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Abstract

We study effects of the tails of the longitudinal velocity dis-
tribution function of cooling electrons on dependencies of the
longitudinal magnetized electron cooling force on ion velocities.
For the case, when ions move parallel to the guiding magnetic
field of the cooling device we calculate the longitudinal cooling
force beyond the logarithmic approximation.
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1 Introduction

The most important characteristics of the electron cooling device are
the attainable values of the cooling forces as well as the dependencies
of the cooling force on the ion positions in its phase space. Due to
magnetization of electrons, a strong guiding magnetic field Hy of the
electron cooling device eliminates the contributions of their Larmour
rotations to the cooling force [1]. This results in a strong enhancement
of the cooling forces experienced by slow ions in the cooling device.
According to measurements at NAP-M [2] and at other storage rings
which use the electron cooling (see, e.g. in Ref.[3]|) the designs of new
electron cooling devices, or of the ion storage rings with electron cooling
definitely should take into account this effect.

Unfortunately, the possibilities of comprehensive calculations of the
cooling force, or of its measurements are embarrassed by the complex-
ity of the kinetics of the electron cooling process. For this reason, the
ion motion in such rings is usually simulated using various model, or
interpolation expressions for the cooling force. A simple expression of
this kind was suggested in Ref.[4]:

dn.e* \% x
F = TNe€ 372 In <1 + pmii) . (1)
m 2 2 Pmin T PL
(V —i—veff)

Here, V is the ion velocity, vesy is the effective velocity spread of the
electron Larmour circles, pmax = V/we, we = e’ ne /m is the plasma
frequency of the electron beam, pyi, = €2/mV? and pr = vy /wy is
the (rms) Larmour radius in the electron beam, m is the mass of the
electron. The interpolation of the cooling force using Eq.(1) does not
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assume the logarithmic approximation (pmax >> Pmin + pr). Arguing
for Eq.(1), the authors in Refs.[3| and [4] compare e.g. the projection of
the cooling force from Eq.(1) on the direction of Hy ( the longitudinal
cooling force) for an ion moving along Hy, the longitudinal cooling force
obtained using numerical simulations and the longitudinal cooling force
obtained using the following simple expression [1]:

2re*n.Lo 3uv? Kmax
, Lc=1In
m (v2 + u2)5/2

Fy(v,u) = — (2)

kmin
Here, V2 = 02 + u?, u is the deviation of the longitudinal ion ve-
locity from the average longitudinal velocity of the electron beam,
kmax = 1/pmin and kpyin = 1/pmax. Contrary to Eq.(1) and to similar
predictions of the simulations, the value of F| in Eq.(2) vanishes, if
v = 0 and provided that u # 0. However, the reason for such a behav-
ior of Fj| in Eq.(2) is that this equation holds only for the monochro-
matic electron beam (verr = 0), or for the case, where V' > vy,
where mvsz is an effective temperature of the electron larmour cir-
cles. As was mentioned in Refs.[1] and [5] in the region where v = 0
and |u| < werr, Eq.(2) should be replaced by another one yielding
Fj o —u/vg’ff. So that a comparison of Egs.(1) and (2) is irrelevant
for that purpose. Indeed, the value of the cooling force in Eq.(2) tends
to infinity, if v and u tend to zero simultaneously (F oc —1/u?, if
u = v — 0). This infinite growth of the cooling force is limited, when
the ion velocities become smaller than the velocity spread of the elec-
tron Larmour circles. Closer inspection of general expressions for the
cooling force shows that for magnetized electrons it is very sensitive
to the shape of the longitudinal velocity distribution function of the
cooling electrons (see. e.g. in Ref.[5]).

In this paper, within the framework of the perturbation theory we
study two subjects. First, within the framework of the pair collision
approximation we inspect the dependence of the longitudinal cooling
force on the shape of the electron distribution function in their lon-
gitudinal velocities. The second, within the framework of the plasma
theory approach (see. e.g. in Ref.[6]) we calculate the longitudinal
cooling force for ions moving parallel to the guiding magnetic field
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of the cooling device beyond the so-called logarithmic approximation.
We do not take into account the non-perturbative contributions to the
cooling force (see. e.g. in Ref.[5]).

