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Abstract

The two-loop quark Regge trajectory is obtained at arbitrary space-time dimen-
sion D using the s-channel unitarity conditions. Although explicit calculations
are performed for massless quarks, the method used allows to find the tra-
jectory for massive quarks as well. At D → 4 the trajectory turns into one
derived earlier from the high-energy limit of the two-loop amplitude for the
quark-gluon scattering. The comparison of two expressions, obtained by quite
different methods, serves as a strict cross check of many intermediate results
used in the calculations, and their agreement gives a strong evidence of accu-
racy of these results.
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1 Introduction
Perturbative QCD is widely used for the description of semihard [1] as well as
hard processes [2]. But whereas the theory of the latter ones is clear and plain,
a lot of problems remains unsolved for the former processes. The applicability
of perturbation theory, improved by the renormalization group, to a hard
process with a large typical virtuality Q2 is justified by the smallness of the
strong coupling constant αs(Q2). In the semihard case, however, smallness
of the ratio x of the typical virtuality Q2 to the squared c.m.s. energy s
requires resummation of the terms strengthened by powers of ln(1/x). In the
scattering channel this problem is related to the theoretical description of
high energy amplitudes at fixed (not growing with s) momentum transfer t. It
turns out, that the Gribov-Regge theory of complex angular momenta, which
was developed much before appearance of QCD, is eminently suitable for
description of the QCD amplitudes, due to the remarkable property of QCD
– Reggeization of its elementary particles, gluons and quarks [3]-[6]. The
Reggeization means, in particular, that with account of radiative corrections
in the high energy limit s-dependence of QCD amplitudes with gluon (G)
or quark (Q) quantum numbers in the t–channel is given by Regge factors
(s)jP (t), with P = G or P = Q accordingly. The functions jP (t) with the
property jP (m2

P ) = sP (mP and sP are respective mass and spin values),
called Regge trajectory, describe motion of poles of corresponding t–channel
partial waves in the complex angular momentum plane. In this respect QCD
sharply differs from QED, where only amplitudes with electron exchange in
the t-channel [7], but not with photon one [8], acquire the Regge factors.

The Reggeization phenomenon is extremely important at high energy.
The gluon Reggeization is especially significant, since gluon exchanges in the
t-channel provide non-decreasing at large s cross sections. In particular, the
gluon Reggeization constitutes the basis of the famous BFKL approach [5, 9]
to the theoretical description of high energy processes in QCD. Formulated
originally in leading logarithmic approximation (LLA), the BFKL approach
is developed now in next-to-leading one (for references see, for instance, [10]),
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since LLA is not sufficiently reliable, especially because it does not fix scales
neither longitudinal (for s), nor transverse (for running coupling αs) mo-
menta. This development extensively uses the gluon Reggeization, which
has been proved in LLA [11], but in next-to-leading approximation (NLA)
till now remains a hypothesis, although successfully passed through a set
of stringent tests on self-consistency (see, for instance, [12] and references
therein). Accordingly, the next-to-leading order (NLO) gluon Regge trajec-
tory and Reggeized gluon vertices are calculated; moreover, a way for the
proof of the gluon Reggeization in NLA is outlined (see, e.g., [10] and refer-
ences therein).

Along with the Pomeron, which appears in the BFKL approach as a
compound state of two Reggeized gluons, the hadron phenomenology requires
Reggeons, which can be constructed in QCD as colorless states of Reggeized
quarks and antiquarks. It demands further development of the Reggeized
quark theory which remains in a worse state than the Reggeized gluon theory,
although a noticeable progress was achieved last years. In particular, multi-
particle Reggeon vertices required in NLA were found [13] and the NLO
corrections to the LLA vertices were calculated [14, 15] assuming the quark
Reggeization in NLA. Note that the Reggeization hypothesis is extremely
powerful; but in the quark case actually it was not proved even in LLA,
where merely its self-consistency was shown, in all orders of αs but only in a
particular case of elastic quark-gluon scattering [6]. Recently the hypothesis
was tested at NLO in order α2

s in [16], where its compatibility with the two-
loop amplitude for the quark-gluon scattering was exhibited and the NLO
correction to the quark trajectory was found in the limit of the space-time
dimension D tending to the physical value D = 4.

In this paper we investigate the quark Reggeization in NLO by the method
based on the s-channel unitarity and the analyticity of scattering amplitudes,
which was developed for analysis of processes with gluon exchanges [4, 5] and
was already successfully applied to processes with fermion exchanges [6]. The
two-loop quark trajectory at arbitrary space-time dimension D is obtained as
a particular result of the investigation. At D → 4 the trajectory goes into one
derived in [16]. This agreement testifies to accuracy of many intermediate
results used in both derivations. In the method used here the trajectory is
obtained from the requirement of the compatibility of the Reggeized form of
the amplitudes with the s-channel unitarity at the two-loop level. A possible
generalization of this requirement to all orders of perturbation theory should
give the "bootstrap" conditions on the Reggeized quark vertices and the
trajectory in QCD. Verification of them will give a strict test for the quark
Reggeization. A proof of the Reggeization is also possible on this way.
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The calculation of the two-loop corrections to the quark trajectory is
performed explicitly for massless quarks; but the method used here allows to
do it for massive quarks as well, since all necessary one–loop Reggeon vertices
for the massive case are known now.

The paper is organized as follows. In the next Section all necessary deno-
tations are introduced and the method of calculation is discussed. Section 3
is devoted to the calculation of the two–particle contribution to the s–channel
discontinuity of the quark–gluon scattering amplitude. The contribution of
the three–particle intermediate state is calculated in Section 4. The final
expressions for the discontinuity and the two-loop corrections to the quark
trajectory are presented and discussed in Section 5. For convenience, the
integrals encountered in Sections 3 and 4 are listed in Appendices A and B
respectively. Details of the calculation of a new nontrivial integral arising in
present calculations are given in Appendix C.

2 Denotations and method of calculation
Let us consider the backward quark-gluon scattering process (see Fig. 1)
in the limit of large (tending to infinity) c.m.s. energy and fixed momentum
transfer t ≡ q2 = (pQ−pG′)2. We use the Sudakov decomposition of momenta

�
Q

G

G′

q

Q′

Figure 1: Schematic representation of the backward quark–gluon scattering
process G+Q→ Q′ +G′. The triple line denotes an intermediate t–channel
state with momentum q = pQ − pG′ = pQ′ − pG.

p = βp1 + αp2 + p⊥ ,

p2
1 = p2

2 = 0 , (p1 + p2)2 = s , sαβ = p2 − p2
⊥ , (2.1)

supposing that the momenta pG, pQ′ and pQ, pG′ are close to the light-cone
momenta p1 and p2 respectively, that is

βG ∼ βQ′ ∼ αQ ∼ αG′ � 1, βQ � βG′ � αG � αQ′ ∼ |t|
s
, (2.2)

5



and all transverse momenta are limited, so that q � q⊥. We don’t suppose
that p1 and p2 are contained in the initial momentum plane, in order to
maintain symmetry between cross channels and to make more evident sub-
stitutions for transitions between channels. For a gluon having momentum ka

(kb) with predominant component along p1 (p2) we use physical polarization
vectors in the light-cone gauge e(ka)p2 = 0 (e(kb)p1 = 0), so that

e(ka) = e(ka)⊥ − (e(ka)ka)⊥
kap2

p2 , e(kb) = e(kb)⊥ − (e(kb)kb)⊥
kbp1

p1 , (2.3)

where (ab)⊥ means (a⊥b⊥). Furthermore, since with our choice of gauges
gluon polarization vectors are expressed in terms of their transverse compo-
nents, from now we will use only these components, without explicit indica-
tions, so that everywhere below e means e⊥. The same we will do for the
momentum transfer q.

