
Siberian Branch of Russian Academy of Science

BUDKER INSTITUTE OF NUCLEAR PHYSICS

V.M. Strakhovenko

EMISSION OF POLARIZED PHOTONS
FROMUNPOLARIZED ELECTRONS

MOVING IN CRYSTALS

Budker INP 2002-54

Novosibirsk
2002



Emission of polarized photons
from unpolarized electrons moving in crystals1

V.M. Strakhovenko

Budker Institute for Nuclear Physics,
630090 Novosibirsk, RF

Abstract

Radiation emitted by unpolarized high-energy electrons penetrat-
ing crystals may be linearly polarized. This occurs when the particle
velocity makes an angle, with respect to some major crystal axis, being
sufficiently larger than the axial-channelling angle. For such orienta-
tion, a complete description of spectral and polarization characteristics
of the radiation is derived. At planar channelling, a non-perturbative
contribution to the probability of the process appears caused by the
plane field, and we must solve exactly a one - dimensional mechanical
problem. For that, the approximate form of the actual plane poten-
tial is suggested which provides a precise fit for any crystal plane and
an analytical solution to the motion problem. In a practical case, we
must consider electron-photon showers developing in sufficiently thick
crystals. For the first time, this development is described taking into
account the polarization of photons. We discuss qualitative features
of the phenomenon, present results of numerical calculations for thin
and thick crystals, and evaluate the possibility of the use of differently
oriented crystals in a polarized hard photon source.
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1 Introduction
High-energy electrons emit the specific radiation while penetrating through
single crystals. The shape of the spectrum and the intensity of this radiation
depend on the electron energy and crystal orientation. This phenomenon has
been widely investigated theoretically and experimentally (see e.g., [1] and
references cited there). Photon beams obtained in such a way may be used,
for example, in photo-production experiments of different kind. In particular,
they may serve as γ - beams in γ γ-colliders.

In this paper, we focus on the polarization properties of emitted photons
as the polarization offers additional opportunities in the experimental study.
Initial electrons are assumed to be unpolarized. Then, using crystals, only
linear polarization may be obtained. We start with the well known formula
derived by means of the quasi-classical operator method (see e.g., [1]). Re-
member, that within this method the probabilities of QED processes may be
expressed by way of classical trajectories of charged particles, provided that
the external field involved satisfies some conditions specified in [2]. Fortu-
nately, the electric field of a crystal responsible for the coherent processes
satisfies these conditions. In this stage, we have to solve a two - dimensional
mechanical problem.

Further consideration exploits the approach developed in [3]. As shown
in [3], the mechanical problem mentioned becomes essentially one - dimen-
sional for the angles of incidence (w.r.t. some major crystal axis), ϑ0, which
satisfy the condition θsp ≤ ϑ0 ¿ 1. The magnitude of the angle θsp depends
on the electron energy and the axis chosen. It was accurately determined in
[3] being sufficiently larger than the characteristic angle for axial channelling.
Note that the region ϑ0 < θsp is not interesting here, as we do not expect any
polarization of the radiation from unpolarized electrons at axial channelling.
In the angular region of interest, a finite set of the most strong planes con-
taining the axis is important. Moreover, the azimuthal angle domains, where
the influence of the planes on a motion should be taken into account exactly,
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do not overlap. Then we have for the transverse (w.r.t. the axis ) velocity of
an electron: v ' vslow + vfast. In this expansion, the first term represents
the exact solution for the transverse velocity in the field of the only one plane
of the set. The second term gives the contribution of other planes which can
be taken into account using a perturbation theory and, additionally, the rec-
tilinear trajectory approximation. Note that periods of the one - dimensional
motion ("slow") are noticeably larger then those in the perturbation term
("fast"). The slow component is present when the velocity is almost aligned
with one of the planes. It disappears when the velocity of a particle forms suf-
ficiently large angles with each plane of the set. In this case, the perturbation
theory in the whole crystal potential is applicable being the essence of the so
called coherent bremsstrahlung (CB) theory. It is clear that the transverse
motion of a particle is two - dimensional but the component which needs the
exact calculation is one - dimensional. To find the latter, we propose the new
approximate form of the actual plane potential which provides the precise fit
for any crystal plane and allows one to find an analytic expression for the
trajectory. That is done in Appendix A where also the explicit form of the
velocity Fourier-transform is obtained.

