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1 Introduction
In the limit of large center of mass energy

√
s and fixed momentum trans-

fer
√
−t (Regge limit) the most appropriate approach for the description

of scattering amplitudes is given by the theory of complex angular mo-
menta (Gribov-Regge theory). One of remarkable properties of QCD is the
Reggeization of its elementary particles. Contrary to QED, where the elec-
tron does Reggeize in perturbation theory [1], but the photon remains el-
ementary [2], in QCD the gluon does Reggeize [3]-[5] as well as the quark
[6]-[8].

The phenomenon of the Reggeization is very important for high energy
QCD. In particular, the BFKL approach [5] to the description of high energy
QCD processes is based on the gluon Reggeization. It was assumed in this
approach that the amplitudes with colour octets and negative signatures in
channels with fixed (not increasing with s) transferred momenta have the
Reggeized form. In the leading logarithmic approximation (LLA), when only
the leading terms ( αS ln s)n are resummed [5], the assumption was made
about the amplitudes in the multi-Regge kinematics (MRK). Remind that
the MRK means large invariant masses of any pair of final state particles
and fixed transverse momenta; we include here the Regge kinematics (RK)
in the MRK as a particular case. The Reggeized form of these amplitudes in
the LLA was proved [9], so that in this approximation the BFKL approach
is completely justified.

Now the BFKL approach is developed in the next-to-leading approxima-
tion (NLA), when the terms αS(αS ln s)n are also resummed. The kernel of
the BFKL equation for the forward scattering (t = 0 and colour singlet in the
t-channel) in the next-to-leading order (NLO) is found [10],[11] . The calcu-
lation of the NLO kernel for the non-forward scattering [12] is not far from
completion (see [13],[14]). The impact factors of gluons [15] and quarks [16]
are calculated in the NLO and the impact factors of the physical (colour
singlet) particles are under investigation [17],[18],[19],[20],[21].

The NLO results are obtained assuming the Reggeized form both for the
amplitudes in the quasi-multi-Regge kinematics (QMRK), where a pair of
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produced particles has fixed invariant mass, and for the MRK amplitudes in
the NLA. It’s clear that these assumptions must be at least carefully checked,
if not proved. It can be done by revision of the "bootstrap" relations [12],
appearing from the requirement of compatibility of the Reggeized form of
the amplitudes with the s-channel unitarity. For the elastic amplitudes these
relations impose the bootstrap conditions on the colour-octet impact factors
and the BFKL kernel in the NLO [12]. The conditions for the impact factors
of gluons [15] and quarks [16], as well as for the quark part of the kernel [13],
were shown to be satisfied at arbitrary space-time dimension D. For the
gluon part of the kernel fulfillment of the bootstrap condition was proved at
D → 4 [22], in particular, because this part was available at that time only in
such limit. Now it can be done at arbitrary D, since the kernel at arbitrary
D is calculated [23].

Evidently, the bootstrap relations must be satisfied for all amplitudes
which were assumed to have the Reggeized form, so that there is an infinite
set of such relations. Since the amplitudes are expressed in terms of the
gluon trajectory and a finite number of the Reggeon vertices, it is extremely
nontrivial to satisfy all these relations. Nevertheless, it occurs that all of
them can be fulfilled if the vertices and trajectory submit to several bootstrap
conditions [24]. On the other hand, the fulfillment of all bootstrap relations
secures the Reggeized form of the radiative corrections order by order in
the perturbation theory. On this way the proof of the Reggeization was
constructed in the LLA [9]. An analogous proof can be constructed in the
next-to-leading approximation (NLA) as well [24].

The bootstrap relations for the multi-particle production amplitudes
give [24], in particular, stronger restrictions on the octet impact factors
and kernel, than the relations for the elastic amplitudes. These restrictions
are known as the strong bootstrap conditions suggested, without derivation,
in [25, 26], which lead to remarkable properties of the colour-octet impact fac-
tors and the Reggeon vertices [27], that their ratio is a process-independent
function. In the NLO this quite nontrivial property was verified by com-
parison of such ratio for quarks and gluons [27]. Moreover, the process-
independent function mentioned above must be the eigenfunction of the octet
kernel. In the part concerning the quark contribution to the kernel it is proved
rather easily [13], [26],[28]. To do this for the gluon contribution requires
much more efforts, but recently it was also done [29].

In this paper we investigate the bootstrap relations for the production
amplitudes in the QMRK. We calculate the one-loop radiative corrections to
these amplitudes using the s-channel unitarity, derive the bootstrap condi-
tions for the production vertices and demonstrate that they are fulfilled.
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The next Section contains all necessary definitions and denotations. Then,
in Section 3, we consider the amplitudes with a couple of particles in the
fragmentation region of one of colliding particles. We calculate the one-loop
radiative corrections for these amplitudes and derive the bootstrap condi-
tions for the Reggeon vertices in the QMRK in Subsection 3.1. In Subsec-
tions 3.2, 3.3 and 3.4 we demonstrate that these conditions are satisfied for
quark-antiquark, gluon-gluon and quark-gluon production respectively. Next
we consider production of a couple of particles with fixed invariant mass
in the central region of rapidities. Subsection 4.1 contains the calculation
of the one-loop radiative corrections and derivation of the bootstrap condi-
tions. Fulfillment of these conditions is proved in Subsections 4.2 and 4.3 for
quark-antiquark and gluon-gluon production respectively. Significance of the
obtained results is discussed in Section 5.

2 Definitions and denotations
Considering collisions of high energy particles A and B with momenta pA

and pB and masses mA and mB we introduce light cone 4-vectors p1 and p2

so that

pA = p1 +
(
m2

A/s
)
p2 , pB = p2 +

(
m2

B/s
)
p1 , s = 2p1p2 ' (pA + pB)2 ,

(2.1)
where s is supposed tending to infinity, and use the Sudakov decomposition
of momenta

p = βp1 + αp2 + p⊥ , sαβ = p2 − p2
⊥ = p2 + ~p 2 , (2.2)

where the vector sign denotes components of momenta transverse to the
pA, pB plane. They are supposed to be limited (not growing with s).

According to the hypothesis of the gluon Reggeization the amplitude of
the process A+B → A′+B′ with a colour octet in the t-channel and negative
signature (that means antisymmetry under the substitution s ↔ u ' −s )
has the form:

AA′B′

AB = Γc
A′A

[(
−s

−t

)j(t)

−
(

+s

−t

)j(t)
]

Γc
B′B , (2.3)

where

t = q2 ' q2
⊥ = −~q 2 , q = pA − pA′ = pB′ − pB ; j(t) = 1 + ω(t) ; (2.4)
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j(t) is the gluon Regge trajectory, Γc
P ′P are the vertices of the Reggeon inter-

actions with scattered particles, c is a colour index. The form (2.3) represents
correctly the analytical structure of the scattering amplitude, which is quite
simple in the elastic case. In the BFKL approach it is assumed that this form
is valid in the NLA as well as in the LLA. Remind that in each order of per-
turbation theory amplitudes with negative signature do dominate, owing to
the cancellation of the leading logarithmic terms in amplitudes with positive
signatures, which become pure imaginary in the LLA due to this cancellation.
Note that the amplitude of the process A+B → A′+B′ can contain contribu-
tions of various colour states and signatures in the t-channel, so that, strictly
speaking, we should indicate somehow in the L.H.S. (2.3) that only the con-
tribution of a colour octet with negative signature is retained. But since in
this paper we are interested only in such contributions, we have omitted this
indication to simplify denotations. We do the same below considering the
inelastic amplitudes, so that a colour octet and negative signature is always
assumed, without explicit indication, in the channels with gluon quantum
numbers.