The large s and fixed t limit of scattering amplitudes is related to quantum
numbers in the t-channel. For the gauge group SU(Nc) t-channel colour state
of the process depicted at Fig. 1 contains three irreducible representations of
the colour group (for QCD with Nc = 3 it is 3⊕ 6̄⊕ 15). Therefore it is nat-
ural to decompose the quark-gluon scattering amplitude into three parts, in
accordance with the representations [6, 16]. At the same time, in the Gribov–
Regge theory each part must be decomposed into two pieces according to the
new quantum number – signature, which is introduced in the theory. Besides
quantum numbers, commonly used for particle classification, a Reggeon has
definite signature, positive or negative, which is actually a parity of the t-
channel partial waves in respect of the substitution cos θt → − cos θt (that
turns into s → u = −s in the limit of large s and fixed t). Consequently,
there are six terms A(±)

χ , χ = 3, 6̄ and 15 in full decomposition [6, 16] of
the quark-gluon scattering amplitude. As it is known [6], in LLA only one
of the positive signature amplitudes, namely A(+)

3 , does survive; and at the
same time it has the Reggeized form. It is not so for the negative signature
amplitudes. The Bethe-Salpiter type equation obtained for them in LLA [6]
has not a simple Regge-type solution (in fact, no solution has been found at
all). Note that they are not actually leading in each order of perturbation
theory, because leading logarithms cancel in them as the result of antisym-
metry with respect to the exchange s→ u = −s. Below we consider only the
amplitudes of positive signature. As we will see, in NLA, as well as in LLA,
only amplitudes with a colour triplet in the t-channel survives out of them.
For the quark-gluon scattering the contribution of the Reggeized quark can
be represented as (here and below we write symbols of initial (final) particles
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as lower (upper) indices of scattering amplitudes and put on the first place
particles with momenta close to p1):

RQ′G′
G Q = ΓQ′G

1
mQ − q̂

1
2

[(−s
−t

)δT(q̂)

+
(
s

−t
)δT(q̂)

]
ΓG′Q , (2.4)

where ΓQ′G and ΓG′Q are effective vertices for interaction of particles (quarks
and gluons) with the Regeized quark; we call them PPR vertices, and we call
δT(q̂) – the quark trajectory. Strictly speaking, for massive quarks there are
two trajectories, in accordance with two possible parity states for a off mass
shell quark. These trajectories are determined by eigenvalues of δT(q̂). We
perform actual calculations for the massless case, when δT(q̂) depends in fact
not on q̂, but on q̂2 = t, and write it as δT(t). Note, however, that the PPR
vertices ΓQ′G and ΓG′Q are known now for massive quarks [15], so that all
consideration presented below can be transferred on the massive case in a
straightforward way.

We demonstrate that the Reggeized form (2.4) is compatible with the
s-channel unitarity and obtain the NLO contribution to the trajectory δT.
More precisely, we calculate, using the unitarity relation, both logarithmic
and non-logarithmic terms in the two-loop s-channel discontinuity of the
backward quark-gluon scattering amplitude with positive signature and prove
that only colour triplet t-channel states contribute to the discontinuity. It
means that only the colour triplet part A(+)

3 of the amplitude does survive at
NLO as well as at LO. We compare the calculated discontinuity with the dis-
continuity of the Reggeized quark contribution (2.4). The logarithmic terms
of confronted discontinuities turn out to be equal. The non-logarithmic terms
in the discontinuity of (2.4) are expressed through the one–loop corrections
to the PPR vertices, which are known, and the two-loop correction to the
trajectory, that makes possible to obtain the last correction.

For massless quarks the PPR vertices entering in (2.4) have the form [14]:

ΓQ′G = −gū(pQ′)tG
[
êG(1 + δe(t)) +

(eGq)q̂
q2

δq(t)
]
,

ΓG′Q = −g
[
ê∗G′(1 + δe(t)) +

(e∗G′q)q̂
q2

δq(t)
]
tG

′
u(pQ) . (2.5)

Here tG, tG
′
are the color group generators in the fundamental representation;

we omit colour wave functions for gluons and assume that they are included
in u(pQ), ū(pQ′) for quarks. The one–loop corrections δe(t), δq(t) can be
written as

δe(t) = ω(1)(t) δ(1)e , δq(t) = ω(1)(t) δ(1)q , (2.6)

7



where

δ(1)e =
CF

2Nc

(
1
ε
− 3(1 − ε)

2(1 + 2ε)
+ ψ(1) + ψ(1 − ε) − 2ψ(1 + ε)

)
(2.7)

+
1
2ε

− ε

2(1 + 2ε)
, δ(1)q =

ε

2(1 + 2ε)

(
1 +

1
N2

c

)
,

ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the Euler gamma function,
and ω(1)(t) is the one–loop gluon Regge trajectory:

ω(1)(t) = −2Nc

ε

g2
s

(4π)2+ε

(
µ2

−t
)−ε

Γε , Γε =
Γ2(1 + ε)Γ(1 − ε)

Γ(1 + 2ε)
. (2.8)

We use conventional dimensional regularization; the space-time dimension
D = 4 + 2ε and gs = gµε is the dimensionless bare coupling constant.

To avoid uncertainties let us note that the vertices ΓGQ̄ and ΓQ̄G′ are
obtained from (2.5) by the substitutions ū(pQ′) → v̄(pQ̄) , eG → e∗G and
u(pQ) → v(pQ̄) , e∗G′ → eG′ respectively.

Representing the quark trajectory as

δT(t) =
ω(1)(t)
Nc

δ
(1)
T +

1
2

(
ω(1)(t)
Nc

)2

δ
(2)
T , (2.9)

where δ
(1)
T = CF [6], and the two-loop s-channel discontinuity of the

Reggeized quark contribution (2.4) as

[
RQ′ G′

G Q (two-loop)
]

s
=
iπg2

t

1
2

(
ω(1)(t)
Nc

)2

ū(pQ′)tGtG
′
∆R u(pQ) , (2.10)

we have from (2.4), (2.5) (2.9) and (2.6)

∆R = δ
(2)
T Q̂ + 2CF

(
2Ncδ

(1)
e + CF ln

s

−t
)
Q̂ + 2CFNcδ

(1)
q Ê , (2.11)

where
Q̂ = êGq̂ê

∗
G′ , Ê = êG(e∗G′q) + ê∗G′(eGq) , (2.12)

and δ(1)e , δ(1)q are given by (2.7).

Below we calculate the discontinuity
[(A(+)

)Q′ G′

G Q
(two-loop)

]
s

of the
backward quark-gluon scattering amplitude with positive signature from the
s-channel unitarity condition. We show, that it has the same colour structure
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as
[
RQ′ G′

G Q (two-loop)
]

s
(2.10), that is in this approximation only the colour

triplet state survives in the positive signature. Writing the calculated dis-
continuity in the same form as the right hand side of (2.10) with ∆s instead
of ∆R, we see that ∆s has the same helicity structure as ∆R (2.11) and
that their logarithmic terms coincide; moreover, the non-logarithmic terms
at the helicity non-conserving structure Ê also do coincide. After that the re-
quirement of equality of the non-logarithmic terms at the helicity conserving
structure Q̂ gives us δ(2)T .

The calculation of ∆s is the main content of this paper. It is determined
from the s-channel unitarity relation:

[(
A(+)

)Q′ G′

G Q
(two-loop)

]
s

=
iπg2

t

1
2

(
ω(1)(t)
Nc

)2

ū(pQ′)tGtG
′
∆s u(pQ)

= iP(+)
∑

n

∫
dΦnAn

G Q

(An
Q′ G′

)∗
, (2.13)

where Φn is the n-particle phase space element and P(+) is the positive sig-
nature projector. The summation is performed over two- and three-particle
intermediate states; accordingly, we represent the discontinuity as the sum
of two contributions

∆s = ∆(2)
s + ∆(3)

s . (2.14)

The projection on positive signature means the half-sum of the s-channel
discontinuities for the direct (GQ → Q′G′) and the crossed (GG̃ → Q′Q̄′)
processes. More precisely, if one represents the discontinuity of the direct pro-
cesses as 〈Q′G′|M |GQ〉, where |GQ〉 is a spin and colour quark-gluon wave
function, and the discontinuity for the process GG̃ → Q′Q̄′ with pG̃ = pQ,

pQ̄′ = pG′ as 〈Q′Q̄′|Mc|GG̃〉, then the projection on positive signature is
〈Q′G′|(M +Mc)/2|GQ〉. Note that calculating ∆s we always use that right-
most p̂2 and leftmost p̂1 in M and Mc give negligible contributions because
of the Dirac equation.

