent of z, it follows that∫
d3r/V → ∫

d2
/s, where s is the transverse cross section area per axis.
The term in Eq.(3.5) with R0(λ) represent the spectral intensity in the mag-
netic bremsstrahlung limit with the flux redistribution taken into account.
The other terms are the correction proportional ϑ2

0.
If the potential U(�) can be considered as axially symmetric, we put

U = U(�2) and one can integrate over angles of vector �. We obtain

dIF
ξ (ω) =

αm2ωdω

2
√

3πε2

∫ x0

0

dx

x0

{∫ x0

0

dy

y0(ε⊥(y))
ϑ((ε⊥(y) − U(x))R0(λ)

−1
6

(
mϑ0

V0

)2
[
xg′′ + 2g′

xg3
R1(λ)

− λ

20g4x2

(
2x2g′2 + g2 + 14gg′x+ 6x2gg′′

)
R2(λ)

]}
, (3.7)

where we have adopted a new variable x = �2/a2
s, x ≤ x0, x

−1
0 = πa2

sdna =
πa2

s/s, as is the effective screening radius of the potential of the string, na is
the density of atoms in a crystal, d is the average distance between atoms of
a chain forming the axis;

ε⊥(y) =
εϑ2

0

2
+ U(y), y0(ε⊥(y)) =

∫ ∞

0

ϑ(ε⊥(y) − U(x))dx. (3.8)

The notation U ′(x) = V0g(x) is used in Eq.(3.7) and

λ =
m3asω

3εε′V0g(x)
√
x

=
u

3χsg(x)
√
x
, χs =

V0ε

m3as
, u =

ω

ε′
(3.9)
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For specific calculation we use the following for the potential of axis:

U(x) = V0

[
ln
(

1 +
1

x+ η

)
− ln

(
1 +

1
x0 + η

)]
. (3.10)

For estimates one can put V0 � Ze2/d, η � 2u2
1/a

2
s, where Z is the charge

of the nucleus, u1 is the amplitude of thermal vibrations, but actually the
parameter of potential were determined by means of a fitting procedure using
the potential Eq.(2.10) (table of parameters for different crystals is given in
Sec.9 of [4]). For this potential

g(x) =
1

x+ η
− 1
x+ η + 1

=
1

(x+ η)(x + η + 1)
. (3.11)

We shall assume, for the sake of simplicity, that the distribution is uniform
over the transverse coordinates. This is true in the case of large angles of
incidence ϑ0 > ϑc and is approximately correct in the case of beams with
a large angular spread ∆ϑ0 ∼ ϑc. In this case and for the assumptions
u� χs, (χs/u)4/3/
(ϑ0) � 1 we have

dIM
ξ

ωdω
=

αm2

6
√

3πx0ε2
Φξ, (3.12)

where

Φξ = Γ
(

2
3

)(
6χs

u

)2/3
[
ϕ2(u)

(
ln

18
√

3χs

u
− π

2
√

3
− C − l1(η)

)
− 3

2
ϕ1(u)

]

(3.13)
here

ϕ1(u) = 1 +
ξu

1 + u
, ϕ2(u) = (1 + ξ)(1 + u) +

1 − ξ

1 + u
, C = 0.577216...,

l1(η) = 3.975β2/3

(
1 +

8
15
β +

7
18
β2

)
− β

(
3
2

+
9
8
β +

13
14
β2

)
, (3.14)

where β = η/(1 + η). In derivation of Eq.(3.12) the integration over x is
carried out in the interval (0,∞). Since the main (logarithmic) contribution
into the integral in Eq.(3.7) comes from the interval x ∼ (χs/u)2/3, it is clear
that the asymptotic expression Eq.(3.12) is valid only is (χs/u)2/3 < x0.