In the leading order (LO) the vertices of the Reggeon interactions with
quarks and gluons have very simple form in the helicity basis:

Γc
P ′P = gT c

P ′P δλP ′λP
, (2.5)

where g is the QCD coupling constant, T c
P ′P are the matrix elements of the

colour group generators in corresponding representations and λ-s are helicities
of the partons. But we’ll need a basis-independent form of the vertices. For
quarks with momenta p and p′ having predominant components along p1 such
form can be presented as

Γc
Q′Q = gū(p′)tc

p/2

2pp2
u(p) , (2.6)

where tc are the colour group generators in the fundamental representation;
for antiquarks we have correspondingly

Γc
Q̄′Q̄ = −gv̄(p)tc

p/2

2pp2
v(p′) . (2.7)

For gluons with predominant components of momenta along p1 we’ll use
physical polarization vectors e(p)p = e(p′)p′ = 0 in the light-cone gauge
e(p)p2 = e(p′)p2 = 0 , so that

e(p) = e(p)⊥ −
(e(p)⊥p⊥)

p2p
p2 , e(p′) = e(p′)⊥ −

(e(p′)⊥p′⊥)
p2p′

p2 , (2.8)
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�q1, c1 q2, c2 qn, cn qn+1, cn+1

P0 P1 Pn Pn+1

A B

Figure 1: Schematic representation of the process A+B → P0+P1+· · ·+Pn+1

in the MRK. The zig-zag lines represent Reggeized gluon exchange; the black
circles denote the Regeon vertices; qi are the Reggeon momenta, flowing from
the left to the right; ci are the colour indices.

and
Γc

G′G = −g(e∗(p′)⊥e(p)⊥)T c
G′G , (2.9)

with the colour generators in the adjoint representation. For momenta with
predominant components along p2 we have to replace in these formulas
p2 → p1 (evidently, this replacement in (2.8) means change of the gauge).
The gluon trajectory in the LO is given by

ω(1)(t) =
g2Nct

2(2π)D−1

∫
dD−2q1

~q 2
1 (~q − ~q1)2

= −g2 NcΓ(1− ε)
(4π)D/2

Γ2(ε)
Γ(2ε)

(~q 2)ε . (2.10)

Here and in the following Nc is the number of colors, D = 4+2ε is the space-
time dimension taken different from 4 to regularize infrared divergencies; Γ(x)
is the Eueler function.

The necessary assumption in the derivation of the BFKL equation is the
Reggeized form of the production amplitudes in the multi-Regge kinematics
(MRK), which means large invariant masses of any pair of final particles
and fixed transferred momenta. Denoting momenta of final particles in the
process A + B → P0 + P1 + ... + Pn+1 as ki, i = 0÷ n + 1 (see Fig. 1),

ki = βip1 + αip2 + ki⊥ , sαiβi = k2
i − k2

i⊥ = k2
i + ~k 2

i , (2.11)

we can put in the MRK

α0 � α1 · · · � αn � αn+1 , βn+1 � βn · · · � β1 � β0 . (2.12)
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Due to Eqs. (2.11) and (2.12) the squared invariant masses

si = (ki−1 + ki)2 ≈ sβi−1αi =
βi−1

βi
(k2

i + ~k 2
i ) (2.13)

are large compared with the squared transverse momenta of produced parti-
cles, which are of order of the squared momentum transfers:

si � ~k2
i ∼| ti |=| q2

i | , (2.14)

where

qi = pA −
i−1∑
j=0

kj = −

pB −
n+1∑
j=i

kj

 ≈ βip1 − αi−1p2 −
i−1∑
j=0

kj⊥ ,

ti = q2
i ≈ q2

i⊥ = −~q 2
i , (2.15)

and product of all si is proportional to s:

n+1∏
i=1

si = s
n∏

i=1

(k 2
i + ~k2

i ) . (2.16)

The production amplitudes have a complicated analytical structure (see, for
instance, [30],[31]). Fortunately, only real parts of these amplitudes are used
in the derivation of the BFKL equation in the NLA as well as in the LLA. We
restrict ourselves also by consideration of the real parts, although it is not
explicitly indicated below. They can be written as (see [12] and references
therein)

AÃB̃+n
AB = 4(pApB)Γc1

ÃA

 n∏
i=1

1
ti

γPi
cici+1

(qi, qi+1)

 si√
~k2

i−1
~k2

i

ω(ti)


× 1
tn+1

 sn+1√
~k2

n
~k2

n+1

ω(tn+1)

Γcn+1

B̃B
, (2.17)

where γPi
cici+1

(qi, qi+1) are the so-called Reggeon-Reggeon-particle (RRP) ver-
tices, i.e. the effective vertices for production of particles Pi with momenta
ki=qi− qi+1 in the collision of the Reggeons with momenta qi and −qi+1 and
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colour indices ci and ci+1. In the MRK only gluons can be produced with
the vertex

γG
c1c2

(q1, q2) = gT a
c1c2

e∗µ(k)Cµ(q2, q1), (2.18)

where a, k = q1 − q2 and e(k) are respectively colour index, momentum and
polarization vector of the gluon,

Cµ(q2, q1) = −qµ
1 − qµ

2 + pµ
1 (

q2
1

kp1
+ 2

kp2

p1p2
)− pµ

2 (
q2
2

kp2
+ 2

kp1

p1p2
)

= −qµ
1⊥ − qµ

2⊥ −
pµ
1

2(kp1)
(k2

⊥ − 2q2
1⊥) +

pµ
2

2(kp2)
(k2

⊥ − 2q2
2⊥) . (2.19)

In the light cone gauge e(k)p2 = 0 we have

e∗µ(k)Cµ(q2, q1) = −2e∗⊥(k)
(

q1⊥ − k⊥
q2
1⊥
k2
⊥

)
. (2.20)

In the NLA the multi-Regge form is assumed in the BFKL approach for
the production amplitudes not only in the MRK, when all produced particles
are strongly ordered in the rapidity space, but also in the QMRK, when a
couple of two particles is produced with rapidities of the same order. The
QMRK can be obtained replacing one of the particles Pi in the MRK by this
couple. Therefore the QMRK amplitudes have the same form (2.17) as in
the MRK with one of the vertices γPi

cici+1
or Γc

P̃P
substituted by a vertex for

production of the couple.
If the particles P1 and P2 are produced in the fragmentation region of the

particle A, we have

A{P1P2}B′

AB = 4(pApB)Γc
{P1P2}A

sω(t)

t
Γc

B′B , (2.21)

where now q = pA − k , k = k1 + k2 , k1 and k2 are momenta of the
particles P1 and P2 correspondingly; for their Sudakov parameters we have
β1 ∼ β2 ∼ 1 , β1 + β2 = 1 , α1 ∼ α2 ∼ O(1/s) . The produced particles
can be gg or qq̄ pair if the particle A is the gluon and qg when the particle
A is the quark.

If rapidities of components of the produced couple (it can be or gg or
qq̄ pair) are far away from rapidities of colliding particles, then it is cre-
ated by two Reggeized gluons, and its production is described by the ver-
tices γQQ̄

c1 c2
(q1, q2) or γG1G2

c1 c2
(q1, q2), where q1, c1 and −q2, c2 are momenta

and colour indices of the Reggeized gluons. The amplitude AA′{P1P2}B′

AB de-
scribing production on the couple P1 and P2 with the Sudakov parameters
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α1 ∼ α2 � 1, β1 ∼ β2 � 1, has the form

AA′{P1P2}B′

AB = 4(pApB)Γc1
A′A

s
ω(t1)
1

t1
γP1P2

c1 c2
(q1, q2)

s
ω(t2)
2

t2
Γc2

B′B , (2.22)

where
q1 = pA − pA′ , q2 = −pB + pB′ , ti = q2

i ' q2
i⊥ ,

s1 = (pA′ + k)2 , s2 = (pB′ + k)2 , k = k1 + k2 , k2 � s1,2 � s . (2.23)

Note that because the QMRK in the unitarity relations leads to loss of
the large logarithms, scales of energies in (2.21), (2.22) are unimportant in
the NLA; moreover, the trajectory and the vertices are needed there only
in the LO. The trajectory in this order is given by (2.10); the vertices are
presented below. Remind that the vertices were extracted from corresponding
amplitudes in the Born approximation, so that at the tree level Eqs.(2.21),
(2.22) are verified. What has to be checked is their energy dependence, i.e.
the Regge factors s

ω(ti)
i .

3 Production in the fragmentation region

3.1 One-loop radiative corrections and bootstrap
conditions

To be definite, we consider below production in the fragmentation region of
the particle A. In this section we use denotations s1 = (pB′ + pP1)

2 and
s2 = (pB′ + pP2)

2. Note that here s1 ∼ s2 ∼ s, contrary to the case of
production in the central region of rapidities. In the radiative corrections to
the amplitude A{P1P2}B′

AB we have to retain only large logarithmic terms, not
making difference between ln s, ln s1 and ln s2. Therefore the corrections can
be calculated using the s-channel unitarity in the same way as it was done
for the elastic scattering amplitudes in the LLA [5]. The large logarithms are
defined by the discontinuities of the amplitude A{P1P2}B′

AB in the channels s,
s1 and s2, and we find them using the unitarity relations in these channels.

Let start with the s-channel discontinuity. In the one-loop approximation
the intermediate states in the unitarity relation can be only two-particle
states, so that we have (see Fig. 2 a)

=sA{P1P2}B′

AB =
1
2

∑
{ÃB̃}

∫
AÃB̃

ABA
{P1P2}B′

ÃB̃
dΦÃB̃ , (3.1)
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a

r, c1

q − r, c′1

P1 P2 B′

A B

Ã B̃

�
b

r, c1

P̃

q − r, c′1

B̃

A B

P2 P1 B′

Figure 2: Schematic representation of the discontinuities of the amplitude
A{P1P2}B′

AB : a -in the s-channel; b - in the s1-channel.

where the sum
∑

{ÃB̃} is over over all discrete quantum numbers of the
particles Ã and B̃, dΦÃB̃ is their phase space element. Here and in the
following we use the Hermitian property of the Born amplitudes(

Af
i

)∗
= Ai

f . (3.2)

In the region which gives a leading (growing as s) contribution to the imagi-
nary part

dΦÃB̃ = (2π)Dδ(D)(pA+pB−pÃ−pB̃)
dD−1pÃ

2εÃ(2π)D−1

dD−1pB̃

2εB̃(2π)D−1
=

dD−2r⊥
2s(2π)D−2

.