3 Two-particle contribution to the
discontinuity

In the direct channel a two-particle intermediate state can be solely quark-
gluon one. Since only limited transverse momenta of intermediate particles
are important in the unitarity relation (we will see it directly; actually, it is a
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consequence of the renormalizability), non-negligible contributions are given
by two non-overlapping kinematical regions. In one of them intermediate
gluon momentum is close to pG (see Fig. 2a), and in another to pQ (Fig.
2b). In both cases the amplitudes in the right hand side of the unitarity
relation (2.13) are in Regge type kinematics. As we need to calculate the

�Q
G

Q1

q1

G′

q2

G1 Q′

a) �Q
G

G1

q2

G′

q1

Q1 Q′

b)

Figure 2: Schematic representation of the two-particle contribution to the
s-channel discontinuity of the backward quark-gluon scattering amplitude.
The doubled lines represent Reggeized quark and gluon, and the blobs –
PPR vertices.

two-loop contribution to the discontinuity, one of them has to be taken in
the Born approximation and another one in the one-loop approximation.
An important point is that since Born amplitudes are real, only real parts
of one-loop amplitudes are essential for the calculation of the discontinuity.
Therefore required amplitudes are determined by Reggeized quark and gluon
contributions. Moreover, we can use AQ′G′

n instead of
(An

Q′G′
)∗, as imaginary

parts of the amplitudes are not important.
The amplitudes with t-channel quarks can be obtained by evident substi-

tutions from (2.4). Using (2.5), (2.6) for the process G + Q → Q′ + G′ we
have with required accuracy:

AQ′G′
G Q =

g2

−q2 ū(pQ′)tGtG
′
{
êGq̂ê

∗
G′

[
1 + ω(1)(q2)

(
2δ(1)e +

CF

Nc
ln

s

−q2
)]

+ ω(1)(q2)δ(1)q [êG(e∗G′q) + (eGq)ê∗G′ ]
}
u(pQ) , (3.1)

where q = (pQ − pG′).
In the following in the amplitudes at the right hand side of (2.13)

we denote Reggeized gluon and quark momenta q1 and q2 respectively,
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q1 + q2 = q, and Reggeized gluon colour index r. Since q1 � q1⊥, q2 � q2⊥,
everywhere below we omit the sign ⊥ at q1,2, so that qi means qi⊥, i = 1, 2.

Amplitudes for processes AB → A′B′ with gluon exchanges with our
accuracy are written as

AA′B′
A B =

2s
q21

Γr
A′A

(
1 + ω(1)(q21) ln

s

−q21

)
Γr

B′B , (3.2)

where Γr
A′A and Γr

B′B are Reggeized gluon vertices, which can be found in
[12]. In the direct channel we need quark–gluon scattering amplitudes. For
the process G+Q→ G1 +Q1 (see the left part of Fig. 2a) we obtain

AG1Q1
G Q =

2g2s

q21
Tr

G1Gū(pQ1)t
r p̂1

s
u(pQ)

{
− (e∗G1

eG)

×
[
1 + ω(1)(q21)

(
δ
(1+)
G + δ

(1−)
G + δ

(1)
Q + ln

s

−q21

)]

+ω(1)(q21)(D − 2)
(e∗G1

q1)(eGq1)
q21

δ
(1−)
G

}
, (3.3)

where Tr
G1G are colour generators in the adjoint representation, q1 = (pG1 −

pG)⊥, δQ represents the one loop corrections to the Quark–Quark–Reggeon
vertex,

δ
(1)
Q =

1
2

[
1
ε

+ ψ(1 − ε) + ψ(1) − 2ψ(1 + ε) +
2 + ε

2(1 + 2ε)(3 + 2ε)

− 1
2N2

c

(
1 +

2
ε(1 + 2ε)

)
− nf

Nc

1 + ε

(1 + 2ε)(3 + 2ε)

]
, (3.4)

nf is the number of quark flavours; δ(1+)
G and δ(1+)

G represent helicity conserv-
ing and helicity violating corrections to the Gluon–Gluon–Reggeon vertex;

δ
(1+)
G =

1
2

[
2
ε

+ ψ(1 − ε) + ψ(1) − 2ψ(1 + ε) − 9(1 + ε)2 + 2
2(1 + ε)(1 + 2ε)(3 + 2ε)

+
nf

Nc

(1 + ε)3 + ε2

(1 + ε)2(1 + 2ε)(3 + 2ε)

]
,

δ
(1−)
G =

ε

2(1 + ε)(1 + 2ε)(3 + 2ε)

(
−1 +

nf

Nc(1 + ε)

)
.

Note, that in order to obtain AQ′G′
Q1G1

(see the right part of Fig. 2b) from (3.3)
one has to change p̂1 to p̂2 besides evident substitution of symbols .
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�G̃
G

Q̄′G̃1

q1 q2

G1 Q′

a) �G̃
G

Q̄′Q̄1

q2 q1

Q1 Q′

b)

Figure 3: Schematic representation of the two-particle contribution to the
cross channel discontinuity of the backward quark-gluon scattering ampli-
tude.

In addition to presented amplitudes, in the crossed channel we need gluon-
gluon and quark-antiquark forward scattering amplitudes (see Fig. 3). The
first (see the left part of Fig. 3a) is written as

AG1G̃1

G G̃
=

2g2s

q21
Tr

G1GTr
G̃1G̃

{
(e∗G1

eG)(e∗
G̃1
eG̃) (3.5)

×
[
1 + ω(1)(q21)

(
2δ(1+)

G + 2δ(1−)
G + ln

s

−q21

)]

−ω(1)(q21)(D − 2)

(
(e∗G1

eG)(e∗
G̃1
q1)(eG̃q1) + (e∗G1

q1)(eGq1)(e∗G̃1
eG̃)

)
q21

δ
(1−)
G


 ,

and the second (see the right part of Fig. 3b)

AQ′Q̄′

Q1Q̄1
= −2g2s

q21
ū(pQ′)tr

p̂2

s
u(pQ1)v̄(pQ̄1

) tr
p̂1

s
v(pQ̄′) (3.6)

×
[
1 + ω(1)(q21)

(
2δ(1)Q + ln

s

−q21

)]
.

Before to start with calculation let us show that only a colour triplet state
survives in the discontinuity, due to cancellation of contributions of all other
colour states in the direct and crossed channels. In fact, this cancellation
has the same nature as in leading order [6]. The matter is that if a one-
loop contribution is taken for one of the PPR vertices in Figs. 2 and 3, then
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all other vertices must be taken at NLO in Born approximation. Therefore
either both lower, or both upper vertices are Born ones. Let us consider the
first case. Since upper parts of the diagrams Fig. 2a and Fig. 3a are equal,
contributions to M +Mc from the lower lines enter as the sum

γµ
⊥t

G′ ∑
λ

uλ(pQ1)ū
λ(pQ1)t

r p̂1

s
−

∑
λ

êλ
G̃1
tG̃1

(
eλ

G̃1

)� µ

T r
G̃1G′ = γµ

⊥t
rtG

′
. (3.7)

Here we have omitted terms with leftmost p̂1 because of the reason explained
above, and have taken the same Lorentz and colour indices of the gluons G′

and G̃ as we don’t write their wave functions. It’s easy to see that lower lines
of Fig. 2b and Fig. 3b give in sum the same result. Since trtG

′
projects the

t-channel quark-gluon state on a colour triplet, it means that contributions
of another colour states cancel in the sum of the direct and cross channels.
The case when both upper vertices are Born ones can be considered quite
analogously. One can come to the same conclusion seeing that sum of contri-
butions of Fig. 2a and Fig. 3b, as well as Fig. 2b and Fig. 3a, is proportional
tGtr. It is not difficult to understand that the cancellation of colour states
different from triplet is not restricted by considered diagrams and by the
two-loop approximation, but is a general property of NLA, as well as LLA.