In Section 2, general expressions are derived giving the instantaneous
(probabilities per unite time or length) characteristics of the radiation. Then
they are analyzed and simplified. We discuss the qualitative features of the
phenomenon and present results of numerical calculations for thin crystals.
It turns out, that, for the two types of the azimuthal orientation mentioned
above, not only spectra but also polarization distributions are utterly differ-
ent. In a practical use, sufficiently thick crystals are needed to get a noticeable
yield. In this case, we can not neglect the multiple photon emission, their
absorbtion due to the e+e−-pair production, and the radiative energy loss
of charged particles. In other words,for thick crystals, we must consider the
e+e−γ-shower. Such a consideration is performed in Section 3, using the
formulas obtained in Section 2 along with those describing the e+e−-pair
production by polarized photons. So, we describe the shower development,
taking into account the polarization of photons for both basic QED-processes
involved. Some results of Monte-Carlo simulations are presented for settings
used in NA43 (see [4]) and NA59 (see, e.g., [5]) experiments at CERN. The
consideration performed allows one to decide for the optimal crystal type,
thickness, and orientation providing necessary characteristics of a polarized
photon source.
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2 Radiation at fixed particle energy
Let us start with the well known formula (see, e.g., Eq.(16.7) in [1] ) which
describes spectral, angular, and polarization distributions of photons emitted
by unpolarized electrons (positrons) at given motion:

dwγ =
α

(4π)2
d3k

ω

ε

ε′

∫
dt1dt2L(t1, t2) exp[i

ε

ε′
(k, x1 − x2)] , (2.1)

where α = 1/137 , kµ ≡ (ω, k) is the photon momentum, xµ
1,2 ≡ xµ(t1,2),

xµ(t) = (t,x(t) , ε′ = ε− ω, ε is the electron energy, and

L(t1, t2) = (e∗v1)(ev2)(ϕ(ε) + 2)

+[(e∗e)(v1v2 − 1 + γ−2)− (e∗v2)(ev1)](ϕ(ε)− 2). (2.2)

Here v1,2 ≡ v(t1,2) is the electron velocity on the classical trajectory x(t),
γ = ε/m,m is the electron mass, ϕ(ε) = ε/ε′ + ε′/ε. If we set ϕ(ε) = 2
(ω = 0) in the expression for L(t1, t2), the formula (2.1) will describe the
radiation from the scalar (zero-spin) particle (see e.g., part 9 in [6] or [1] ).
This substitution rule holds for all subsequent formulas in this Section.

Remember that the vectors e in Eq.(2.2) correspond to the polarization
which would be measured by some detector and, thereby, have nothing to
do with the polarization of emitted photons. The latter is described by
the matrix, dwki in the contraction dwγ = eie

∗
kdwki. We introduce the

vector, ξ (|ξ| = 1),which describes the analyzing ability of a detector, by
eie

∗
k = (1 + ξσ)ik/2 , where σ are the Pauli matrices. The matrix dwki can

be presented in the same form: dwki = (A + Bσ)ki/2 . Then we have

dwγ =
1
2
(A + Bξ) ≡ A

2
(1 + ηξ) , η =

B

A
, A = dw11 + dw22 ,

(2.3)
B1 = dw12 + dw21 , B2 = i(dw12 − dw21) , B3 = dw11 − dw22 .

In this equation, the Stokes vector of the radiation, η, is defined. The quan-
tity A gives the value of dwγ summed up over polarizations.