2 Effect of tail electrons on magnetized cooling

If fe(ue) is the distribution function of the cooling electrons in the
longitudinal velocities, the longitudinal cooling force calculated in the
pair collision approximation and assuming Hy — oo reads

_ 2metneLle [ 3v%(u — ue) f(ue)

Fitow) = ===, /_oo (02 + (w—u)?)? @)
_ 2men.Le o0 du, df (ue)
o oom v /_oo (02 + (u —ue)?)?? due @

First, let us calculate the longitudinal cooling force assuming the fol-
lowing distribution function in the longitudinal electron velocities

1 [ 1, |uf <o
- ) — ) 5
! 20{0, lue| > o. (5)

Substituting this expression in Eq.(4), we obtain

1 1

2me*n. Lo v_2
W2+ (0 —uw2)*? (124 (0 +u)?)

F=—

m 20

The value of F' in this equation also vanishes when v — 0 unless |u| =
o. For example, for small longitudinal velocity of the ion (|Ju| < o)
Eq.(6) yields an expression
2re*n. Lo 302
m (o)
which is very similar to that in Eq.(2). Again, if the values v and
|u| — o in Eq.(6) tend to zero simultaneously, the value of the cooling
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force tends to infinity. According to Eq.(4), we may expect that it
occurs due to sharp edges of the distribution function. To figure out
the role of the tails of the distribution function on the behavior of the
cooling force we calculate Fj taking as f(ue) the following expression

Flu) = % [arctan (“;") _ arctan (“5_ "ﬂ T

Here, the value of § determines the widths of the tails of f. In partic-
ular, the distribution function in Eq.(5) is obtained as a limit of the
right-hand side in Eq.(8), if § tends to zero. Using Eq.(8), we rewrite
Eq.(4) like follows

2me*neLo 22 b [ 1
'F” = T 29 3/2 2 dx
mo 0?2 oo (2 4 (y — 2)2)Y (b2+(x+1))
2retne Lo 22 > 1
Jmenelez b dz. (9)

m 02 2m J o (224 (y — 916)2)3/2 <b2 + (z — 1)2)

Here, all components of the ion velocity are measured in units of o
(e.g. y =wu/o) and b = §/o. Substituting in Eq.(9) z = y + ztana,
we obtain

. _Mi/”” cos ada
Il mo? 21 —/2 (b2 + (y+ 1+ ztan a)2>
2metnelo b / " cosada (10)

mo? 2 /2 <b2 + (y — 1+ ztan a)2> .

The integrands in the right-hand side of Eq.(10) are well converging
functions for all values of z. For this reason, we can put in this equation
z =0 to find



o2metn Lo b 1 1
Fi(v=0,u) = - 1e2C 2 -

Tl w-?) (w1
(1)
Although v = 0, this function does not vanish unless u = 0. Due to
smooth tails of the distribution function in Eq.(8) the cooling force in
Eq.(11) is also a non-singular function of w.
Similar calculations for a Gaussian function

1 u?
fe_\/%o_exp <_20_2>7

result in

2retn Lo [ 3v2(u — ue) u?
Fy(v,u) = — = / . 62 572 <P (—2 e2> due,
Ve o (02 5 (- u)?) z

or, measuring all velocities in units of o,

2 o] 2

2me*n.Lo 2z z ( x )
exp | —— ) dx. (12
o2 or | (22 + (y — $)2)3/2 P 5 (12)

Here, z = v/o and y = u/o. Without other limitations the value of
kmin in the Coulomb logarithm Lo in Eq.(12) is determined by the
Debye screening in the electron beam, so that

Fjp=—

Emax 2 4 2
Lo =In-max g2 Yo ZMNC (13)

kp o2 mo?2

Substituting in Eq.(12) z = y + |2| tan o, we obtain

V2re*n. Lo /”/2

2

(ycosa + |z|sin o)
mo —7/2

b =—

X exp <—w> da (14)



Since the integrand in Eq.(14) is a nonsingular function of its argu-
ments we can put in this equation z = 0 to find

Ame* Lo ye_y2/2
mo?  \2n

We note that in the region where longitudinal velocities of ions do not
exceed substantially the longitudinal velocity spread of electrons, all
obtained expressions of the longitudinal cooling force are proportional
to the first derivative of the electron longitudinal velocity distribution
function over the longitudinal ion velocity.