Since we have shown that only a colour triplet survives in the t-channel
we can write

P(+)
3

∑
P1P2

AP1P2
G Q

(
AP1P2

Q′G′

)∗
= g4 ω(1)(t) s ū(pQ′)tGtG

′M(2)u(pQ) , (3.8)

With the amplitudes listed above calculation of M(2) is straightforward. Di-
viding it into two pieces, M(2) = M(2)

Q +M(2)
G , one of which contains one-loop

corrections for a quark channel, and another for a gluon channel, we obtain

M(2)
Q =

(
q2

q22

)−ε
CF

q21q
2
2

{(
2δ(1)e +

CF

Nc
ln

s

−q22

)
êGq̂2ê

∗
G′

+ δ(1)q [êG(e∗G′q2) + (eGq2)ê∗G′ ]
}
, (3.9)

and

M(2)
G =

(
q2

q21

)−ε 1
q22q

2
1

{[
− 1
Nc

δ
(1)
Q +Nc

(
δ
(1+)
G + δ

(1−)
G

)
+ CF ln

s

−q21

]
êGq̂2ê

∗
G′

−Nc

2
D − 2
q21

δ
(1−)
G [êGq̂2q̂1(e∗G′q1) + (eGq1)q̂1q̂2ê∗G′ ]

}
. (3.10)
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Integration over the phase space element dΦ2 = dD−2q2/(2s(2π)D−2) is quite
simple. The integrals are well convergent at large |q2|, so that the integration
region can be expanded to infinity. For convenience of a reader we present
necessary formulas in Appendix A. As a result, we obtain for the two-particle
contribution to ∆s

∆(2)
s =

2Ncε(−q2)1−ε

Γεπ(D−2)/2

∫
dD−2q2 M(2) (3.11)

= 2NcXΓ

{
2CF δ

(1)
e +

Nc

2

(
δ
(1+)
G − 2ε

1 − ε
δ
(1−)
G

)
− 1

2Nc
δ
(1)
Q

+
C2

F

Nc

(
ln

s

−t + Ψ1

)
+
CF

2

(
ln

s

−t + Ψ1 +
1
2ε

)}
Q̂

+XΓ

{
CF δ

(1)
q +Nc

ε(1 + ε)
1 − ε

δ
(1−)
G

}
Ê ,

where

XΓ =
Γ(1 − 2ε)Γ2(1 + 2ε)

Γ(1 + ε)Γ(1 + 3ε)Γ2(1 − ε)
, (3.12)

and
Ψ1 = ψ(1 − 2ε) + ψ(1 + 3ε) − ψ(1 + 2ε) − ψ(1 − ε) . (3.13)

4 Tree-particle contribution to the
discontinuity

Let us denote intermediate particles in the unitarity condition (2.13) Pj and
their momenta kj , j = 1÷3. Just as before, only limited transverse momenta
are important. As for longitudinal ones, let us put (without loss of generality)
α3 � 1, that is for the direct process G + Q → Q′ + G′ a particle P3 is
produced in the fragmentation region of the initial quark (note that for the
crossed process G+ G̃→ Q′ + Q̄′ it is the region of G̃ fragmentation). Then
β1 + β2 � 1, i.e. at least one of particles Pi, i = 1, 2, is produced in
the gluon fragmentation region. Let it will be P1; then β1 ∼ 1, but β2

can vary from β2 ∼ 1 (that means P2 as well as P1 is produced in the
gluon fragmentation region) to β2 ∼ |k2

2⊥|/s (it means α2 ∼ 1, i.e. P2 is
in the quark fragmentation region). Of course, the same can be said with
substitution 1 ↔ 2. Note that region 1 � βi � |k2

i⊥|/s is usually called
multi-Regge, or central region for a particle Pi. But this region does not
require separate consideration, because amplitudes for production of Pi in
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any of fragmentation regions are applicable in it. Actually, natural bounds
for domains of applicability of these amplitudes are αi � 1 for the gluon
and βi � 1 for the quark fragmentation regions. Therefore, it is sufficient
to consider two regions: 1 ≥ βi ≥ √|k2

i⊥|/s and 1 ≥ αi ≥ √|k2
i⊥|/s. For

a brevity, we will say that in the first (second) case there are two particles
in the gluon (quark) fragmentation region. Moreover, the symmetry with
respect to α ↔ β in the definition of the regions permits to consider only
one of them. Indeed, as regards the inverse reaction (Q′ +G′ → G+Q) the
names of the regions must be changed; therefore their contribution to the
discontinuity are related by the substitutions Q↔ Q′, G↔ G′ and complex
conjugation. We will consider the gluon fragmentation region.

In this region amplitudes in the right hand side of the unitarity relation
(2.13) can be written, in accordance with our agreement about denotations,
as

AP1P2P3
AB =

2s
q21

Γr
{P1P2}AΓr

P3B (4.1)

and
AP1P2P3

AB = Γ{P1P2}A
−q̂2
q22

ΓP3B (4.2)

for gluon and quark exchanges respectively, with the same vertices Γr
P3B and

ΓP3B as for the elastic amplitudes, but taken now in Born approximation
only. Therefore, as well as in the two-particle contribution, only t-channel
colour triplet does survive in positive signature, since

P(+)
∑
P3

Γr
P3 Q (ΓP3 G′)∗ = −P(+)

∑
P3

ΓP3 Q

(
Γr

P3 G′
)∗ = −g

2

2
trtG

′
ê∗G′u(pQ) .

(4.3)
The vertices Γr

{P1P2}A and Γ{P1P2}A can be found in Refs. [12] and [13]
respectively. Actually, they can be easily calculated, since are given by Born
amplitudes for processes A + R → P1 + P2, where R is either a gluon (for
Γr
{P1P2}A) with momentum q1, colour index r and polarization vector p2/s

(p1/s) for a particle A with predominant momentum components along p1

(p2), or a quark (for Γ{P1P2}A) with momentum q2 and omitted quark wave
function. An important point is that corresponding light-cone gauge (see
(2.3)) must be taken not only for real gluons, but for virtual ones as well.
Note that the hermitian property of Born amplitudes gives the relations(

Γr
{P1P2}Q′

)∗
= Γr

Q′{P1P2}
(
Γ{P1P2}Q′

)† = ΓQ′{P1P2} γ
0 , (4.4)

which we use in the following.
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Let us denote∑
P1P2

(
Γr
{P1P2}GΓQ′{P1P2} − Γ{P1P2}GΓr

Q′{P1P2}
)
tr = g4ū(pQ′)tGFG . (4.5)

The particles P1 and P2 can be two gluons (G1G2), quark and gluon (Q1G2),
and quark and antiquark (Q1Q̄2). Evidently, only the first (second) term in
the left hand side of (4.5) contributes in the first and third cases (in the second
case). Using that the phase space element dΦ3 in the gluon fragmentation
region looks like

dΦ3 = δ(1 − β1 − β2)
dβ1dβ2

4sβ1β2

dD−2k1d
D−2k2

(2π)2D−3
, (4.6)

with the help of (4.1)–(4.3) we obtain the contribution of this region to ∆s

(2.13) in the form

∆(3)G
s = − ε

2(−q2)1−2ε

π(D−2)Γ2
ε

∫
dβ1dβ2

β1β2

dD−2k1d
D−2k2

q21q
2
2

FGq̂2ê
∗
G′δ(1 − β1 − β2)

× θ
(
β1 −

√
|k2

1⊥|
s

)
θ
(
β2 −

√
|k2

2⊥|
s

)
, (4.7)

where q1 and q2 are the momenta of t-channel gluon and quark respectively,
q1 + q2 = q. As it was already pointed out, total three-particle contribution
can be written then as

∆(3)
s = ∆(3)G

s + ∆̄(3)G
s (G→ G′) , (4.8)

where ∆̄ = γ0∆†γ0. Note that logarithms of s appear in ∆(3)G
s from inte-

gration over βi of those terms in FG which don’t turn into zero at βi → 0.
It is always possible to rewrite FG as a sum of terms which turn into zero
either at β1 = 0, or at β2 = 0. For the first (second) of them the limitation
β1 >

√|k2
1⊥|/s (β2 >

√|k2
2⊥|/s) can be taken away; at that the change of

variables k1⊥ = β1l1⊥ (k2⊥ = β2l2⊥) turn out often to be useful, and we meet
integrals

1∫
√

|k2
i⊥|/s

dβi

βi
(1 − βi)δ =

1
2

ln
s

|k2
i⊥|

+ ψ(1) − ψ(δ + 1) , (4.9)

where δ is proportional to ε.
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Calculation of integrals without ln |k2
i⊥| does not represent a problem.