(3.3)
Here and below r⊥ is the transverse part of the momentum transfer pB̃−pB .
Note that for production in the fragmentation region the Sudakov parameters
α and β for the momentum transfer pB̃−pB are ∼ 1/s, so that pB̃−pB ' r⊥.
For production in the central region it is not always correct.

The imaginary parts in the s1,2-channels are calculated quite analogously.
Take the s1-channel. Denoting intermediate particles in the unitarity relation
in this channel P̃ and B̃, we obtain (see Fig. 2 b)

=(pB′+pP1 )2A
{P1P2}B′

AB =
1
2

∑
{P̃ B̃}

∫
A{P̃P2}B̃

AB AP1B′

P̃ B̃
dΦP̃ B̃ , (3.4)
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with

dΦP̃ B̃ = (2π)Dδ(D)(pP1 + pB′ − pP̃ − pB̃)
dD−1pP̃

2εP̃ (2π)D−1

dD−1pB̃

2εB̃(2π)D−1

=
dD−2r⊥

2(pB′ + pP1)2(2π)D−2
. (3.5)

The s2-channel imaginary part is obtained from (3.4), (3.5) by the substitu-
tion P1 ↔ P2.

Since we don’t make difference between ln s, ln s1 and ln s2, we need only
sum of the imaginary parts in the s, s1 and s2 channels. Using (2.3) and
(2.21) in the Born approximation for the amplitudes in (3.1), (3.4) we obtain
for the sum

=A{P1P2}B′

AB =
s

(2π)D−2

∫
dD−2r⊥

r2
⊥(q − r)2⊥

∑
{i}

Γc1
{i}AΓc′

1
{P1P2}{i}

∑
{B̃}

Γc1

B̃B
Γc′

1

B′B̃
,

(3.6)
where the sum over {i} is performed over all possible intermediate states and
their quantum numbers. If {i} contains two particles, one of them must be
P1 or P2; in this case corresponding subscript in Γc′

1
{P1P2}{i} can be omitted.

Remind that we assume everywhere projection on a colour octet and
negative signature in the t-channel. Performing this projection explicitly by
the projection operator P̂8a ,

〈c1c
′
1|P̂8a

|c2c
′
2〉 =

fc1c′
1cfc2c′

2c

Nc
, (3.7)

where fabc are the structure constants of the colour group, and using the
bootstrap property of the LO vertices

fc1c′
1c

∑
{B̃}

Γc1

B̃B
Γc′

1

B′B̃
= −ig

Nc

2
Γc

B′B , (3.8)

which is easily derived from (2.5), we get

=A{P1P2}B′

AB =
s

t

(
−π

gt

(2π)D−1

∫
dD−2r⊥

r2
⊥(q − r)2⊥

ifc1c′
1c

×
∑
{i}

Γc1
{i}A(r⊥)Γc′

1
{P1P2}{i}(q⊥ − r⊥)

 Γc
B′B . (3.9)
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Here we indicate explicitly dependence of the Reggeon vertices on momen-
tum transfer. Remind that the sum over {i} is performed over all possible
intermediate states and their quantum numbers. All vertices here are taken
in the leading order, so that if an intermediate state contains two particles,
one of them must be the same as in the final state; another changes its trans-
verse momentum and colour state, but its helicity is conserved. The real
part of the one-loop contribution to the amplitude can be restored from the
imaginary part by the substitution (cf.(2.3))

−π → 2 ln s . (3.10)

Therefore, comparing (3.9) with the first order term in the expansion of (2.21)
with account of (2.10), we see that the one-loop correction calculated above
is compatible with the Reggeized form (2.21) only if∫

dD−2r⊥
r2
⊥(q − r)2⊥

if cc1c′
1

Nc

∑
{i}

Γc1
{i}A(r⊥)Γc′

1
{P1P2}{i}(q⊥ − r⊥)

=
g

2
Γc
{P1P2}A(q⊥)

∫
dD−2r⊥

r2
⊥(q − r)2⊥

. (3.11)

Eq. (3.11) gives the bootstrap conditions for the Reggeon vertices of two-
particle production in the fragmentation region. In the next subsections we
show that they are satisfied.

3.2 Quark-antiquark production
To produce a qq̄ pair the particle A must be a gluon. Let pA = p1, a is
the colour index of the initial gluon, k1 and k2 are the quark and antiquark
momenta respectively,

k1,2 = β1,2 p1 +
m2 + ~k 2

1,2

sβ1,2
p2 + k1,2⊥ , k1⊥ + k2⊥ + q⊥ = 0 , (3.12)

m is the quark mass. The intermediate states {i} in (3.11) can be:

1) one-gluon state with momentum pÃ = p1 − r;
2) qq̄ state with quark and antiquark momenta k′1 = k1 + q − r and k2

respectively;
3) qq̄ state with quark and antiquark momenta respectively k1 and

k′2 = k2 + q − r.
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Apart from the "elastic" vertices (2.9),(2.6),(2.7) the bootstrap condition
contains only the Reggeon vertex for qq̄ production, which can be found
in [15]. In general case, when the pair is produced by the gluon G with
momentum k = βp1 + ~k 2/(βs)p2 + k⊥ , the vertex can be presented as

Γc
{QQ̄}G = (tatc)i1i2

(A((k1 − x1k)⊥)−A((x2k1 − x1k2)⊥))

− (tcta)i1i2
(A((−k2 + x2k)⊥)−A((x2k1 − x1k2)⊥)) , (3.13)

where x1,2 = β1,2/β, x1 + x2 = 1, i1, i2 are quark and antiquark colour
indices, a is the colour index of the gluon G. The amplitudes A(p⊥) in the
light-cone gauge (2.8) are rather simple:

A(p⊥) =
g2

p2
⊥ −m2

ū(k1)
p/B

βs

(
x1e/⊥p/⊥ − x2p/⊥e/⊥ − e/⊥m

)
v(k2) . (3.14)

Here e is the gluon polarization vector, u(k1) and v(k2) are the spin wave
functions of the quark and antiquark respectively.

With the vertices (2.9),(2.6),(2.7) and (3.13) the contribution of either of
the three intermediate states to the integrand in L.H.S. of (3.11) is readily
calculated and we obtain correspondingly
1)

igf cc1c′
1

Nc
T c1

a′a

[(
ta

′
tc

′
1

)
i1i2

(A((k1 + x1r)⊥)−A((x2k1 − x1k2)⊥))

−
(
tc

′
1ta

′
)

i1i2
(A((−k2 − x2r)⊥)−A((x2k1 − x1k2)⊥))

]
, (3.15)

2)
igf cc1c′

1

Nc

[(
tc

′
1tatc1

)
i1i2

(A((−k2 − r)⊥)−A((−k2 − x2r)⊥))

−
(
tc

′
1tc1ta

)
i1i2

(A((−k2)⊥)−A((−k2 − x2r)⊥))
]

, (3.16)

and
3)

− igf cc1c′
1

Nc

[(
tatc1tc

′
1

)
i1i2

(A((k1)⊥)−A((k1 + x1r)⊥))

−
(
tc1tatc

′
1

)
i1i2

(A((k1 + r)⊥)−A((k1 + x1r)⊥))
]

. (3.17)
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It’s not difficult to see from these expressions that the terms with A((k1 +
x1r)⊥) are cancelled before integration, due to the commutation relations
between ti, as well as the terms with A((−k2−x2r)⊥). As for the terms with
A((k1 + r)⊥) and A((−k2 − r)⊥), they cancel each other as a result of inte-
gration, due to invariance of the integration measure dD−2r⊥/

(
r2
⊥(q − r)2⊥

)
with respect to the substitution (k1 + r)⊥ ↔ (−k2 − r)⊥, with account of
k1⊥ + k2⊥ + q⊥=0. A simple colour algebra shows that the remaining terms
gather into (g/2)Γc

{QQ̄}A
, where A is a gluon with momentum pA = p1 (see

(3.13)), that makes evident that the bootstrap condition (3.11) is satisfied.