We assume further that the angular divergence of the electron beam is
small enough. Then the same is true for arising photon beam provided that
electron energy is sufficiently large (ε À m), as the emission angle of a photon
(w.r.t. the particle velocity ) is typically of the order of γ−1 ¿ 1. In this
case, we can choose some axis (z-axis) such that the momenta of all charged
particles and photons make small angles,ϑax, w.r.t. this axis:ϑax ¿ 1. Let
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a⊥ denotes the component of an arbitrary vector a transverse to the axis
chosen. Using relations

vz ' 1−1
2
(γ−2+v2

⊥) , ez = −(k⊥e⊥)/kz ' (n⊥e⊥) , nz ' 1−1
2
n2
⊥ , n = k/ω ,

we can remove z-components of all the vectors from Eq. (2.1). As a result,
we have

dwγ =
αωdωd2n⊥

(4π)2
ε

ε′

∫
dt1dt2L(t1, t2) exp(−iD) ,

D =
ωε

2ε′

t2∫

t1

dt[ γ−2 + (n⊥ − v⊥(t))2 ] ,

(2.4)
L(t1, t2) = (e∗⊥, v1⊥ − n⊥)(e⊥,v2⊥ − n⊥)(ϕ(ε) + 2)

−[(e∗⊥,v2⊥ − n⊥)(e⊥, v1⊥ − n⊥)

+
1
2
(e∗⊥e⊥)(v2⊥ − v1⊥)2](ϕ(ε)− 2) .

No restrictive conditions (like (ne) = 0) are imposed on the vectors e⊥. This
allows one, first, to utilize any fixed basis for the description of the photon
polarization regardless of n. In what follows, we use the Cartesian basis
(ex, ey, ez), where ez is directed along the nearest (making a small angle
w.r.t. the particle velocity) major crystal axis , ex is within some crystal
plane containing this axis, and ey is perpendicular to this plane. Secondly,
the vectors e⊥ can be considered constant when integrating in (2.4) over
photon emission angle (over d2n⊥). Performing this integration, we obtain
the matrix, wsp

ij , describing the spectral distribution of a radiation:

dwsp
ij =

iαdω

4πγ2

∞∫

−∞
dt

∞∫

−∞

dτ

τ − i0
exp[−iλτ( 1 + ρ(t, τ))] Lij ,

(2.5)
Lij = δ⊥ij

[1
4
(ϕ(ε)− 2)(g2 − g1)2 +

i

λ(τ − i0)

]

+
ϕ(ε)

2

(
g2ig1j − g2jg1i

)
−

(
g2ig1j + g2jg1i

)
,

where t = (t1 + t2)/2 , τ = t2 − t1 , λ = ωm2/(2εε′) , g1,2 ≡ g(t1,2) ,
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and

g(s) = γ
[
v⊥(s)− 1

τ

τ/2∫

−τ/2

dxv⊥(t + x)
]
, ρ(t, τ) =

1
τ

τ/2∫

−τ/2

dx g2(t + x).

In further consideration, we use the approach developed in [3].
Recollect that the transverse velocity can be represented as the sum:
v⊥ ' vslow

⊥ + vfast
⊥ , where vfast

⊥ given by Eq.(3) in [3] is characterized by
small amplitudes and large frequencies. On the contrary, large amplitudes
and small frequencies are inherent in the term vslow

⊥ which corresponds to
the one - dimensional motion in the field of a plane. Its explicit form reads
vslow
⊥ (t) = ey

∑
n

vn exp(inω0t) . Here ω0 is the frequency of this motion,

and vn is the velocity Fourier transform calculated in Appendix A. Corre-
spondingly, the quantity g(s) in (2.5) turns into the sum: g(s) = l(s)+w(s)
where

l(s) = ey

∑
n

(γvn)
[
einω0s − sin(nω0τ/2)

nω0τ/2
einω0t

]
,

(2.6)

w(s) = −
∑̃
q⊥

G(q⊥)q⊥
mq‖

[
eiq‖s − sin(q‖τ/2)

q‖τ/2
eiq‖t

]
ei(q⊥ρ0) .

Here q are discrete reciprocal lattice vectors, G(q) are coefficients in the
fourier series presenting the crystal potential ( see Chapter 9 of [1] for the
explicit form of q and G(q) ), and q‖ = (q⊥v) . The tilde in the expression
for w(s) means that the sum does not contain q⊥ ‖ ey which just form the
plane potential.