The list of basis integrals is presented in Appendix B. Contrary, two of in-
tegrals with ln |k2

i⊥| can not be expressed in terms of elementary functions
at arbitrary ε. Besides of the integral I0 (see (4.18)) encountered already in
the calculations of the two-loop gluon Regge trajectory, here we meet a new
nontrivial integral I1 (see (4.19)) which is considered in Appendix C.

In the following we will use Eqs. (4.5), (4.7), (4.8) and the denotations:

kiG = (ki − βipG)⊥ , kiQ′ = (ki − βipQ′)⊥ , k12 = −k21 = (β2k1 − β1k2)⊥ .
(4.10)

It’s easy to understand that kiA (i = 1, 2) is transverse part of ki with respect
to pA, p2 plane, multiplied by βA.

Since the integration in (4.7) is symmetric with respect to exchange k1 ↔
k2, we will systematically omit in FG contributions antisymmetric relative to
this exchange, without further reminding.

4.1 Fragmentation into two gluons
The vertex for production of the gluons G1, G2 with colour indices i1, i2 by
the initial gluon G can be written as

Γr
{G1G2}G = g2

{(
TGT r

)
i1i2

[γµν(k1G) − γµν(k12)] e∗1µe
∗
2ν + (1 ↔ 2)

}
,

where
γµν(p) =

2
p2

[β1β2g
µν
⊥ (eGp) − β1e

µ
Gp

ν − β2p
µeν

G] . (4.11)

The vertex for a quark exchange can be taken in [13]. Using Sudakov
parametrization and omitting terms with rightmost p̂2 we have for it

ΓQ′{G1G2} = −g2ū(pQ′)
{
ti1ti2

[
γµν
12 − γµν

[12]

]
e1µe2ν + (1 ↔ 2)

}
, (4.12)

where
γµν
12 =

1
k2
1Q′

(
β1k̂1Q′γµ

⊥ − 2kµ
1Q′

)
γν
⊥,

γµν
[12] =

2
k2
12

[
β1β2g

µν
⊥ k̂12 − β1γ

µ
⊥k

ν
12 − β2k

µ
12γ

ν
⊥

]
. (4.13)

Note that lower indices of γµν-vertices in (4.12) are determined by sequences
of colour matrices in corresponding group factors, and square brackets in γµν

[12]

emphasize its antisymmetry with respect to the permutation 1 ↔ 2, as well
as its relation with the colour factor [ti1ti2 ].
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As was pointed already, only the first term in the left side part of (4.5)
does contribute in the case of two-gluon production. Putting there the ver-
tices (4.11) and (4.12) and performing summation over spin and colour of
intermediate gluons, after simple colour algebra we obtain for the two-gluon
contribution to FG

FGG
G = −N

2
c

4

[
(γµν(k1G) − γµν(k12))

(
γµν
12 − γµν

[12]

)
+ (1 ↔ 2)

]
. (4.14)

One should pay attention that all terms in (4.14) correspond to planar dia-
grams. It is an important property of a colour triplet state in the t-channel
which strongly simplifies calculations.

The convolutions entering in (4.14) give

γµν(p)γµν
12 =

2
k2
1Q′p2

{
êG[2β2(k1Q′p) + β1(1 − 2β2)k̂1Q′ p̂] (4.15)

+4β1β2(eGk1Q′)p̂+ β1β2[β1(D − 2) − 4](eGp)k̂1Q′
}

;

γµν(p)γµν
[12] =

−4
k2
12p

2

{
β1β2(2 − β1β2(D − 2))(eGp)k̂12 (4.16)

−2β1β2(eGk12)p̂− (1 − 2β1β2)(k12p)êG

}
.

We obtain the two-gluon contribution in ∆(3)G
s by substituting (4.14) in (4.7)

and performing integration. Note that if we integrate over all phase space
in (4.7), we have to take into account equivalence of produced gluons by the
factor 1/2!. With account of the quark fragmentation region according to
(4.8) we obtain, denoting the contributions related to the terms γµν(p)γµν

N in
FQQ

G (4.14) as ∆N∗p :

∆12∗k1G =
N2

c

4

{
2

[
2
ε
− 3

1 + 2ε
+ Ψ2 + ln

s

−t +
5
2ε

XΓ +
1
2
(I0 + I1)

]
Q̂

+
2ε

1 + 2ε
Ê
}

;

∆12∗k12 =
N2

c

4
XΓ

{
2

[
3

1 + 2ε
− 3
ε
− ln

s

−t − Ψ
]
Q̂ − 2ε

1 + 2ε
Ê
}

; ∆[12]∗k12 = 0;

∆[12]∗k1G
=−N

2
c

4
XΓ

{
2

[
ln

s

−t + Ψ +
5
2ε

− 4
1 + 2ε

+
1

(1 − ε)(1 + 2ε)(3 + 2ε)

]
Q̂

− 4ε2

(3 + 2ε)(1 − ε)(1 + 2ε)
Ê
}
, (4.17)
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where

I0 = − ε
2(−q2)1−2ε

Γ2
επ

(D−2)

∫
dD−2k1d

D−2k2 q2

k2
1⊥(k1 − q)2⊥k

2
2⊥(k2 − q)2⊥

ln
q2

(k1 − k2)2⊥
, (4.18)

I1 = − ε
2(−q2)1−2ε

Γ2
επ

(D−2)

∫
dD−2k1d

D−2k2 (k1 − k2)2⊥
k2
1⊥(k1 − q)2⊥k

2
2⊥(k2 − q)2⊥

ln
q2

(k1 − k2)2⊥
. (4.19)

Here and below we use denotations

Ψ2 = 2[ψ(1)−ψ(1+2ε)] , Ψ = ψ(1− 2ε)+ψ(1+3ε)−ψ(1+ ε)−ψ(1)+Ψ2 .
(4.20)

The contribution ∆GG
s of fragmentation into two gluons to ∆(3)

s is

∆GG
s = ∆12∗k1G + ∆12∗k12 + ∆[12]∗k1G

. (4.21)

4.2 Fragmentation into quark and gluon
Let us denote particles produced in the gluon fragmentation region Q1 and
G2 and their momenta k1 and k2 respectively. The vertex Γ{Q1 G1}G can be
obtained by crossing and appropriate substitutions from ΓQ′{G1G2} (4.12).
We will represent it as

Γ{Q1 G2}G = −g2ū(k1)
{
tGti2

[
γν

G2 − γν
[G2]

]
e∗2ν + ti2tG

[
γµ
2G + γµ

[G2]

]
e∗2µ

}
,

(4.22)
where γν

G2, γ
ν
[G2] and γν

2G are obtained from γµν
12 , γ

µν
[12] and γνµ

21 respectively
by substitutions

β1 → 1
β1
, β2 → −β2

β1
, k1Q′ → −k1G

β1
, k12 → k2G

β1
, k2Q′ → k12

β1
, (4.23)

and convolution with eµ
G. The vertex Γr

Q′{Q1G2} can be found in [12] and
represented as

Γr
Q′{Q1G2} = g2ū(pQ′)

p̂2

s

{
ti2tr (Lµ(k2Q′ ) + Lµ(k1Q′))

+trti2 (Lµ(k12) − Lµ(k1Q′))
}
eµ
2u(k1) , (4.24)

where

Lµ(p) =
β2p̂γ

µ
⊥ − 2pµ

p2
. (4.25)
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In the case of quark-gluon production only the second term in the right hand
side of (4.5) does contribute. Using vertices (4.22) and (4.24), we obtain for
the quark-gluon contribution to FG after summation over spin and colour

FQG
G = −β1

∑
ij

Lµ(kij)
[
Cij

G2γ
µ
G2 + Cij

2Gγ
µ
2G + Cij

[G2]γ
µ
[G2]

]
. (4.26)

where ij takes on values 1Q′, 2Q′, 12 and

C1Q′
G2 =

1
4
, C2Q′

G2 =
1
4

(
1 +

1
N2

c

)
, C12

G2 =
1

4N2
c

;

C1Q′
2G =

1
4
, C2Q′

2G =
1

4N2
c

, C12
2G = −1

4

(
1 − 1

N2
c

)
; (4.27)

C1Q′

[G2] = 0 , C2Q′

[G2] = −1
4
, C12

[G2] = −1
4
.