3.3 Two-gluon production
The case of two-gluon production can be considered quite similarly. Again
the particle A must be a gluon. Using the same denotations as before, with
the difference that k1 and k2 now are the momenta of the produced gluons
(so that m is replaced by 0), i1 and i2 are their colour indices. Denoting their
polarization vectors in the light-cone gauge (2.8) e1 and e2, we can present
the vertex Γc

{G1G2}G of two-gluon production [15] in the same form as (3.13)

Γc
{G1G2}G = (T aT c)i1i2

(A((k1 − x1k)⊥)−A((x2k1 − x1k2)⊥))

− (T cT a)i1i2
(A((−k2 + x2k)⊥)−A((x2k1 − x1k2)⊥)) , (3.18)

where the amplitudes A(p⊥) now have the form:

A(p⊥) =
2g2

p2
⊥

[
x1x2 (e∗1⊥e∗2⊥) (e⊥p⊥)−x1 (e∗1⊥e⊥) (e∗2⊥p⊥)−x2 (e∗2⊥e⊥) (e∗1⊥p⊥)

]
.

(3.19)
The intermediate states are now:
1) one-gluon state with gluon momentum pÃ = p1 − r;
2) two-gluon state with gluon momenta k′1 = k1 + q − r and k2;
3) two-gluon state with gluon momenta k1 and k′2 = k2 + q − r.

It is easy to see that the contributions of these states to the integrand in
L.H.S. of (3.11) are given by the same formulas (3.15)-(3.17) as for the case
of quark-antiquark production, with the only difference that the colour group
generators are taken not in the fundamental, but in the adjoint representa-
tion. Since in the proof of fulfillment of the bootstrap conditions only the
commutation relations of the generators were used, the proof can be applied
to the case of two-gluon production as well as to qq̄ production.

15



3.4 Quark-gluon production
In the case of quark-gluon production (when the particle A is a quark) the
bootstrap condition can be considered in the same way. Let now k is the
momentum of incoming quark, k1 and k2 are the momenta of final quark and
gluon correspondingly. Note that k2 = k2

1 = m2, so that

k = βp1 +
~k 2 + m2

βs
p2 + k⊥ ,

k1 = β1p1 +
~k 2

1 + m2

β1s
p2 + k1⊥ , k2 = β2p1 +

~k 2
2

β2s
p2 + k2⊥ . (3.20)

Then from [16] one can obtain

Γc
{QG}Q = (tatc)i1i2

(A((x2k1 − x1k2)⊥)−A((k1 − x1k)⊥))

− (tcta)i1i2
(A((−k2 + x2k)⊥)−A((k1 − x1k)⊥)) , (3.21)

where i1 and i2 are now the colour indices of the outgoing and incoming
quarks, a is the colour index of the produced gluon G, and the amplitudes A
now have the form:

A(p⊥) = − g2

p2
⊥ − x2

2m
2
ū(k1)

p/B

βs

(
x1e/

∗
⊥p/⊥ + p/⊥e/

∗
⊥ + e/

∗
⊥x2

2m

)
u(p) . (3.22)

Possible intermediate states are now:
1) one-quark state with quark momentum pÃ = pA − r; its contribution to
the integrand in the L.H.S. of the bootstrap equation is

igf cc1c′
1

Nc

[(
tatc

′
1tc1

)
i1i2

(A((x2k1 − x1k2)⊥)−A((k1 + x1r)⊥))

−
(
tc

′
1tatc1

)
i1i2

(A((−k2 − x2r)⊥)−A((k1 + x1r)⊥))
]

; (3.23)

2) quark-gluon state with quark and gluon momenta k′1 = k1 + q − r and k2

correspondingly; it gives

igf cc1c′
1

Nc

[(
tc

′
1tatc1

)
i1i2

(A((−k2 − x2r)⊥)−A((−k2 − r)⊥))

−
(
tc

′
1tc1ta

)
i1i2

(A((−k2)⊥)−A((−k2 − r)⊥))
]

, (3.24)
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and
3) quark-gluon state with quark and gluon momenta k1 and k′2 = k2 + q− r;
it contributes

igf cc1c′
1

Nc
T

c′
1

aa′

[(
ta

′
tc1

)
i1i2

(A((k1 + x1r)⊥)−A((k1)⊥))

−
(
tc1ta

′
)

i1i2
(A((k1 + r)⊥)−A((k1)⊥))

]
. (3.25)

As well as in the case of qq̄ production, it’s not difficult to see that the
terms with A((k1 +x1r)⊥) and A((−k2−x2r)⊥) are cancelled before integra-
tion, due to colour algebra; the terms with A((k1 + r)⊥) and A((−k2 − r)⊥)
cancel each other as a result of integration, and the remaining terms give
(g/2)Γc

{GQ}Q, where Q is a quark with momentum pA = p1 + (m2/s)p2 (see
(3.21)).

It completes the proof that the bootstrap conditions (3.11) are satisfied.
We have considered here the case of qg production. QCD invariance under

the charge conjugation secures that the bootstrap condition is fulfilled also
for q̄g production.

4 Production in the central region

4.1 One-loop radiative corrections and bootstrap
conditions

Seing that only large logarithmic terms in the radiative corrections to the
amplitude AA′{P1P2}B′

AB must be retained, the corrections again can be calcu-
lated using the s-channel unitarity, as it was done for gluon production in the
MRK in the LLA [5]. The logarithmic terms in the real part of the amplitude
are obtained from the imaginary parts, connected with the discontinuities of
the amplitude in channels with great (tending to infinity when s → ∞) in-
variants, by the substitution (3.10), with corresponding invariant instead of
s. Production of two particles with fixed invariant mass instead of one leads
only to technical complications connected with existence of larger number of
such invariants, analogously to the case of two particles in the fragmentation
region compared with elastic scattering.

Let momenta of the produced particles P1 and P2 be k1 and k2 with
k1 + k2 = k = q1 − q2 ; q1 = pA − pA′ and q2 = pB′ − pB are transferred
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momenta; note that we can neglect by a component of q1 (q2) along p2 (p1),
so that

q1 = βp1 + q1⊥ , q2 = −αp2 + q2⊥ , sαβ = ~k 2
⊥ . (4.1)

In the case of production of one particle with momentum k in the MRK
the large logarithms were defined by the discontinuities in the channels
s1 = (pA′ + k)2, s2 = (pB′ + k)2, s and (pA′ + pB′)2. Now we have more
invariants which are great; but they can be divided into three groups of in-
variants of the same order (∼ s1, ∼ s2 and ∼ s). Evidently, we have to
calculate discontinuities in channels of all these invariants. Since we don’t
differ logarithms of invariants of one order, the real parts of the amplitude
related to discontinuities in channels of invariants ∼ sa (sa can be s1, s2

or s) are obtained from the imaginary parts by the substitution (3.10) with
s → sa. Note that with our accuracy ln s = ln s1 + ln s2, therefore only
two large logarithms in the real part can be considered as independent. We
choose as independent ln s1 and ln s2. To calculate the contribution with
ln s1 (ln s2) in the real part we have to find the sum of the imaginary parts
in the channels with invariants of order s1 (s2) and of order of s and then to
make the substitution (3.10) with s1 (s2) instead of s.

Therefore, to find the terms with ln s2 in the real part we need to calculate
the imaginary parts in the channels s2 = (pB′ + k)2, s21 = (pB′ + k1)2,
s22 = (pB′ + k2)2, s = (pA + pB)2, s′ = (pA′ + pB′)2, s′1 = (pA′ + k1 + pB′)2

and s′2 = (pA′ + k2 + pB′)2, schematically shown in Figs. 3 a-g. Let us
represent the sum of the imaginary parts as

=AA′{P1P2}B′

AB =

= sΓc1
A′A

1
t1

(
−π

gt2
(2π)D−1

∫
dD−2r⊥

r2
⊥(q2 − r)2⊥

FP1P2
c1c2

(q1, q2, r⊥)
)

1
t2

Γc2
B′B . (4.2)

Below a possibility of such representation (which could be clear for an ad-
vanced reader) is shown and the contributions to FP1P2

c1c2
(q1, q2, r⊥) from the

imaginary parts in each of the channels are found. Let start with the s2-
channel (see Fig. 3 a):

=3aAA′{P1P2}B′

AB =
1
2

∑
{P̃ B̃}

∫
AA′P̃ B̃

AB A{P1P2}B′

P̃ B̃
dΦP̃ B̃ , (4.3)

where dΦP̃ B̃ is given by (3.5) with the replacement pP1 → k. As always,
r⊥ = (pB̃ − pB)⊥. The particle P̃ has to be produced in the MRK, so that it
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A B
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Figure 3: Schematic representation of the discontinuities of the amplitude
AA′{P1P2}B′

AB : a -in the s2-channel; b -in the s21-channel; c -in the s22-channel;
d -in the s-channel; e -in the s′-channel; f -in the s′1-channel ; g -in the s′2-
channel.