At high energies (χs � 1) the expression for the intensity of radiation in
the magnetic bremsstrahlung limit IM

ξ (ε) becomes

IM
ξ (ε) � αV0g1ε

2mx0asχ
1/3
s

[(
1 +

11
16
ξ

)
(lnχs + g0) − 231

512
ξ

]
, (3.15)
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where

g1 =
(

2
3

)6

62/3Γ
(

2
3

)
� 0.3925,

g0 =
π

2
√

3
+

5
2

ln 3 + ln 2 − C − l1(η) � 0.6756− l1(η). (3.16)

The circular polarization of radiation is defined by Eq.(2.8), where we
substitute dE± → dI±. In the hard end of spectrum (ε′ � ε) Λ � 1 since
dI+ ∝ ε/ε′ and dI− ∝ ε′/ε. In the limit χs � 1 the radiation spectrum
extends into hard part up to u = ω/(ε − ω) ∼ χsas/u1, where under con-
dition |(ζv)| � 1 the emitted photons have practically the complete circular
polarization (the helicity coincide with electron helicity). For the integral
radiation intensity (where the main contribution gives the region ω ∼ ε−ω)
the circular polarization follows from Eq.(3.15):

Λ =
11
16

(
1 − 21

32(lnχs + g0)

)
. (3.17)

Here the main term coincide with circular polarization of radiation of polar-
ized electrons in external electromagnetic field, see Eq.(4.88) in [4].

In Fig.1 the spectral intensities of radiation dIM
+ /dω, dIM

− /dω and the
spectral intensity of radiation of unpolarized electrons dIM/dω = dIM

+ /dω+
dIM− /dω in tungsten crystal, axis < 111 >, temperature T = 293 K are
plotted for energy ε =250 GeV (curves 1,2,3, respectively) and for energy
ε =1 TeV (curves 4,5,6, respectively). It is seen that when ω/ε → 1 the
intensity dIM

+ /dω dominates (dIM
+ /dω � dIM− /dω), while for ω/ε � 1 the

degree of polarization diminishes (dIM
+ /dω → dIM

− /dω). It should be noted
that Eq.(2.9) is fulfilled within accuracy better 10% for ω/ε ≤ 0.2. In Fig.2
the circular polarization ξ(2) of radiation is plotted versus ω/ε for the same
crystal. This curve is true for both energies:ε =250 GeV and ε =1 TeV.
Actually this means that it is valid for any energy in high-energy region. At
ω/ε=0.8 one has ξ(2)=0.94 and at ω/ε=0.9 one has ξ(2)=0.99.

It is instructive to compare the obtained results with bremsstrahlung of
polarized electrons in amorphous medium which one write as (see e.g.[6])

ε
dIC

ξ

dω
=
αm2ε

8πεe

[
(1 + ξ)

(
1 − 2

3
ε′

ε

)
+
ε′2

ε2

(
1 − ξ

3

)
+

2
9L1

ε′

ε

(
1 + ξ

ω

ε

)]
,

(3.18)
where εe = m(8πZ2α2naλ

3
cL1)−1, for notations see Eqs.(3.7) and (3.10),

λc = 1/m is the electron Compton wavelength, L1 = 2(ln 183Z1/3 −
12
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Figure 1: Spectral intensity of radiation ε
dIM (ω)
dω

in tungsten crystal, axis

< 111 >, T = 293 K in units αm2 vs ω/ε. For the initial electron energy
ε=250 GeV curve 1 is dIM− /dω, curve 2 is dIM

+ /dω, curve 3 is dIM
+ /dω +

dIM
− /dω; and for the initial electron energy ε=1 TeV curve 4 is dIM

− /dω,
curve 5 is dIM

+ /dω, curve 6 is dIM
+ /dω + dIM

− /dω.

f(Zα)), f(z) = Re[ψ(1 + iz) − ψ(1)], ψ(x) is the logarithmic derivative
of the gamma function, the function f(Zα) gives the Coulomb corrections,
for tungsten L1=6.99, εe = 2.73 TeV. The dependence of the circular po-
larization ξ(2) on ω/ε for the intensity Eq.(3.18) is very close to shown in
Fig.2. For the integral bremsstrahlung intensity Eq.(3.18) one has Λ = 5/9.
However, as one can be seen from Fig.1, in the region ω ∼ ε the magni-
tude of intensity in oriented crystal is around 10 times larger than given
by Eq.(3.18) for both energies:ε =250 GeV and ε =1 TeV. The value
r = (IM/IC)max = (Lrad/Lch)max for different crystals is discussed in
Sec.17.3 and is given in Table 17.1 in [4]. This value attains maximum value
for light elements: in diamond for axis < 111 > r=168, in silicon for axis
< 110 > r=81.