Note that the term C2Q′
G2 Lµ(k2Q′ )γµ

G2 here corresponds to a non-planar di-
agram and leads to a complicated integral. Fortunately, it is cancelled by
respective contribution from quark-antiquark production, as we will see in
the next subsection.

For the products Lµ(p)γµ
mn we have after some algebra:

Lµ(p)γµ
G2 =

1
k2
1Gp

2
{2β1β2(D − 2)(eGk1G)p̂− β2(D − 6)p̂k̂1GêG − 2êGk̂1Gp̂} ;

Lµ(p)γµ
2G =

1
k2
12p

2
{β2(β2(D − 2) − 4)p̂k̂12 + 4(k12p)}êG ;

Lµ(p)γµ
[G2] =

2β2

k2
2Gp

2

{(
β2

β1
− 1

)
êGp̂k̂2G + (β2(D − 2) − 4)(eGk2G)p̂ (4.28)

+
2
β2

(k2Gp)êG + 4(eGp)k̂2G

}
.

The quark-gluon contribution to ∆(3)G
s is given by (4.7) with (4.26) instead

of FG. Denoting ∆m n·ij the contributions proportional Cij
m n in (4.26), af-

ter integration we obtain for them with account of the quark fragmentation
region according to (4.8)

∆G2·1Q′ =
1
4

{
2

[
3 − 2ε
1 + 2ε

− Ψ2 − ln
s

−t −
5
2ε

XΓ − 1
2
(I0 + I1)

]
Q̂ +

2ε
1 + 2ε

Ê
}

;

∆G2·12 =
1

4N2
c

XΓ

{
−2

[
ln

s

−t + Ψ +
1
ε
− 3 − 2ε

1 + 2ε

]
Q̂ +

2ε
1 + 2ε

Ê
}

;
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∆2G·1Q′ =
1
4
XΓ

{
2

[
ln

s

−t + Ψ +
3
2ε

− 3
2(1 + 2ε)

]}
Q̂ ;

∆2G·2Q′ =
1

4N2
c

XΓ

{
2

[
3 − 2ε

2(1 + 2ε)
− 1
ε

]}
Q̂ ; ∆2G·12 = 0 ; (4.29)

∆[G2]·2Q′ =
1
4

{
−2

[
− 3

1 + 2ε
+

2
ε

+ Ψ2 + ln
s

−t −
XΓ

ε
− 1

2
I1

]
Q̂ − 2ε

1 + 2ε
Ê
}

;

∆[G2]·12 =
1
4
XΓ

{
2

[
ln

s

−t + Ψ +
3
ε
− 3

1 + 2ε

]
Q̂ +

2ε
1 + 2ε

Ê
}
.

The contribution ∆G 2·2Q′ is not presented here, since it is cancelled with
respective contribution from quark-antiquark production, as was pointed out.
The quark-gluon contribution to ∆(3)

s is given by

∆QG
s =

∑
ij,m n

∆m n·ij , ij = 1Q′, 2Q′, 12 ; mn = G2, 2G, [G2] . (4.30)

4.3 Fragmentation into quark-antiquark pair
As well as in the two-gluon case, only the first term in (4.5) exists. We
denote momenta of particles Q1 and Q̄2 in the gluon fragmentation region k1

and k2 respectively. The vertex Γr
{Q1 Q̄2}G

can be obtained by crossing and
corresponding substitutions from Γr

Q′{Q1G2} (4.24):

Γr
{Q1 Q̄2}G = g2ū(k1)

p̂2

s

{
tGtr

(
L(k1G) − L(k12)

)
(4.31)

+trtG
(
L(k12) + L(k2G)

)}
v(k2) ,

where
L(p) =

−p̂ êG + 2β1(p eG)
p2

. (4.32)

The vertex ΓQ′{Q1 Q̄2} can be obtained from [13]; a direct calculation does
not encounter difficulties as well. We have

ΓQ′{Q1 Q̄2} = g2
[
v̄(k2)tcγσu(k1)ū(pQ′)tcAσ (4.33)

−ū(pQ′)tcγσu(k1) · v̄(k2)tcBσ δQ1Q

]
,

where δQ1Q shows that the last contribution exists only when an intermediate
quark has the same flavour as the initial one, and the values Aσ and Bσ can
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be written as

Aσ =
−β1β2

k2
12

(
γσ
⊥ − (k̂1 + k̂2)⊥

2pσ
2

s

)
; Bσ =

β1

k2
1Q′

(
γσ
⊥ + (k̂1 − p̂Q′)⊥

2pσ
2

sβ2

)
.

(4.34)
By substituting the vertices (4.31) and (4.33) into (4.5), after summation
over spin and colour states of intermediate particles we obtain for the quark-
antiquark contribution to FG

FQQ
G =

∑
ij

[
Cij

A tr

(
k̂1
p̂2

s
L(kij)k̂2γσ

)
Aσ − Cij

B γσ k̂1
p̂2

s
L(kij)k̂2B

σ

]
,

(4.35)
where ij takes on values 1G, 2G, 12 and

C1G
A =

Nc

8
nf , C2G

A = −Nc

8
nf , C12

A = −Nc

4
nf ; (4.36)

C1G
B =

1
4N2

c

, C2G
B =

1
4

(
1 +

1
N2

c

)
, C12

B =
1
4
.

Taking into account, as usually, external Dirac spinors, we obtain

tr

(
k̂1
p̂2

s
L(p)k̂2γσ

)
Aσ =

2β1β2

p2k2
12

(
(k12p)êG − (eGk12)p̂+ (1 − 4β1β2)(eGp)k̂12

)
;

γσ k̂1
p̂2

s
L(p)k̂2B

σ =
−β1

k2
1Q′p2

{
2β1β2(D − 2)(eGp)k̂1Q′ (4.37)

−β2(D − 6)k̂1Q′ p̂êG − 2êGp̂k̂1Q′
}
.

The quark-antiquark contribution to ∆(3)G
s is given by (4.7) with (4.35) in-

stead of FG. As have been mentioned above, in FQQ
G we also have a term

corresponding to a non-planar diagram. In (4.35) it stands with the coef-
ficient C2G

B . Note, that C2G
B = C2Q′

G2 (see (4.27)). Moreover, comparing
the first equations in (4.28) and the second in (4.37), one can see that the
substitution

k1Q′ → −k2Q′ , k2G → −k1G (4.38)

turns γσk̂1(p̂2/s)L(k2G)k̂2B
σ into β1Lµ(k2Q′ )γµ

G2 with opposite sign. Note
that for the quark-antiquark contribution q2 in (4.7) is equal pQ′⊥ − k1⊥ −
k2⊥ = β2q− k1Q′ − k2G. At the substitution (4.38) it turns into β2q+ k2Q′ +
k1G = k1⊥ + k2⊥ − pG⊥, that is just the t-channel quark momentum for the
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quark-gluon contribution. An important point is that the theta-functions in
(4.7) can be omitted for the contributions of the nonplanar diagrams due to
convergence of integrals, after that the substitution (4.38) does not influence
on the integration region. Therefore these contributions cancel each other.

Performing integration and denoting ∆A·ij and ∆B·ij the contributions
to (4.35) proportional C1j

A and C1j
B respectively, we obtain with account of

the quark fragmentation region according to (4.8):

∆A·1G =
Nc

8
nfXΓ

{ −2
1 + 2ε

(
1 − 1

(1 − ε2)(3 + 2ε)

)
Q̂− 4ε2

(1 − ε2)(1 + 2ε)(3 + 2ε)
Ê
}

;

∆A·2G = ∆A·1G ; ∆A·12 = 0 ;

∆B·1G =
1

4N2
c

{
2

[
−3 − 2ε

1 + 2ε
+ Ψ2 + ln

s

−t −
XΓ

ε
− 1

2
I1

]
Q̂ − 2ε

1 + 2ε
Ê
}

;

∆B·12 =
1
4
XΓ

{
−2

[
3 − 2ε
1 + 2ε

− ln
s

−t − Ψ − 1
ε

]
Q̂ − 2ε

1 + 2ε
Ê
}
. (4.39)

Therefore, the quark-antiquark contribution to ∆(3)
s can be written as

∆QQ
s = 2∆A·1G + ∆B·1G + ∆B·12 + ∆B·2G , (4.40)

where ∆B·2G = −∆G2·2Q′ , as it was shown above. Because of cancellation of
these contributions in

∆(3)
s = ∆GG

s + ∆GQ
s + ∆QQ

s (4.41)

∆B·2G is not presented in (4.39), as well as ∆G2·2Q′ in (4.29).