19



must be a gluon. Denoting its momentum k′ we have

k′ = βp1 −
(q1 − r)2⊥

βs
p2 + (q1 − r)⊥ . (4.4)

The possibility of the representation (4.2) for the imaginary part (4.3) be-
comes evident if one takes the representations (2.17) and (2.21) in the Born
approximation for the amplitudes in (4.3), extracts the antisymmetric colour
octet in the t2-channel (t2 = (pB−pB′)2) by the projection operator (3.7) and
uses the bootstrap property of the LO vertices (3.8). For the contribution
Fa

c1c2
to FP1P2

c1c2
(q1, q2, r⊥) one obtains

Fa
c1c2

= ifijc2

∑
{G}

γG
c1i(q1, q1 − k′)Γj

{P1P2}G . (4.5)

Imaginary parts in the channels (pB′ + k1)2 and (pB′ + k2)2 (see Fig. 3 b,c)
are found quite analogously. For the first of them we have

=3bAA′{P1P2}B′

AB =
1
2

∑
{P̃ B̃}

∫
AA′{P̃P2}B̃

AB AP1B′

P̃ B̃
dΦP̃ B̃ , (4.6)

where dΦP̃ B̃ is given now just by (3.5). Evidently, the particle P̃ now is of
the same kind as P1. Denoting its momentum k′1 we have

k′1 = β1p1 +
m2

1 − (q1 − k2 − r)2⊥
β1s

p2 + (q1 − k2 − r)⊥ , (4.7)

where m1 is its mass. The amplitudes AA′{P̃P2}B̃
AB and AP1B′

P̃ B̃
are given

by (2.22) and (2.3) respectively, taken in the Born approximation. After
extraction of the antisymmetric colour octet in the t2-channel and use of
(3.8) we come to the representation (4.2) with the contribution Fb

c1c2
to

FP1P2
c1c2

(q1, q2, r⊥) equal

Fb
c1c2

= ifijc2

∑
{P̃}

γP̃P2
c1i (q1, q1 − k′1 − k2)Γ

j

P1P̃
. (4.8)

Evidently,
Fc

c1c2
= Fb

c1c2
(P1 ↔ P2) . (4.9)

The imaginary parts shown in Figs. 3 d-g are calculated in a similar way.
For Fig. 3 d one has

=3dAA′{P1P2}B′

AB =
1
2

∑
{ÃB̃}

∫
AÃB̃

ABA
A′{P1P2}B′

ÃB̃
dΦÃB̃ , (4.10)
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where dΦÃB̃ is given by (3.3); r⊥ = (pB̃ − pB)⊥ ' pB̃ − pB . The amplitudes
AÃB̃

AB and AA′{P̃P2}B′

P̃ B̃
are given by the Born terms of (2.22) and (2.3) respec-

tively. The difference of further calculation from preceding ones is that it
is necessary to apply the projection operator (3.7) and to use the bootstrap
property (3.8) both in the t1- and t2-channels. After this it becomes clear
that again the imaginary parts have the form (4.2) with the contribution to
FP1P2

c1c2
(q1, q2, r⊥) equal

Fd
c1c2

=
g

2
fijc1fij′c2

q2
1⊥

(q1 − r)2⊥
γP1P2

jj′ (q1 − r⊥, q2 − r⊥) . (4.11)

The imaginary part answering Fig. 3 e is

=3eAA′{P1P2}B′

AB =
1
2

∑
{ÃB̃}

∫
AÃ{P1P2}B̃

AB AA′B′

ÃB̃
dΦÃB̃ , (4.12)

where dΦÃB̃ is given now by (3.3) with the replacement (pA + pB →
pA′ + pB′). It is easy to see that the contribution of this imaginary part
to FP1P2

c1c2
(q1, q2, r⊥) is obtained from Fd

c1c2
by the substitution r ↔ q2 − r.

Since the integration measure in (4.2) is invariant under this substitution, we
can put

Fe
c1c2

= Fd
c1c2

. (4.13)

At last, Figs. 3 f,g appear only in the case when the particles P1 and P2 are
gluons. The imaginary part answering Fig. 3 f is

=3fAA′{P1P2}B′

AB =
1
2

∑
{ÃB̃}

∫
AÃP2B̃

AB AA′P1B′

ÃB̃
dΦÃB̃ . (4.14)

The amplitudes entering in (4.14) are given by (2.17) with n = 1 in the Born
approximation. Again applying the projection operator (3.7) and using the
bootstrap property (3.8) in the t1- and t2-channels we obtain

Ff
c1c2

=
g

2
fi′j′c2fijc1

q2
1⊥

q̃2
1⊥(q1 − q̃1)2⊥

γP2
ii′ (q1 − q̃1, q1 − q̃1 − k2)γP1

jj′(q̃1, q̃1 − k1),

(4.15)
where q̃1 = β1p1 + (k1 + q2 − r)⊥. Evidently,

Fg
c1c2

= Ff
c1c2

(P1 ↔ P2) . (4.16)

Note that Ff
c1c2

is invariant under simultaneous substitution P1 ↔ P2 (that
means, in particular, k1 ↔ k2) and r⊥ ↔ (q2 − r)⊥. The last substitution
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can be considered as the redefinition of r⊥. Since the integration measure in
(4.2) is invariant under this redefinition, we can make

Fg
c1c2

= Ff
c1c2

. (4.17)

Therefore, we have

FP1P2
c1c2

(q1, q2, r) = Fa
c1c2

+ Fb
c1c2

+ Fc
c1c2

+ 2Fd
c1c2

+ 2Ff
c1c2

, (4.18)

where the terms in the R.H.S. are given respectively by Eqs. (4.5), (4.8),
(4.9), (4.11) and (4.15).

As it was discussed earlier, the terms with ln s2 in the real part of the
amplitude AA′{P1P2}B′

AB are obtained from (4.2) by the substitution (3.10)
with s2 instead of s. Comparing the obtained result with (2.22) with account
of (2.10), we see that the one-loop correction calculated above is compatible
with the Reggeized form (2.22) only if∫

dD−2r⊥
r2
⊥(q2 − r)2⊥

FP1P2
c1c2

(q1, q2, r⊥) =
gNc

2
γ{P1P2}

c1c2
(q1, q2)

∫
dD−2r⊥

r2
⊥(q2 − r)2⊥

.

(4.19)
Eq.(4.19) gives the bootstrap conditions for the vertices of pair production
in Reggeon-Reggeon collisions. They are verified in the next subsections.

4.2 Quark-antiquark production
For simplicity, we discuss below the case of the massless quarks, although the
massive case can be considered quite analogously.

Denotations

Remind that k1 and k2 are the quark and antiquark momenta respectively;

ki = βip1 + αip2 + ki⊥ , i = 1, 2 , sαiβi = −k2
i⊥ = ~k 2

i ;

βi = xiβ , β = β1 + β2 ; k = k1 + k2 = q1 − q2 , (4.20)

and we can put

q1 = βp1 + q1⊥ , q2 = −αp2 + q2⊥ , β = β1 + β2 , α = α1 + α2 . (4.21)

We use also

k′ = βp1−
(q1 − r)2⊥

βs
p2+(q1−r)⊥ , k′1 = β1p1−

(q1 − k2 − r)2⊥
β1s

p2+(q1−k2−r)⊥,
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k′2 = β2p1 −
(q1 − k1 − r)2⊥

β2s
p2 + (q1 − k1 − r)⊥ . (4.22)

The function FP1P2
c1c2

(q1, q2, r⊥) in (4.19) is expressed in terms of the Reggeon
vertices defined in (2.6), (2.7), (2.18), (3.13) and the effective vertex of quark-
antiquark production in Reggeon-Reggeon collisions. The last vertex was
found in [32] and has the form

γQQ̄
c1c2

(q1, q2) =
1
2
g2ū(k1)

[
tc1tc2a(q1; k1, k2) − tc2 tc1a(q1; k2, k1)

]
v(k2) ,

(4.23)
where a(q1; k1, k2) and a(q1; k2, k1) can be written [33] in the following way:

a(q1; k1, k2) =
4p/1Q/1p/2

st̃1
− 1

k2
Γ/ , a(q1; k2, k1) =

4p/2Q/2p/1

st̃2
− 1

k2
Γ/ , (4.24)

with

t̃1 = (q1 − k1)2 , t̃2 = (q1 − k2)2 , Q1 = q1⊥ − k1⊥ , Q2 = q1⊥ − k2⊥ ,

Γ = 2
[
(q1 + q2)⊥ − βpA

(
1− 2

~q 2
1

sαβ

)
+ αpB

(
1− 2

~q 2
2

sαβ

)]
. (4.25)

Further for denominators in the Reggeon vertices we use denotations D(p, q)
and d(p, q):

D(p, q) = x1p
2
⊥ + x2q

2
⊥ , d(p, q) = (x1p⊥ − x2q⊥)2;