It should be mentioned that for energies ε ≥ εe the process of hard photon
emission (ω ∼ ε) is affected by the multiple scattering (the LPM effect).
At ε � εe the suppression of spectral intensity of bremsstrahlung become
essential for the whole spectrum [10], [11]. On the contrary, the influence
of multiple scattering on the photon emission in a oriented crystal is rather
weak because the formation length in a oriented crystal is much shorter than
in an amorphous medium (see Sec. 21 in [4]).
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Figure 2: The circular polarization ξ(2) of radiation (for (ζv)=1) vs ω/ε for
the tungsten crystal, axis < 111 >, T = 293 K. The curve is valid for both
energies: ε=250 GeV and ε=1 TeV.

4 Modified theory of coherent bremsstrahlung
The estimates of double sum in the phase A2 made at the beginning of
previous section: ∼ (ϑv/ϑ0)2Ψ remain valid also for ϑ0 ≥ ϑv, except that
now the factor in the double sum is (ϑv/ϑ0)2 ≤ 1, so that the values |q‖τ | ∼ 1
contribute. We consider first the limiting case ϑ0 � ϑv, then this factor is
small and exp(−iA2) can be expanded accordingly. As a result Eq.(2.12)
acquires the form

dIcoh
ξ (ω) = − iαm

2ωdω

4πε2

∫ ∞

−∞

dτ

τ − i0
exp

(
−im

2ωτ

εε′

)∑
q,q′

G(q)G(q′)
m2q‖q′‖

(q⊥q′
⊥)

×
[
ϕ2(ξ) sin(q‖τ) sin(q′‖τ) + iϕ1(ξ)

m2ωτ

εε′
Ψ(q‖, q′‖, τ)

]

×
∫
d3r

V
exp[−i(q + q′)r]. (4.1)

The integration over coordinate r in Eq.(4.1) is elementary and gives δq+q′,0,
after which the sum over q′ and the integrals over τ are easily calculated by

14



means of the theory of residues. Finally we obtain

dIcoh
ξ (ω) =

αωdω

8ε2
∑
q

|G(q)|2 q2
⊥
q2‖

[
ϕ2(ξ) − ϕ1(ξ)

2m2ω

εε′q2‖

(
|q‖| − m2ω

2εε′

)]

× ϑ

(
|q‖| − m2ω

2εε′

)
. (4.2)

The obtained spectral distribution for unpolarized electrons
dIcoh = dIcoh

1 +dIcoh
−1 coincides with the result of standard theory of coherent

bremsstrahlung (CBS), see e.g. [9].
In the case χs � 1 (χs is defined in Eq.(3.9)), one can obtain from gen-

eral expression Eq.(2.12) the expression for spectral intensity, the region of
applicability of which is broader than that of standard CBS theory. For this
purpose it is necessary to take into account that the phase A2 Eq.(2.13) has
for q‖ + q′‖ 
= 0 terms of the order (ϑv/ϑ0)3/χs and (ϑv/ϑ0)4/χ2

s which can
be small even for ϑ0 ≤ ϑv if χs � 1. Therefore, assuming that these contri-
butions are small, we carry out the corresponding expansion of exp(−iA2),
while the term with q‖ + q′‖ = 0 in the double sum in A2 will be retained
in the exponent. As a result we obtain an expression which coincides in the
form with Eq.(4.1) where we must make the substitution

exp
(
−im

2ωτ

εε′

)
→ exp

(
−im

2
∗ωτ
εε′

)
, m2

∗ = m2
(
1 +




2

)
. (4.3)

Above the parameter 
 (Eq.(2.1)) has the form




2
=

1
m2

∑
q,q′

G(q)G(q′)
q⊥q′

⊥
q‖q′‖

[
δq‖+q′

‖,0 − δq‖,0δq′
‖,0

]
=

∑
q,q‖ �=0

|G(q)|2q2
⊥

m2q2‖
,

(4.4)

and in the term
sin(q‖ + q′‖)τ

(q‖ + q′‖)τ
it is necessary to assume that q‖ + q′‖ 
= 0. The

remaining calculations are carried out in the same way as in the transition
from Eq.(4.1) to Eq.(4.2). The final result can be presented in a form

dImcoh
ξ (ω)
dω

=
αu

8ε

∑
q

|G(q)|2 q2
⊥
q2‖

[
1 + ξ +

1 − ξ

(1 + u)2

− 8[1 + u(1 + ξ)]
(2 + 
)(1 + u)2

u

u0

(
1 − u

u0

)]
ϑ(u0 − u), (4.5)
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where
u0 =

4εq‖
m2(2 + 
)

, u =
ω

ε′
(4.6)

Equation (4.5) is not more complicated than Eq.(4.2) but has a significantly
broader range of applicability.