5 Two-loop correction to the quark trajectory
The total discontinuity ∆s is given by the sum of the contributions of two- and
three-particle intermediate states in the unitarity relation. The two-particle
contribution ∆(2)

s is given explicitly by (3.11). All necessary contributions
to ∆(3)

s (4.41) are calculated in the preceding section. They are given by
(4.21)and (4.17) for fragmentation into two gluons, by (4.30) and (4.29) for
fragmentation into quark and gluon, and by (4.40), (4.39) for fragmentation
into quark and antiquark. Now we can compare the calculated discontinuity
with the form (2.11) required by the quark Reggezation. First of all we
note coincidence of the terms with ln s. Actually this coincidence must be
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expected, since it is required by the quark Reggeization in LLA, which was
already checked on this level. Much more important is that the calculated
discontinuity has the same helicity structure as ∆R (2.11), with the same
coefficient at the structure Ê . It is a serious argument in favour of validity
of the Reggeization hypothesis in NLA. Then comparing coefficients at the
structure Q̂ we obtain

δ
(2)
T = CF

{
−nf

XΓ(1 + ε)
(1 + 2ε)(3 + 2ε)

+Nc

(
1
2
I0 + I1

−XΓ[ψ(1 + ε) − ψ(1 + 2ε)] +
7XΓ

2ε
+

XΓ(11 + 7ε)
2(1 + 2ε)(3 + 2ε)

)

+2CF

(
−1

2
I1 + ψ(1) − ψ(1 − ε) + (2 − XΓ)[ψ(1 + ε) − ψ(1 + 2ε)]

−1 + XΓ

ε
− (1 − XΓ)(3 − ε)

2(1 + 2ε)

)}
, (5.1)

where XΓ is given by (3.12), I0 and I1 are defined in (4.18) and (4.19).
The two-loop corrections to the quark Regge trajectory jQ = 1/2+δT(t) is

determined by Eqs. (2.9), (5.1) at arbitrary space-time dimension D = 4+2ε.
Unfortunately, at arbitrary D the integrals I0 and I1 can not be written in
terms of elementary functions. In the limit ε → 0 we have for them (see
Appendix C)

I0 =
1
ε

+ 15ψ(2)(1) ε2 + O(ε3) , I1 = −4
ε

+ 6ψ(2)(1) ε2 + O(ε3) , (5.2)

where ψ(2) means the second derivative of the ψ-function. With this result
and with the proportion ψ(2)(1) = −2ζ3, where ζn is the Riemann Zeta-
function, from Eq.(5.1) we obtain for the two-loop correction up to non-
vanishing at ε→ 0 terms

δ
(2)
T = CF

{
β0

2
ε
−K

2
ε

+Nc

(
404
27

− 2ζ3

)
− nf

56
27

+ (CF −Nc)16ζ3

}
,

(5.3)
where

β0 =
11
6
Nc − 2

3
nf , K =

(
67
18

− ζ2

)
Nc − 5

9
nf ,

in agreement with the result of Ref. [16].
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6 Summary
In this paper we have checked compatibility of the quark Reggeization hy-
pothesis with the s-channel unitarity by the explicit two-loop calculations
and have found in the case of massless quarks the two–loop correction to
the quark trajectory at arbitrary space–time dimension D = 4 + 2ε. The
ε–expansion of the correction gives the result obtained in [16]. We have cal-
culated the two-loop s–channel discontinuity of the backward quark-gluon
scattering amplitude with positive signature keeping non-logarithmic terms
and have proved that only a colour triplet part of the amplitude does survive
at NLO as well as at LO. It was shown that the calculated discontinuity has
a form required by the Reggeization hypothesis. The two–loop correction to
the trajectory has been obtained from comparison of the calculated disconti-
nuity with the Reggeized form. In the case of massive quarks the trajectory
can be found by the same method, since all necessary quantities for such
calculation are known.

The cancellation of contributions of colour states different from triplet in
positive signature is not restricted by the two-loop approximation, but is a
general property of NLA. Therefore in this approximation, as well as in LLA,
real parts of amplitudes with positive signature are completely determined
by Reggeized quark contributions.

Note that testing of the quark Reggeization performed up to now is rather
limited. Even in LLA self-consistency of the hypothesis was shown only in
a particular case of elastic quark-gluon scattering, although in all orders of
αs. In NLA it is tested in the same process only in order α2

s. A possible way
of more strict testing and, in principle, a complete proof is examination of
"bootstrap" conditions on the Reggeized quark vertices and the trajectory
in QCD. These conditions appear from comparison of Reggeized form of
discontinuities of amplitudes with quark exchanges with the discontinuities
calculated with use of the s-channel unitarity.

We have used dimensional regularization for both infrared and ultraviolet
divergences and the bare coupling constant g = gsµ

ε, so that besides of
infrared poles in ε our result contains the ultraviolet poles. To remove them
it is sufficient to express the bare coupling through renormalized one. In the
MS renormalization scheme

g = gµµ
−ε

{
1 + β0

g2
µΓ(1 − ε)

ε(4π)2+ε

}
, (6.1)

where gµ is the renormalized coupling at the normalization point µ.
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A Appendix
For convenience of a reader we list here the integrals encountered at the
calculation of ∆(2)

s . Note that everywhere below we use Euclidean transverse
momenta and omit the transversality sign.

J i
1 =

∫
dD−2k ki

(k2)1−ε(k − q)2
= qi π(D−2)/2

ε (q2)1−2ε
Γε · XΓ ; (A.1)

J i
2 =

∫
dD−2k ki

(k2)1−ε(k − q)2
ln

s

k2
= J i

1

[
ln

s

−t + Ψ1

]
; (A.2)

J i
3 =

∫
dD−2k qi

(k2)1−ε(k − q)2
=

3
2
J i

1 ; (A.3)

J i
4 =

∫
dD−2k qi

(k2)1−ε(k − q)2
ln

s

k2
=

3
2
J i

2 +
1
4ε
J i

1 ; (A.4)

Jµ
5 =

∫
dD−2k klkmqi

(k2)2−ε(k − q)2
=

1
ε(1 − ε)

(
qkql

q2
(1 − 2ε) +

δk l

4

)
J i

1 . (A.5)

Remind that

Γε =
Γ2(1 + ε)Γ(1 − ε)

Γ(1 + 2ε)
; XΓ =

Γ(1 − 2ε)Γ2(1 + 2ε)
Γ(1 + ε)Γ(1 + 3ε)Γ2(1 − ε)

;

Ψ1 = ψ(1 + 3ε) + ψ(1 − 2ε) − ψ(1 + 2ε) − ψ(1 − ε) . (A.6)

B Appendix
Apart from I0 (4.18) and I1 (4.19), considered in the next Appendix, integrals
required for calculation of ∆(3)

s can be transformed to ones listed below. Using
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the denotations (A.6), (4.20) and

Λ =
π(D−2)

ε2(q2)1−2ε
; (B.1)

we have

K1 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
êG(kq)p̂

k2(k − q)2p2(p− q)2
= êGq̂ ; (B.2)

K2 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
(eGk)(k̂ − q̂)p̂

k2(k − q)2p2(p− q)2
=−êGq̂

1
2(1 + 2ε)

+(eGq)
ε

1 + 2ε
;

(B.3)

K3 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
êGk̂(k̂ − q̂)p̂

k2(k − q)2p2(p− q)2
ln

s

(k − p)2

=êGq̂

[
1
2
(I0 + I1) + XΓ

5
2ε

+ ln
s

−t
]

; (B.4)