D(p, q) = d(p, q) + x1x2(p⊥ + q⊥)2. (4.26)

Seeing that for arbitrary p⊥

ū(k1)p/⊥v(k2) = ū(k1)
p/2

sβ

(
k/1⊥p/⊥

x1
+

p/⊥k/2⊥

x2

)
v(k2) , (4.27)

we can present a(q1; k1, k2) and a(q1; k2, k1) as

a(q1; k1, k2) =
2g2

sβ
p/2b(q1; k1, k2) , a(q1; k2, k1) =

2g2

sβ
p/2b(q1; k2, k1) , (4.28)

where
b(q1; k1, k2) =

k/1⊥(k/1⊥ − q/1⊥)
D(k1 − q1, k1)

− x1x2

d(k2, k1)

(
q2
1⊥k/1⊥k/2⊥

D(k2, k1)

−k/1⊥q/1⊥

x1
− q/1⊥k/2⊥

x2
− q2

1⊥ + 2(q1⊥(k1 + k2)⊥)
)
− 1 ,
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b(q1; k2, k1) =
(k/2⊥ − q/1⊥)k/2⊥

D(k2, k2 − q1)
− x1x2

d(k2, k1)

(
q2
1⊥k/1⊥k/2⊥

D(k2, k1)

−k/1⊥q/1⊥

x1
− q/1⊥k/2⊥

x2
− q2

1⊥ + 2(q1⊥(k1 + k2)⊥)
)
− 1 . (4.29)

This form of a(q1; k1, k2) and a(q1; k2, k1) permits to perform quite readily
the summation over spin projections λ of intermediate quarks and antiquarks
in the contributions Fb

c1c2
and Fc

c1c2
to FP1P2

c1c2
(q1, q2, r⊥); for example:∑

λ

ū(k1)
p/2

β1s
uλ(k′1)ū

λ(k′1)a(q1; k′1, k2)v(k2) = ū(k1)a(q1, k
′
1, k2)v(k2) .

(4.30)
Independent colour structures

It is easy to calculate the number of independent colour structures for pro-
duction of a qq̄ pair by two Reggeized gluons. Indeed, the pair can be either
in a colour singlet, or in a colour octet state. Due to the colour symmetry
each of these state can be produced only by the same state of two Reggeized
gluons, which are colour octets. Since there is one singlet and two octets
(symmetric and antisymmetric) in decomposition of product of two octets
into irreducible representations, the number of independent colour structures
is three. Their choice is not unique. We accept the following one:

Rc1c2
1 =

1
Nc

fc1 i afc2 i b(ta tb+tb ta),Rc1c2
2 = i fc1 c2 i ti,Rc1c2

3 = tc1 tc2+tc2 tc1 .

(4.31)
From the equality

ta tb =
1

2Nc
δa b +

1
2
da b c tc +

1
2
i fa b c tc (4.32)

it is seen that the first and the third structures contain a singlet and a sym-
metric octet, whereas the second structure contains only an antisymmetric
octet.

Representation of FP1P2
c1c2

(q1, q2, r)

Using these colour structure we can represent each of the contribution F i
c1c2

entering in FP1P2
c1c2

(q1, q2, r) (4.18) in the form

F i
c1c2

=
g3Nc

sβ
ū(k1)p/2

n=3∑
n=1

Rc1c2
n Li

nv(k2) . (4.33)
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It is not difficult to find all Li
n from the equations presented above.

From (4.5), using the Reggeon-Reggeon-gluon (RRG) vertex (2.18) in the
gauge (2.20) and the vertex for qq̄ production in the fragmentation region
(3.13) we obtain:

La
1 =

x1q/1⊥(k/1⊥ − x1k/
′
⊥)− x2(k/1⊥ − x1k/

′
⊥)q/1⊥

d(k′2, k1)
(4.34)

+
x2(x2k/

′
⊥ − k/2⊥)q/1⊥ − x1q/1⊥(x2k/

′
⊥ − k/2⊥)

d(k2, k′1)

+
q2
1⊥

(
x2(k/1⊥ − x1k/

′
⊥)k/′⊥ − x1k/

′
⊥(k/1⊥ − x1k/

′
⊥)

)
k

′2
⊥d(k′2, k1)

+
q2
1⊥

(
x1k/

′
⊥(x2k/

′
⊥ − k/2⊥)− x2(x2k/

′
⊥ − k/2⊥)k/′⊥

)
k

′2
⊥d(k2, k′1)

;

La
2 =

x2(x2k/
′
⊥ − k/2⊥)q/1⊥ − x1q/1⊥(x2k/

′
⊥ − k/2⊥)

d(k2, k′1)
(4.35)

− x1q/1⊥(k/1⊥ − x1k/
′
⊥)− x2(k/1⊥ − x1k/

′
⊥)q/1⊥

d(k′2, k1)

−
q2
1⊥

(
x2(k/1⊥ − x1k/

′
⊥)k/′⊥ − x1k/

′
⊥(k/1⊥ − x1k/

′
⊥)

)
k

′2
⊥d(k′2, k1)

+
q2
1⊥

(
x1k/

′
⊥(x2k/

′
⊥ − k/2⊥)− x2(x2k/

′
⊥ − k/2⊥)k/′⊥

)
k

′2
⊥d(k2, k′1)

+ 2
x1q/1⊥(x2k/1⊥ − x1k/2⊥)− x2(x2k/1⊥ − x1k/2⊥)q/1⊥

d(k2, k1)

+ 2
q2
1⊥

k
′2
⊥d(k2, k1)

(
x2(x2k/1⊥ − x1k/2⊥)k/′⊥ − x1k/

′
⊥(x2k/1⊥ − x1k/2⊥)

)
;

La
3 = 0 . (4.36)

In the case of qq̄ production the particle P̃ in the sum (4.8) must be a quark
with momentum k′1. Taking the representation (4.23), (4.28) for the vertex
of quark-antiquark production in Reggeon-Reggeon collisions, (2.6) for the
Quark-Quark-Reggeon vertex and summing over spin projections according
to (4.30), we have:

Lb
1 = −b(q1; k′1, k2) , Lb

2 = −1
2
b(q1; k2, k′1) , Lb

3 =
1
2
(b(q1; k′1, k2)−b(q1; k2, k′1)).

(4.37)
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Quite analogously we obtain

Lc
1 = −b(q1; k′2, k1) , Lc

2 =
1
2
b(q1; k1, k

′
2) , Lc

3 = −1
2
(b(q1; k1, k

′
2)−b(q1; k′2, k1)).

(4.38)
The functions b(q1; k1, k2) and b(q1; k2, k1) are defined in (4.29).

The quantities Lc
n are easily obtained from (4.11) with account of the

representation (4.23), (4.28) and are equal

Ld
1 =

q2
1⊥
k2
⊥

(
b(q1 − r; k1, k2)− b(q1 − r; k2, k1)

)
, (4.39)

Ld
2 = −q2

1⊥
k2
⊥

(
b(q1 − r; k1, k2) + b(q1 − r; k2, k1)

)
, (4.40)

Ld
3 = 0 . (4.41)

Since in the case of qq̄ production the diargams Fig. 3 f,g can not contribute,
Eqs. (4.33)-(4.41) together with (4.18) determine the L.H.S. of the bootstrap
equation (4.19). Using (4.23), (4.28) and (4.29) we can present the R.H.S. in
the form

g
Nc

2
γQQ̄

c1c2
(q1, q2) =

g3Nc

sβ
ū(k1)p/2

n=3∑
n=1

Rc1c2
n Lnv(k2) , (4.42)

where
L1 = 0 , (4.43)

L2 = −1
2
(
b(q1; k1, k2) + b(q1; k2, k1)

)
, (4.44)

L3 =
1
2
(
b(q1 − r; k1, k2)− b(q1 − r; k2, k1)

)
. (4.45)

Verification of the bootstrap equation

We have to compare the coefficients in the decomposition into the colour
structures Rc1c2

n in the left and right parts of the bootstrap equation (4.19).
Let start with Rc1c2

1 . Consider sum of Li
1. Note that due to the symmetry

of the integration measure in (4.19) under the substitution r⊥ → (q2⊥− r⊥)
we can make this substitution in separate terms in Li

1. Doing it in the terms
with the denominator D(k′2, k

′
2 − q1) permits to convert them in terms with

the denominator D(k′1 − q1, k
′
1). After that, using the decompositions

x1x2

d(k2, k′1)D(k2, k′1)
=

1
k

′2
⊥

(
1

d(k2, k′1)
− 1

D(k2, k′1)

)
, (4.46)
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x1x2

d(k′2, k1)D(k′2, k1)
=

1
k

′2
⊥

(
1

d(k′2, k1)
− 1

D(k′2, k1)

)
, (4.47)

it is easy to see, that the terms with the denominators

D(k′2, k1) , D(k2, k
′
1) , D(k′1, k

′
1 − q1) (4.48)

are cancelled and we obtain for the sum of Li
1:

x1x2q
2
1⊥

d(k′2, k1)
− x1x2q

2
1⊥

d(k2, k′1)
+

q2
1⊥

(
d(k′2, k1)− x1x2k

′2
⊥

)
k

′2
⊥d(k′2, k1)

+
q2
1⊥

(
x1x2k

′2
⊥ − d(k2, k

′
1)

)
k

′2
⊥d(k2, k′1)

= 0 ,

(4.49)
as it must be, since the structureRc1c2

1 is absent in the R.H.S. of the bootstrap
equation.