In principle, using (2.6), one can perform the integration over t and τ
straight in (2.5). However, as we have already obtained the quantity w(s) by
means of some perturbation procedure, it is more consequently to continue
in the same way. So, as in [3], we expand the exponential function in (2.5)
in w(s) , keeping quadratic terms, and obtain

dwsp
ij =

iαdω

4πγ2

∞∫

−∞
dt

∞∫

−∞

dτ

τ − i0
exp[−iλτ( 1 + ρslow(t, τ))]

3∑
n=1

C
(n)
ij , (2.7)
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where ρslow(t, τ) = τ−1
∫ τ/2

−τ/2
dx l2(t + x) and matrices C

(n)
ij are

C
(1)
ij = δ⊥ij

[ i

λ(τ − i0)
+

1
4
(ϕ(ε)− 2)(l2 − l1)2

]
− l1il2j − l1j l2i ,

C
(2)
ij =

∑̃
q⊥

∣∣∣∣∣
G(q⊥)q⊥

mq‖

∣∣∣∣∣

2{
δ⊥ij

[
1− f2(ζ) + (ϕ(ε)− 2) sin2 ζ

]

−νiνj

[
f2
(+)(ζ) + f2

(−)(ζ)
]}

,

C
(3)
ij = 2iλ

∑̃
q⊥

∣∣∣∣∣
G(q⊥)q⊥

mq‖

∣∣∣∣∣

2

Jij , (2.8)

Jij =
τ

2

(
1− f2(ζ)

)[
δ⊥ij

i

λ(τ − i0)
− C

(1)
ij

]
+ iλ

∣∣Φ
∣∣2C(1)

ij

+Φ

{
iδ⊥ij(ϕ(ε)− 2)(l2 − l1, ν) sin ζ

+(l1iνj + l1jνi)f(−)(ζ) + (l2iνj + l2jνi)f(+)(ζ)

+
ϕ(ε)

2

[
(l1iνj − l1jνi)f(−)(ζ)− (l2iνj − l2jνi)f(+)(ζ)

]}
,

Φ =

τ/2∫

−τ/2

dx (νl(t + x))
[
eiq‖x − f(ζ)

]
,

f(x) =
sin x

x
, f(±)(x) = e±ix − f(x) , ν =

q⊥
|q⊥| , ζ = q‖τ/2 .

Using Eqs. (2.7),(2.8), we obtain the expression for the probability of a pho-
ton detection irrespective of its polarization, dwunp

γ = dwsp
ij δ⊥ij , wich coincides

with Eq.(4) in [3].
Let us dwell on the plane field contribution (PFC) to the radiation. This

is given by the term in (2.7) which is proportional to C
(1)
ij . To make esti-

mates, we should recollect some properties of the quantity ρslow(t, τ) which
enters into the phase, Ψ(τ) = λτ( 1 + ρslow(t, τ)). So, ρslow(t, τ) is the even,
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positive, and monotonically increasing function of τ . It satisfies the inequal-
ity ρslow(t, τ) < ρ(∞) < ρc = Uplε/m2 where Upl is the potential well depth
of the plane and ρ(∞) is the limiting value of ρslow(t, τ) as |τ | → ∞ . Using
(2.6), we can easily estimate the behavior of ρslow(t, τ) at large and small τ

ρ(∞) =
∑

n6=0

|γvn|2 =
< p2

y > − < py >2

m2
, ρ(ω0τ ¿ 1) ' 1

12
(γv̇y(t)τ)2 ,

(2.9)
where < . . . > means time averaging, py and v̇y are correspondingly y-
components of the momentum and acceleration of a charged particle. Let
ϑ0 and φ0 be the polar and azimuthal angles of incidence counted off from
the axis and plane correspondingly. Then the velocity of a particle makes
the angle, ψ, w.r.t. the plane, at that, sin ψ = sin ϑ0 sin φ0 or, as ϑ0 ¿ 1 ,
we have ψ ' ϑ0 sinφ0. At channelling ( ψ < θpl = (2Upl/ε)1/2 ) , we have
ρ(∞) . ρc. At above-barrier motion ( ψ > θpl ), the quantity ρ(∞) decreases
fast being of the order of 0.1(Upl/mψ)2 for ψ À θpl (see, e.g., p.430 in [1]).