Let us also calculate the power of the cooling force

Fi(v="0,u) = (15)

Q= Flv—}—F”u. (16)
Using (see, e.g. in Ref.[1])
2 4 eL o - Ue q e
p,__2renelo / hip ) )
m —oo (V24 (u—ue)?) due

and measuring the velocities in units of o, after simple transformations
we obtain

) Qosin?g [ g2e— w2 p (18)
—Q = x.
V21 Joso (1 — 22 cos 6 + 22)*/?
Here, r? = (v? +u?)/0?, tanf = v/u and
2me*n.L
Qo= TR0 2, (19)

mo
According to Eq.(18) the dependence of @ on the angle (6) between
the ion velocity and the direction of the guiding magnetic field of the
cooling device varies with an increase in the value of r (Fig.1 and
Fig.2).

For the finite longitudinal velocity spread, the dependence of —Q
on # reminds that calculated for the monochromatic magnetized elec-
tron beam only, when r > 4 (Fig.2). This behavior agrees with that
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Figure 1: Dependence of the power of the cooling force (Q)) on a. From
top to bottom r = 0.1, 0.25, 0.5 and 1.
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Figure 2: Same as in Fig.1, but » = 5.



predicted in Ref.[1] For small ion velocities the graphs shown in Fig.1
seem to be at least in a qualitative agreement with the simulation
results given in Fig.7 of Ref.[3].

3 The magnetized cooling force of ions with
zero transverse velocities

More comprehensive calculations of the cooling force is achieved treat-
ing the electron cooling process as a dynamical Debye screening of the
ion in the electron beam. Within this approach and neglecting the
transient effects, we write (see, e.g. in Ref.|6])

—ie? / d?qdkk
212 ) (¢% + k?)e(qu, ku)’

Here, ¢? = g2 + ¢? is the square of the transverse to Hg wave vector of
the Coulomb electric field of the ion in the electron beam and k is its
longitudinal component, €(qu, ku) is the dielectric permeability of the
electron beam, calculated for the frequency w = q,v; + q,v, + ku. For
the strongly magnetized electron beam (|Hy| = o0), the combination
(q2 + k2) e(qu, ku) reads

Fy = (20)

(¢* + kHe(qu, ku) =¢* + K

due (df/due)

2

k 21
e /vax+Qsz+k(u_ue)+i0’ ( )

where w? = 4mn.e?/m is the plasma frequency of the electron beam
and f, is the longitudinal velocity distribution function of the electron
beam. For an electron beam in the magnetic field of a finite strength,
Eq.(21) holds, if gpr, < 1 and k |u| < wr,. In this Section we calculate
the longitudinal cooling force for a particular case, where v, = v, =0
while f. is a Gaussian function

1 u?
o= e (55 ). 22
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Using these assumptions, we rewrite Eq.(21) in the following form

S, (23)

(q2+-k2)60ﬂukU)==q2+-k2+-k%fKUJ-Fik%,k

where

00 _ —x2/2
P _lim dx (y — x)ze

U
A—=0 ) oo V21 (y—2)2+ 227 y =5

J = \/gye_@ﬂ/?. (25)

Substituting Eq.(23) in Eq.(20), we find

A = 2kD /dz / dk | k| _
(% + k2 + k2 P(u))? + k4 J2(u)

Changing here the integration variables according to k? = k%x and
¢ = k%)t, we transform Fj to the following form

F”:—Qk; T |/ dm{ arctan%];;r)}. (26)