K4 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
êG(k̂ − q̂)k̂p̂

k2(k − q)2p2(p− q)2
ln

s

(k − p)2

=êGq̂

[
−1

2
I1 − XΓ

ε
+ ln

s

−t
]

; (B.5)

K5 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
(eGk)k̂p̂

k2(k − p)2p2(p− q)2

= −
(
êGq̂

1
2

+ (eGq)(1 + ε)
)

XΓ

(1 + 2ε)
; (B.6)

K6 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
(eGk)(k̂ − p̂)(p̂− q̂)
k2(k − p)2p2(p− q)2

=
(
êGq̂

1
4

+ (eGq)ε2
)

XΓ

(1 − ε)(1 + 2ε)
; (B.7)

K7 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
êGk̂p

2

k2(k − p)2p2(p− q)2
= êGq̂ XΓ ; (B.8)

K8 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
êGk̂p

2

k2(k − p)2p2(p− q)2
ln

s

(k − p)2

=êGq̂

[
ln

s

−t + Ψ − Ψ2 +
1
ε

]
XΓ ; (B.9)
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K9 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
êG(kp)(p̂− q̂)

k2(k − p)2p2(p− q)2
= −1

2
êGq̂ XΓ ; (B.10)

K10 =
∫
dk(D−2)dp(D−2)

Λ(Γε)2
êG(kp)(p̂− q̂)

k2(k − p)2p2(p− q)2
ln

s

(k − p)2

= − 1
2
êGq̂

[
ln

s

−t + Ψ − Ψ2 +
3
2ε

]
XΓ . (B.11)

C Appendix
At arbitrary D �= 4 the integrals I0 (4.18) and I1 (4.19) can be expressed
only through infinite series. They belong to the class of integrals which was
studied particulary in [17]. The first of them has already appeared in the
calculation of the two-loop correction to the gluon Regge trajectory [18],
where its limit at ε→ 0 was found:

I0 =
∫
dD−2k1d

D−2k2

Λ(Γε)2
q2

k2
1(k1 − q)2k2

2(k2 − q)2
ln

q2

(k1 − k2)2

=
1
ε

+ 15ψ(2)(1) ε2 + O(ε3) . (C.1)

Here Γε and Λ are given in (A.6) and (B.1); ψ(2) means the second derivative
of ψ. We have obtained the limit of the second integral:

I1 =
∫
dD−2k1d

D−2k2

Λ(Γε)2
(k1 − k2)2

k2
1(k1 − q)2k2

2(k2 − q)2
ln

q2

(k1 − k2)2

= −4
ε

+ 6ψ(2)(1) ε2 + O(ε3) . (C.2)

Below some details of the calculation are given.
Representing the integral as

I1 =
d

dν
I(ν)

∣∣∣∣
ν=0

,

I(ν) =
∫
dD−2k1d

D−2k2

Λ(Γε)2
(q2)ν

k2
1(k1 − q)2k2

2(k2 − q)2[(k1 − k2)2]ν−1
, (C.3)

we have from Eqs. (1), (4), (9) of [17]:

I(ν) =
2ε2

2ε− 1
ν−1(ν − ε)

(Γε)2
G2(1, 1 − ε+ ν)G2(1, ν)

×
(
ν(ν − 1) lim

b→0
S(ε− 1, b, 2ε− ν, ν − 1 − ε)

)
, (C.4)
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where

G2(α1, α2) = G1(α1)G1(α2)G1(2 + 2ε− α1 − α2) , G1(α) =
Γ(1 + ε− α)

Γ(α)
.

(C.5)
The function S(a,b,c,d) is defined by Eqs. (17), (16) and (10) of [17]:

S(a, b, c, d) =
π cot(πc)
H(a, b, c, d)

− 1
c
− b+ c

bc
F (a+ c,−b,−c, b+ d)) , (C.6)

where

H(a, b, c, d) =
Γ(1 + a)Γ(1 + b)Γ(1 + c)Γ(1 + d)Γ(1 + a+ b+ c+ d)

Γ(1 + a+ c)Γ(1 + a+ d)Γ(1 + b+ c)Γ(1 + b+ d)
,

(C.7)
and F (a, b, c, d) is expressed through the generalized hypergeometric function
3F2:

F (a, b, c, d) = 3F2

[ −a,−b, 1
1 + c, 1 + d

; 1
]
− 1 . (C.8)

The limit b→ 0 in (C.4) can be easily taken. We can use also for this purpose
Eq.(12) of [17] and obtain with our values of parameters

ν(ν − 1) lim
b→0

S(ε− 1, b, 2ε− ν, ν − 1 − ε) = S1(ν) + S2(ν) , (C.9)

where

S1(ν) = π cot[π(2ε− ν)]
Γ(3ε− ν)Γ(1 + ν)

Γ(ε)Γ(2ε− 1)
− ν(ν − 1)

2ε− ν
; (C.10)

S2(ν) = ν(ν − 1)
3ε− 1 − ν

(ε− 1)(ν − 2ε)
F (1 − ε, 2ε− ν, ν − 2ε, ν − 2) . (C.11)

With these denotations we have

I1 =
d

dν
(S0(ν)(S1(ν) + S2(ν))) |ν=0 , (C.12)

where

S0(ν) =
ε2

(Γε)2
2

2ε− 1
Γ2(ε)Γ(2ε− ν)Γ(1 − 2ε+ ν)Γ(1 − ν + ε)

Γ(3ε− ν)Γ(1 + ν)Γ(1 + 2ε− ν)
. (C.13)
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We need to know Si(0) and S′
i(0) , i = 0 ÷ 2. For i = 0, 1 they are easily

obtained from (C.13), (C.10):

S0(0) =
3

2ε− 1
XΓ , S′

0(0) = S0(0)
(

1
6ε

+ Ψ − Ψ2

)
;

S1(0) = 2π cot[2πε]
ε(2ε− 1)

3
Γ(1 + 3ε)

Γ(1 + ε)Γ(1 + 2ε)
; (C.14)

S′
1(0) = S1(0)

(
ψ(1) − ψ(1 + 3ε) +

1
3ε

+
2π

sin(4πε)

)
+

1
2ε
,

where XΓ is defined in (A.6), Ψ and Ψ2 in (4.20). To find S2(0) and S′
2(0)

we use the integral representation

F (a, b, c, d) = −1 +
Γ(1 + d)Γ(1 + c)

Γ(d)Γ(−b)Γ(1 + c+ b)

1∫
0

dx (1 − x)d−1

×
1∫

0

dz z−b−1(1 − z)c+b(1 − zx)a (C.15)

which follows from the standard representation for the hypergeometric func-
tions. Performing integration over x by parts three times we obtain

S2(ν) = (3ε− 1 − ν)
(

ν

1 − 2ε+ ν
+

ε

2 − 2ε+ ν

+ε

1∫
0

1∫
0

dx dz z1−2ε+ν(1 − x)ν d

dx
(1 − zx)−1−ε

)
, (C.16)

so that
S2(0) = (1 − 2ε)

Γ(1 − ε)Γ(1 − 2ε)
Γ(1 − 3ε)

,

S′
2(0) =

S2(0)
1 − 3ε

+ (3ε− 1)
(

1
1 − 2ε

− ε

4(1 − ε)2
+ ε(J1 + J2)

)
, (C.17)

where

J1 =

1∫
0

1∫
0

dx dz z1−2ε ln z
d

dx
(1 − zx)−1−ε ,

J2 =

1∫
0

1∫
0

dz dx z1−2ε ln(1 − x)
d

dx
(1 − zx)−1−ε . (C.18)
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The integral J1 can be easily found:

J1 =
1

4(1 − ε)2
+

Γ(1 − ε)Γ(2 − 2ε)
Γ(2 − 3ε)

(ψ(2 − 3ε) − ψ(2 − 2ε))
ε

. (C.19)

For the integral J2, replacing d/dx by (z/x)d/dz in the representation (C.18)
and integrating over z by parts we obtain in the limit ε→ 0

J2 � −1
ε2

+ 1 + ψ(1)(1) + ε

(
5 − ψ(1)(1) +

ψ(2)(1)
2

)
. (C.20)

Using in (C.12) the results (C.19), (C.20), (C.14) and (C.17) we get the final
result (C.2).
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