For ρ(∞) ¿ 1 , we can expand the exponential function in (2.7) in powers
of ρslow(t, τ) retaining only the linear term (dipole approximation). In this
case, the slow-fast interference term, C

(3)
ij , gives higher-order corrections and

should be neglected, while C
(1)
ij after averaging over time t reads

C
(1)
ij (ρ ¿ 1) =

∑
n

|γvn|2
{

δ⊥ij
[
1− f2(ζ) + (ϕ(ε)− 2) sin2 ζ

]

−eyieyj

[
f2
(+)(ζ) + f2

(−)(ζ)
]}

, (2.10)

where ζ = nω0τ/2 , eyi = δ2i. This expression has the same structure as C
(2)
ij

( cf. (2.8)) since both were obtained by means of the perturbation theory.
For ρc ¿ 1 , Eq.(2.10) is valid at any value of the angle ψ. In the opposite
case when ρc & 1 , it holds for ψ À θpl. The latter condition provides also
the applicability of the rectilinear trajectory approximation in the calculation
of vn and ω0. So, as we have checked using the explicit form of vn and ω0 (see
Appendix A ), for ψ À θpl , C

(1)
ij and C

(2)
ij are essentially the same except

that the summation is performed in C
(1)
ij over the subset of q⊥ parallel to

ey , while in C
(2)
ij the complementary subset is used. As a result, when the

particle velocity is well off all major planes, the spectrum and polarization of
a radiation is described by the term C

(2)
ij if we extend the summation in it over
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all q⊥. Then it reproduces results of the so-called coherent bremsstrahlung
(CB) theory. In [7]( see Eqs. (4.8),(1.5), the correlation was explained of this
theory with the Compton scattering (off electrons) of the equivalent photons
representing in a proper reference frame the periodic crystal field.

For ρ(∞) À 1 , the constant field approximation (CFA) is widely used.
It can be applied when the magnitude of the external (not uniform) field
is almost constant on the particle trajectory during the radiation formation
time, τf . The latter is determined by the condition Ψ(τf ) . 1 . In our case,
the applicability condition of CFA reads ω0τf ¿ 1 . As τf depends on photon
energy, ω , this condition can not be fulfilled everywhere in the radiation
spectrum. In particular, it is violated for ω . 2γ2ω0/ρ(∞). The power
spectrum is maximum at u ≡ ω/(ε−ω) ∼ χ = γ2v̇(t)/m . Using Eq. (2.9), we
find at u & χ for the formation time τf ∼ 2ω0/(γv̇(t) . Numerical estimates
of the latter expression show that, even in this part of the spectrum, the CFA
becomes valid at rather high electron energy. For example, it happens at ε À
100 GeV for (110)-plane of diamond and silicon, and at ε À 10 GeV for the
same plane of tungsten. Using CFA, the probability, dwγ , was calculated in
[8]. We emphasize that no approximations are used in the present paper at the
PFC calculation. However, the results of [8] are useful here since they allow
us to check the procedure of the exact calculation and estimate the magnitude
of the interference term, C

(3)
ij , as well as the influence of the slow motion on

the CB term C
(2)
ij . This influence is due to the presence of ρslow(t, τ) in the

phase Ψ(τ) . According to [8], the scale of the effect is given by the parameter
µ = χ/s(q‖) where s(q‖) = 2ε|q‖|/m2 is a conventional kinematic parameter
in the Compton scattering. Remember, that the power spectrum of the latter
is maximum just at the kinematic boundary, u = s(q‖). So that, the plane
field and CB contributions to the radiation intensity are well separated for
µ ¿ 1 . The parameter µ is essentially the deviation of the particle velocity
due to the external field action during the hard-photon formation time, τh ∼
|q‖|−1 , measured in units of the characteristic emission angle θph = γ−1.
For given plane and substance, this parameter depends only on the angle of
incidence, ϑ0 , namely, µ = Cµ/ϑ0(mrad). Using the Tables 9.2 and 15.1 in
[1] , we obtain for < 110 > planes, Cµ(diamond)' Cµ(silicon)' 0.01 , and
Cµ(tungsten) ' 0.06 . For weaker planes of the same crystal, Cµ is smaller
being proportional to the magnitude of the plane electric field. From Fig.1 in
[8], the influence of the field on the Compton scattering can be neglected if
µ does not exceed several hundredth. In turn, the interference term provides
corrections to PFC of the order of ρfast '