Turn to the colour structure Rc1c2
2 . Using (4.46),(4.47) we obtain from

the sum of Li
2:

− x1x2q
2
1⊥

d(k′2, k1)
− x1x2q

2
1⊥

d(k2, k′1)
+

2
d(k2, k1)

[
2x1x2

(
q1⊥(k1⊥+k2⊥)

)
−x1q/1⊥k/2⊥−x2k/1⊥q/1⊥

]
+

q2
1⊥

k
′2
⊥d(k′2, k1)

(
x1x2k

′2
⊥ − d(k′2, k1)

)
+

q2
1⊥

k
′2
⊥d(k2, k′1)

(
x1x2k

′2
⊥ − d(k2, k

′
1)

)
− q2

1⊥
k

′2
⊥d(k2, k1)

(2x1x2k
′2
⊥ ) + 2

q2
1⊥
k

′2
⊥

+
2x1x2q

2
1⊥k/1⊥k/2⊥

d(k2, k1)D(k2, k1)

− (k/2⊥ − q/1⊥)k/2⊥

D(k2, k2 − q1)
− k/1⊥(k/1⊥ − q/1⊥)

D(k1 − q1, k1)
+ 2 . (4.50)

One can readily see that the terms depending on r⊥ cancel each other with
the result:

− 1
D(k1 − q1, k1)

(
k/1⊥(k/1⊥ − q/1⊥)

)
− 1

D(k2, k2 − q1)
(
(k/2⊥ − q/1⊥)k/2⊥

)
−2

1
d(k2, k1)

[
x2k/1⊥q/1⊥ + x1q/1⊥k/2⊥ + x1x2q

2
1⊥ − 2x1x2

(
q1⊥(k1⊥ + k2⊥)

)]
+

x1x2

d(k2, k1)D(k2, k1)
(2k/1⊥k/2⊥q2

1⊥) + 2 . (4.51)

It is just L2, so that for the colour structure Rc1c2
3 the bootstrap equation is

satisfied.
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Al last, consider the colour structure Rc1c2
3 . For the sum of Li

3 we have

k/′1⊥(k/′1⊥ − q/1⊥)
D(k′1 − q1, k′1)

− (k/2⊥ − q/1⊥)k/2⊥

D(k2, k2 − q1)
+

k/1⊥(k/1⊥ − q/1⊥)
D(k1 − q1, k1)

− (k/′2⊥ − q/1⊥)k/′2⊥
D(k′2, k

′
2 − q1)

=
k/1⊥(k/1⊥ − q/1⊥)
D(k1 − q1, k1)

− (k/2⊥ − q/1⊥)k/2⊥

D(k2, k2 − q1)
, (4.52)

that is exactly L3.
So, the bootstrap equation for qq̄ production is satisfied.

4.3 Two-gluon production
Denotations

In the case of two-gluon production Eqs. (4.20)-(4.22) are applied as before;
but now k1 and k2 are the gluon momenta. The effective vertex of two-
gluon production in Reggeon-Reggeon collisions in a gauge invariant form
was obtained in [34]. In the lightcone gauge (2.8) for both gluons the vertex
takes the form:

γG1G2
ij (q1, q2) = 4g2(e∗1⊥)α(e∗2⊥)β

×
[(

T i1T i2
)
ij

bαβ(q1; k1, k2) +
(
T i2T i1

)
ij

bβα(q1; k2, k1)
]

, (4.53)

where e1,2 are the polarization vectors of the produced gluons, i1,2 are their
colour indices, i, j are the colour indices of the Reggeons with momenta q1

and q2 correspondingly, and

bαβ(q1; k1, k2) =
1
2
gαβ
⊥

[
x1x2

d(k2, k1)
(2q1⊥(x1k2 − x2k1)⊥ + q2

1⊥(x2 −
x1k

2
2⊥

D(k2, k1)
))

−x2(1−
k2
1⊥

D(q1 − k1, k1)
)
]
−

x2k
α
1⊥qβ

1⊥ − x1q
α
1⊥(q1 − k1)

β
⊥

D(q1 − k1, k1)
−x1q

2
1⊥kα

1⊥(q1 − k1)β

k2
1⊥D(q1 − k1, k1)

−
x1q

α
1⊥(x1k2 − x2k1)

β
⊥ + x2q

β
1⊥(x1k2 − x2k1)α

⊥
d(k2, k1)

+
x1q

2
1⊥kα

1⊥kβ
2⊥

k2
1⊥D(k2, k1)

+
x1x2q

2
1⊥

d(k2, k1)D(k2, k1)

[
(x1k2 − x2k1)α

⊥kβ
2⊥ + kα

1⊥(x1k2 − x2k1)
β
⊥

]
. (4.54)

Here we use the denotations (4.26). Note that one can come to (4.54) start-
ing from the vertex in the gauge e(k1)p1 = 0 , e(k2)p2 = 0 [35]. Our
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bαβ(q1; k1, k2) can be obtained from cαβ(k1, k2) defined in [35] be the gauge
transformation

bαβ(q1; k1, k2) =
(

gαγ
⊥ − 2

kα
1⊥kγ

1⊥
k2
1⊥

)
c β
γ (k1, k2). (4.55)

Independent colour structures

Contrary to the case of qq̄ production where FP1P2
ij (q1, q2, r) (4.18) has the

most general form in colour space, here not all admitted colour structures
are present. The number of all independent structures is readily calculated.
Indeed, decomposition of product of two octets (8⊗8 = 1⊕8s⊕8a⊕10⊕10∗⊕
27) contains 5 different irreducible representations, one of which enters two
times. Such decomposition is valid for two Reggeons as well as for two gluons.
Therefore, total number of admitted independent colour structures is 8. It
occurs that only three of them enter in FG1G2

ij . Actually it is predictable and
is related to specific colour structures of the effective vertices for one-gluon
(2.18) and two-gluon production (3.18),(4.53). These vertices are expressed
in terms of the colour group generators in the adjoint representation. From
properties of these generators it follows that only three independent tensors
with four indices can be built from them. Of course, their choice is not
unique. We accept the following:

Ri1i2
(1)ij =

2
Nc

Tr(T iT jT i2T i1), Ri1i2
(2)ij = T i1

il T i2
lj , Ri1i2

(3)ij = T i2
il T i1

lj . (4.56)

It seems that our choice is the most appropriate, i.e. the coefficients with
which these tensors enter in FG1G2

ij are the least cumbersome.
Let us present each of the contributions Fm

ij entering in FG1G2
ij (q1, q2, r)

(4.18) in the form

Fm
ij = 2g3Nc

n=3∑
n=1

Ri1i2
(n)ij(e

∗
1⊥)α(e∗2⊥)βLαβ

mn . (4.57)

Writing in the same form the right part of (4.19)

g
Nc

2
γG1G2

ij (q1, q2) = 2g3Nc(e∗1⊥)α(e∗2⊥)β

n=3∑
n=1

Ri1i2
(n)ijL

αβ
n , (4.58)

we have from (4.53)

Lαβ
1 = 0 , Lαβ

2 = bαβ(q1; k1, k2) , Lαβ
3 = bβα(q1; k2, k1) . (4.59)

29



The coefficients Lαβ
mn in (4.57) are found by straightforward calculation us-

ing the vertices (2.9), (2.18), (3.18) and (4.53). With account of (4.18) the
bootstrap condition (4.19) requires∫

dD−2r⊥
r2
⊥(q2 − r)2⊥

(
Lαβ

an + Lαβ
bn + Lαβ

cn + 2Lαβ
dn + 2Lαβ

fn

)
= Lαβ

n

∫
dD−2r⊥

r2
⊥(q2 − r)2⊥

,

(4.60)
for each n.