The spectral intensities Eqs.(4.2) and (4.5) can be much higher than the
Bethe-Heitler bremsstrahlung intensity for small angles of incidence ϑ0 with
respect to selected axis. For the case ϑ0 � 1 the quantity q‖ can be repre-
sented as

q‖ � 2π
d
n+ q⊥v0.⊥ (4.7)

The main contribution to the sum in Eqs.(4.2) and (4.5) for small ϑ0 is given
q with n = 0, then

q‖ �
(

2π
f
k cosϕ+

2π
h
l sinϕ

)
ϑ0, (4.8)

where f and h are the characteristic periods of the potential in the transverse
plane.

Let us consider the spectral intensity of radiation in the extreme limit,
when the parameter λ ≡ 2ε|q‖|min/m

2 ∼ εϑ0/m
2as � 1. In this case the

maximum of intensity of coherent bremsstrahlung is attained at such values
of ϑ0 where the standard theory of coherent bremsstrahlung becomes invalid.
Bearing in mind that if λ � 1 and ϑ0 ∼ V0/m, then χs ∼ λ � 1, we can
conveniently use a modified theory of coherent bremsstrahlung.

The direction of transverse components of particle’s velocity in Eq.(4.7)
can be selected in a such way, that the spectral intensity described by Eq.(4.5)
has a sharp maximum near the end of spectrum at ω = 2ελ(2 + 2λ + 
)−1

with relatively small (in terms of λ−1) width ∆ω ∼ ε(1 + 
/2)/λ = m2(1 +

/2)/2|q‖|min:

(
dIξ
dω

)
max

=
α
|q‖|min

4(2 + 
)

(
1 + ξ +

1 − ξ

(1 + um)2

)
, um =

2λ
2 + 


. (4.9)

It is seen that in the maximum of spectral distribution the radiation intensity
with opposite helicity (ξ = −1) is suppressed as 1/(1 + um)2. At u > um

one have to take into account the next harmonics of particle acceleration. In
this region of spectrum the suppression of radiation intensity with opposite
helicity is more strong, so the emitted photons have nearly complete circular
polarization.
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Comparing Eq.(4.9) with Eq.(3.18) for bremsstrahlung for ε′ � ε we
find that for the same circular polarization (ξ(2) � (ζv)) in the particular
case 
 = 1 the magnitude of spectral intensity in Eq.(4.9) is about χs(εe)
times larger than the spectral intensity in Eq.(3.18). For tungsten W one has
χs(εe) = 78. Taking into account that ∆ω ∼ ε/χs(ε) = εe/χs(εe) we find
that

∆ω
(
dIξ
dω

)
max

∼ εe

Lrad
,

dNγ

dt
∼ εe

ε

1
Lrad

, (4.10)

where Nγ is the number of emitted photons. So, it is seen from above analysis
that under these conditions the considered mechanism of emission of photons
with circular polarization is especially effective because there is gain both in
monochromacity of radiation and total yield of polarized photons near hard
end of spectrum.

5 Conclusions
It is shown above that at high energy the radiation from longitudinally polar-
ized electrons in oriented crystals is circularly polarized and ξ(2) → 1 near the
end of spectrum. This is true in magnetic bremsstrahlung limit ϑ0 � V0/m
as well as in coherent bremsstrahlung region ϑ0 > V0/m. This is particular
case of helicity transfer.

It should be noted that in crossing channel: production of electron-
positron pair with longitudinally polarized particles by the circularly polar-
ized photon in an oriented crystal the same phenomenon of helicity transfer
takes place in the case when the final particle takes away nearly all energy of
the photon. The corresponding formulas can be obtained from given above
using substitution rules. For processes in external electromagnetic field this
item is discussed in Sec.3.3 of [4].

So, the oriented crystal is a very effective device for helicity transfer from
an electron to photon and back from a photon to electron or positron. Near
the end of spectrum this is nearly 100% effect.
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