∑̃|G(q⊥)q⊥/(mq‖)|2 which, by
definition , is much smaller than unity. Assuming µ < 0.05 , we obtain from
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(2.7) a simple but still rather accurate expression for the photon emission
probability, dW , per unite length (time) as well as the spectral distribution
of polarization. According to the analysis performed in [8], the accuracy of 5
% or better is expected. Let us present dW in the form introduced in (2.3)
as just this form will be used in further calculations:

dW

dω
=

dW (F )

dω
+

dW (C)

dω
,

dW (C,F )

dω
=

1
2

(
A(C,F ) + B(C,F )ξ

)
, (2.11)

where the superscripts C, F are correspondingly for the CB contribution and
PFC. For the latter (plane field contribution), we have

(
A(F ),B(F )

)
=

α

π2γ2

∞∫

0

ds

s

π∫

0

dx
(
a(F ), b(F )

)
;

b
(F )
1 = b

(F )
2 = 0 , b

(F )
3 =

(
D2

2 −D2
1

)
sinΨ ,

a(F ) =
[(

ϕ(ε)− 1
)
D2

1 −D2
2

]
sinΨ +

cos(sδ)− cosΨ
sδ

,

Ψ = sδ
(
1 + D3

)
,

(2.12)

D1 = 2γ

∞∑
n=1

vn sin(ns) sin(nx) , D2 = 2γ

∞∑
n=1

vng(ns) cos(nx) ,

D3 = 2γ2
∞∑

n,m=1

vnvm

{[
f
(
(n + m)s

)

−f(ns)f(ms)
]
cos

(
(n + m)x

)
+

(
m → −m

)}
,

δ =
m2u

εω0
, f(x) =

sinx

x
, g(x) = cos x− f(x) ,

where the integration over x = ω0t corresponds to time averaging, the vari-
able s = ω0τ/2 is used instead of τ . When the influence of the plane field
on the Compton scattering is neglected ( the factor exp(−iλτρslow(t, τ)) is
omitted in the term ∝ C

(2)
ij in (2.7)), the integrals over τ are easily taken
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and we obtain for the CB contribution:

(
A(C), B(C)

)
=

α

γ2

∑̃
q⊥

∣∣∣∣∣
G(q⊥)q⊥

mq‖

∣∣∣∣∣

2(
a(C), b(C)

)
θ(1− β) ;

β =
u

s(q‖)
≡ ωm2

2εε′|q‖|
,

(2.13)

a(C) =
1
4
ϕ(ε)− β(1− β) , b

(C)
1 = β2ν1ν2 , b

(C)
2 = 0 ,

b
(C)
3 =

1
2
β2(ν2

1 − ν2
2) ,

where θ(1 − β) is the step function: θ(x) = 1 for x > 0 and θ(x) = 0 for
x < 0 , ν is defined in (2.8).

Using formulas obtained, we present now some examples illustrating the
characteristics of a radiation. Let us start with the PFC described by (2.12).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
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γ /d
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l (
cm

-1
)

x
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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0.0
(b)

η
3

x

Figure 1: (a):intensities xd2Nγ/dxdl at ε = 180 GeV for (110)-plane of silicon
at z = −0.25 (solid), at z = 1 (dash-dotted); the same in diamond at ε = 180
GeV, z = −0.25 for (110)-plane (dashed) and for (001)-plane (dotted). (b):
third component of the Stokes vector for these conditions except z = 1;
z = ε⊥/Upl, x = ω/ε.