The integral over z in the last expression logarithmically diverges at
the upper limit of the integration. This divergency can be regularized
integrating in Eq.(26) over x from zero to some finite value = Zyax.
The value kpax I Tmax = k:?nax / k% is chosen as a smallest value be-
tween €2kpax < mo? and kyax |u| < wr, where wy = eHy/me. The
first inequality enables the application of the perturbation theory for
the calculation of the cooling force. The second condition enables an
application of Eq.(21) for such calculations. Now, the integration in
Eq.(26) yields

F=F,+F,, (27)
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where

2 2
) < II;QaX + P> + JZ
.2
Fi = —Foye " /> In Ry , (28)
and
2 y ™ kr2nax k?nax kl?nax + kQDP
Fw:—FO\/;m{E k‘2 —( ka +P> arctanw
D D D
P
+ P arctan m} (29)
Here,
2k2
Fy= —2 (30)

2V21
In the region where the logarithmic approximation holds well
(kmax > kp) the logarithmic part of the cooling force (Ff) coincides
with the right-hand side in Eq.(15). For a given value of kya.x an
expression in Eq.(27) yields the value of the cooling force in both loga-
rithmic and in non-logarithmic approximations. According to Eq.(26),
the non-logarithmic contributions are important in the regions where
both ¢ + k? + k% P(y) and J(y) approach zero values. This region
of parameters corresponds to conditions where the ion radiates in the
electron beam real (or, almost real) plasma waves. As is seen from
(Fig.3), in the region where the logarithmic approximation holds more
or less well (e.g. Lo = 4.6), the logarithmic part of the cooling force
describes its dependence on the ion velocity only in the region where
u is relatively small (e.g. in Fig.3 it holds, if u < o). For larger ion
velocities the non-logarithmic contribution to F) due to plasma waves
radiation is important. It dominates, if |u| > 4o.

Beyond the logarithmic approximation (e.g. Lo = 0.04 in Fig.4)
the logarithmic part of the cooling force is negligible small while the
value of F'is determined mainly by the plasma wave radiation processes
(Fig.4).
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Figure 3: Dependence of the longitudinal cooling force on the longitu-
dinal ion velocity (solid line). Open circles show the contribution from
the logarithmic region, crosses — the contribution of the plasma wave
radiation, Lo = 4.6.
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Figure 4: Same as in Fig.3, but Lo = 0.04.
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4 Conclusion

Presented calculations indicate the following important features of the
electron cooling theory. First, in the cases where the magnetized cool-
ing dominates the calculations of the cooling force are very sensitive to
the smoothness of the tails of the distribution function in the electron
longitudinal velocities. For example, in the case of a Gaussian dis-
tribution the predicted behavior of the cooling force and of its power
do not indicate significant deviations from the results of the simula-
tions discussed in Refs.[3] and [4]. For the cooling in a strong guiding
magnetic fields the comparison of the results of the described analytic
calculations and of simulations presented in Refs.[4] and [3] indicates
better qualitative agreement than between these simulations and the
interpolation formula in Eq.(1).

Second, the calculations of the cooling force due to strongly mag-
netized electrons for ions with zero transverse velocities indicate that
the radiation by an ion of the almost real plasma waves may give sig-
nificant contributions to the cooling force. In particular, in the cases
when the value of the Coulomb logarithm is not very large, the values
of the cooling forces affecting the fast ions (e.g. u > 40) occurs due to
these radiation processes. The cooling force for such fast ions should
be calculated beyond the logarithmic approximation.

In both cases the value of the cooling force is very sensitive to
the smoothness of the distribution function over longitudinal veloci-
ties of the cooling electrons. In particular, the longitudinal cooling
force for ions with zero transverse velocities is proportional to the first
derivative of this distribution function over the ion longitudinal veloc-
ity. Provided that transverse components of the guiding magnetic field
of the cooling device are suppressed, this fact can be used for direct
measurements of the longitudinal velocity distribution function in the
electron beam.

I am indebted to V. Parkhomchuk for stimulating discussions.
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