Verification of the bootstrap equation

For n = 1 we obtain:

Lαβ
a1 = gαβ

⊥ x1x2

[
(k1 − x1k

′)⊥Q⊥

d(k′2, k1)
+

(k2 − x2k
′)⊥Q⊥

d(k2, k′1)

]

−
x1Q

α
⊥(k1 − x1k

′)β
⊥ + x2(k1 − x1k

′)α
⊥Qβ

⊥
(k1 − x1k′)2⊥

−
x1Q

α
⊥(k2 − x2k

′)β
⊥ + x2(k2 − x2k

′)α
⊥Qβ

⊥
(k2 − x2k′)2⊥

, (4.61)

Lαβ
b1 = −bαβ(q1; k′1, k2), (4.62)

Lαβ
c1 = −bβα(q1; k′2, k1), (4.63)

Lαβ
d1 =

q2
1⊥

2k′2⊥

[
bαβ(q1 − r; k1, k2) + bβα(q1 − r; k2, k1)

]
, (4.64)

Lαβ
f1 = − q2

1⊥
2(q1 − k′1)

2
⊥k′21⊥

(k′1 − k1
k′

2
1⊥

k2
1⊥

)α
⊥(q1 − k′1 − k2

(q1 − k′1)
2
⊥

k2
2⊥

)β
⊥. (4.65)

Here and below Q⊥ = (q1 − k′q2
1⊥/k′2⊥)⊥. According to (4.60) the integrated

sum of Lαβ
m1 must be zero. One can track the cancellation of separate con-

tributions using the decompositions (4.46),(4.47) and the change of variables
r⊥ ↔ (q2 − r)⊥, at which D(q1 − k′1, k1) ↔ D(k′2, q1 − k′2) and consequently,

−x1q
α
1⊥(q1 − k′1)

β
⊥ + x2k

′α
1⊥qβ

1

D(q1 − k′1, k
′
1)

↔
−x1k

′β
2⊥qα

1⊥ + x2q
β
1⊥(q1 − k′2)

α
⊥

D(k′2, q1 − k′2)
. (4.66)

After that the cancellation of the terms with gαβ
⊥ follows from trivial relations:

2x1k
′
⊥(k1 − x1k

′)⊥ − k2
1⊥ = −(d(k′2, k1) + x2

1k
′2
⊥), (4.67)
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2x2k
′
⊥(k2 − x2k

′)⊥ − k2
2⊥ = −(d(k2, k

′
1) + x2

2k
′2
⊥). (4.68)

To see that the sum of all other terms is zero the equality∫
dD−2r⊥

r2
⊥(q2 − r)2⊥

[x2(1−
k′21⊥

D(q1 − k′1, k
′
1)

)+x1(1−
k′22

D(k′2, q1 − k′2)
)] = 0 , (4.69)

which follows from the change of variables r⊥ ↔ (q2 − r)⊥ and x1 + x2 = 1,
is helpful.

Let us turn to the case n = 2 in (4.60). For separate terms in the integrand
we obtain

Lαβ
a2 = −x1x2g

αβ
⊥

[
Q⊥(k2 − x2k

′)⊥
d(k2, k′1)

+
Q⊥(x2k1 − x1k2)⊥

d(k2, k1)

]

+
x1Q

α
⊥(x2k1 − x1k2)

β
⊥ + x2(x2k1 − x1k2)α

⊥Qβ
⊥

d(k2, k1)

+
x1Q

α
⊥(k2 − x2k

′)β
⊥ + x2(k2 − x2k

′)α
⊥Qβ

⊥
d(k2, k′1)

, (4.70)

Lαβ
b2 = bαβ(q1; k′1, k2), (4.71)

Lαβ
c2 = bβα(q1; k′2, k1) + bαβ(q1; k1, k

′
2), (4.72)

Lαβ
d2 = − q2

1⊥
2k′2⊥

bβα(q1 − r; k2, k1), (4.73)

Lαβ
f2 =

q2
1⊥

2(q1 − k′1)
2
⊥k′21⊥

(k′1 − k1
k′21⊥
k2
1⊥

)α
⊥(q1 − k′1 − k2

(q1 − k′1)
2
⊥

k2
2⊥

)β
⊥ . (4.74)

Although separate contributions in (4.60) are rather complicated, their sum
can be greatly simplified using the equalities∫

dD−2r⊥
r2
⊥(q2 − r)2⊥

[
x1k

′α
1⊥(q1 − k′1)

β
⊥

k′21⊥D(q1 − k′1, k
′
1)

+
x2k

′β
2⊥(q1 − k′2)

α
⊥

k′22⊥D(k′2, q1 − k′2)
−

k′α1⊥(q1 − k′1)
β
⊥

k′21⊥(q1 − k′1)
2
⊥

]
= 0,

(4.75)∫
dD−2r⊥

r2
⊥(q2 − r)2⊥

[
x1k

α
1⊥k′β2⊥

k2
1⊥D(k′2, k1)

+
x2k

α
1⊥k′β2⊥

k′22⊥D(k′2, k1)
−

kα
1⊥(q1 − k′1)

β
⊥

k2
1⊥(q1 − k′1)

2
⊥

]
= 0, (4.76)

which are readily follow from the change of variables r⊥ ↔ (q2−r)⊥, relations
(4.67),(4.68) and not less trivial equality

x2k
′β
⊥ k′α1⊥ − x1k

β
2⊥k′α⊥ = k′α1⊥(x2k

′
1 − x1k2)

β
⊥ + kβ

2⊥(x2k
′
1 − x1k2)α

⊥. (4.77)
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After that fulfillment of (4.60) for n = 2 becomes plain.
Finally, consider (4.60) at n = 3. For the coefficients Lαβ

m3 we obtain:

Lαβ
a3 = x1x2g

αβ
⊥

[
Q⊥(k2 − x2k

′)⊥
d(k2, k′1)

+
Q⊥(x2k1 − x1k2)⊥

d(k2, k1)

]

−
x1Q

α
⊥(k2 − x2k

′)β
⊥ + x2Q

β
⊥(k2 − x2k

′)α
⊥

d(k2, k′1)

−
x1Q

α
⊥(x2k1 − x1k2)

β
⊥ + x2Q

β
⊥(x2k1 − x1k2)α

⊥
d(k2, k1)

, (4.78)

Lαβ
b3 = bβα(q1; k2, k

′
1), (4.79)

Lαβ
c3 = 0, (4.80)

Lαβ
d3 =

q2
1⊥

2k′2⊥
bβα(q1 − r; k2, k1), (4.81)

Lαβ
f3 = 0, (4.82)

Verification of (4.60) is rather simple here; the trivial equality

2x1k
′
⊥(k2 − x2k

′)⊥ + k′21⊥ = d(k2, k
′
1) + x2

1k
′2
⊥ . (4.83)

is helpful to perform it.

5 Summary and discussion

In this paper we have calculated in the one-loop approximation the lead-
ing logarithmic corrections to the QCD amplitudes in the QMRK. We have
considered two essentially different kinematics. In one of them two particles
with limited invariant mass are produced in the fragmentation region of one
of colliding particles. In another there are two gaps between rapidities of the
produced particles and rapidities of colliding ones (production in the central
region). The radiative corrections were calculated using the s-channel uni-
tarity. In both cases we have found that the radiative corrections are just
the same which are prescribed by the Reggeized form of the amplitudes. It is
worth-while to note that this form of corrections appears as a result of mirac-
ulous cancellations between various contributions. The s-channel unitarity
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method used by us for the calculation is very economic. Using this method
we have to consider only a few contributions, whereas number of Feynman
diagrams is estimated by hundreds. Nevertheless, even in this approach the
cancellations are quite impressive.

Since in the s-channel unitarity method the radiative corrections are ex-
pressed in terms of the Reggeon vertices, the cancellation appears as a result
of fulfillment of Eqs. (3.11) and (4.19). Therefore these equations are the
bootstrap conditions, necessary for compatibility of the Reggeized form of
the amplitudes with the s-channel unitarity.

The gluon Reggeization is one of remarkable properties of QCD, very im-
portant at high energies. It is proved in the LLA, but still remains a hypoth-
esis in the NLA. This hypothesis can be checked, and, hopefully, proved [24]
using the bootstrap requirement, i.e. the demand of compatibility of the
Reggeized form of the amplitudes with the s-channel unitarity. The require-
ment leads to an infinite set of the bootstrap relations for the scattering
amplitudes. Fulfillment of these relations guarantees the Reggeized form of
the radiative corrections order by order in perturbation theory. It occurs
that all these relations can be satisfied if the Reggeon vertices and the gluon
Regge trajectory submit to several bootstrap conditions. The proof of the
gluon Reggeization in the LLA [9] is just demonstration that fulfilment of the
bootstrap conditions in the leading order is sufficient to satisfy all bootstrap
relations. Hopefully, the same can be done in the NLA [24]. There are no
doubts that the Reggeized form of the QMRK amplitudes can be proved in
such way. Since these amplitudes contain the gluon Regge trajectory and the
Reggeon-Reggeon-gluon vertex in the leading order, the only new (compared
with the LLA) thing which is required to perform the proof is fulfillment
of the bootstrap conditions (3.11) and (4.19). We’ll return to this question
elsewhere.
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