In Fig.1, the radiation intensities (a) and polarizations (b) are plotted as
functions of x = ω/ε. Remember, that the quantities vn and ω0 in (2.12)
depend on the integral of motion, ε⊥ and so does the radiation. From Fig.1
, the radiation at channelling (z = ε⊥/Upl < 0) is softer and more intensive
than that at above-barrier motion (z > 0). At given z, the intensity is smaller
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for a weaker plane (cf. curves for diamond). As expected, the polarization at
such one - dimensional motion is directed perpendicular to the plane (η3 <
0 , η1 = 0). The polarization degree is rather high and does not reveal a
sharp dependence on x.

In Fig.2, the radiation intensity, probability, and polarization are shown
for the angles of incidence ϑ0 = 5 mrad and φ0 = 0.036 when ψ = 180µrad.
For the (110)-plane of Si at ε = 180 GeV, the channelling angle is of θpl '
15µrad,i.e., ψ À θpl (z ' 140). Then, as explained above, the first term
(PFC)in (2.11) has the same form as the second one and we are dealing with
pure CB. This term is dominant when, as in our example, φ0 ¿ 1. That is due
to the relative smallness of q

(1)
‖ from the first subset (roughly q

(1)
‖ ∼ q

(2)
‖ φ0).

As a result, the second term has a much smaller amplitude (q−2
‖ in a partial

flux of equivalent photons ) and much higher photon frequencies (β ∝ q−1
‖

in (2.13)). So, it can be neglected for φ0 ¿ 1 and the expression (2.13) is
reduced to a one - dimensional sum. Within this accuracy, we obtain for η3

at the maximum of the first harmonic,i.e., at u = s:

η3(u = s) = −
{ ∞∑

n=1

∣∣∣G(nq)
n

∣∣∣
2}
�

{ ∞∑
n=1

∣∣∣G(nq)
∣∣∣
2[

1 +
s2

2(1 + s)
− 2

n

(
1− 1

n

)]}
,

(2.14)
where s = 2εqψ/m2, q = 2π/dpl, and dpl is the inter-planar distance.
The contribution of the first harmonic (n = 1) to η3 at u = s is η

(1)
3 =

−[
1 + s2/(1 + s)/2

]−1. Worthy to note that η
(1)
3 is independent of G(q). In

our case, when s2/(1 + s)/2 ' 0.49, it overestimates the exact value (2.14)
by 8%. Recollect now, that according to [8] each equivalent photon is com-
pletely linearly polarized along its q⊥. In the first subset, all such photons
have q⊥ perpendicular to the plane. Thus, the whole equivalent photon beam
produced by this subset is completely linearly polarized leading to the po-
larization of emitted radiation perpendicular to the plane (η3 < 0 , η1 = 0).
Actually, the second term in dW/dω (see (2.11)) has not been neglected in
our calculation giving at this orientation non - vanishing but extremely small
value of η1. To give a glimpse of a role of the electron spin, the intensity and
polarization from a "scalar" (zero spin) electron are presented in Fig.2 (dot-
ted curves). The spin terms in (2.2) and subsequent formulas are proportional
to ϕ(ε)− 2 = ω2/(εε′). Therefore a difference in radiation characteristics be-
comes observable at sufficiently large photon energies (for x > 0.3 in Fig.2).
The peaks do not move being determined, at given orientation, solely by the
particle energy, ε. Due to the absence of the spin terms, the radiation from
a "scalar" electron is less intensive and, because of that, has a higher polar-
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Figure 2: (a): solid curves present intensity xd2Nγ/dxdl and probability
d2Nγ/dxdl (upper curve) at ε = 180 GeV of CB in silicon ( 5 mrad off
the < 001 >-axis and 180 µrad off the (11̄0)-plane ), dotted curve presents
intensity for a "scalar" electron; (b): third component of the Stokes vector
at the same settings

ization. Really, the quantity B(C) in (2.13) is independent of the particle
spin, while A(C), which is proportional to the intensity, appears in the de-
nominator of the equation defining a polarization (η = B/A). In particular,
the component η3(u = s) for a "scalar" electron is given by Eq.(2.14) if we
omit the item s2/(1 + s)/2 in the denominator.

When both terms in (2.11) contribute to the radiation, a corresponding
alignment is sometimes called string - of - string (SOS) orientation, since at
such an alignment particles traverse axes (strings) forming the plane. In this
case, the emission of hard photons is described by the second term in (2.11)
being CB by nature. A difference of spectra and polarizations for photons
emitted by means of the same physical mechanism (CB) is completely due to
that of equivalent photon fluxes at different orientations. The quantity |q‖|
which determines the shape of a spectrum is independent of q2 at SOS: q‖ =
q1ϑ0. Then the summation over q1 in

∑
q⊥

=
∑
q1

∑
q2

(see (2.13)) corresponds to

the splitting of the total flux into subsets of equivalent photons having the
same q‖. Remember, that for x ≤ xmax (xmax marks the first peak position
) the radiation is described within a high accuracy by only one subset having
the minimal value of |q‖|. This value is provided by |q1|min = 2π/dax where
dax is the distance between axes forming the plane. As the quantity b

(C)
3

in (2.13) is proportional to q2
1 − q2

2 , only first (q2 = 0) term in the sum
over q2 is positive for the main (|q1| = |q1|min) subset. When q2 increases,
the magnitude of negative terms diminishes. Their sum, however, cancels
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Figure 3: (a): Contribution of the CB-like term ( Eq.(2.11) at SOS orien-
tation ( 0.3 mrad off the < 001 >-axis in the (11̄0)-plane ). Intensities and
probabilities in diamond at ε = 150 GeV (solid ), and in silicon at ε = 180
GeV (dotted);(b): third component of the Stokes vector at the same settings.

almost perfectly the first term. This results in a small magnitude of η3

seen in Fig.3. For the next (|q1| = 2|q1|min) subset, already two first terms
are positive which leads to a positive total sum over q2. As a result, the
polarization is somewhat higher for x > xmax being parallel to the plane
(η3 > 0). Qualitatively, the equivalent photon beam at SOS orientation turns
out to be almost unpolarized in contrast to the above example of pure CB.
The component η1 vanishes at SOS orientation. This can be easily verified if
we, e.g., change the sign of q2 in the sum

∑
q2

in (2.13).

The total (integrated over ω) probabilities, W tot
γ , are typically the order of

magnitude larger at SOS orientation mainly due to the PFC. More precisely,
we have in the above examples for silicon W tot

γ (CB) ' 1.2cm−1, while at
SOS orientation the PFC and CB-like terms give correspondingly 42.9cm−1

and 2.2cm−1.
To describe a shower development, the probability of e+e−-pair produc-

tion by a photon, dWe, is needed as well. Using Eqs.(3.12),(3.25) in [1], we
obtain, first, the expression analogous to (2.1) where the summation over
positron final states and electron spin states has been performed

dwe =
α

(2π)2
d3p

ω

ε

2ε′

∫
dt1dt2Le(t1, t2) exp[−i

ε

ε′
(k, x1 − x2)] . (2.15)

Here p and ε are the electron momentum and energy, ε′ = ω − ε, and
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Le(t1, t2) = (e∗v1)(ev2)(ϕ(ε)− 2) + [(e∗e)(v1v2 − 1 + γ−2)
−(e∗v2)(ev1)](ϕ(ε) + 2). (2.16)

Note that the quantities Le(t1, t2) in (2.16) and L(t1, t2) in (2.2) turn into
each other if we change (ϕ(ε) − 2) ←→ (ϕ(ε) + 2). Further consideration of
the pair production may be performed using the same approach and approx-
imations as those applied above to the photon emission problem. Here we
give explicitly only a perturbation ( CB-like ) term in the expression for dWe

in the form of (2.11)

dWe

dε
=

dW
(F )
e

dε
+

dW
(C)
e

dε
,

dW
(C,F )
e

dε
= A(C,F )

e + B(C,F )
e η , (2.17)

where η describes the photon polarization, and

(
A(C)

e ,B(C)
e

)
=

α

ω2

∑
q⊥

∣∣∣∣∣
G(q⊥)q⊥

q‖

∣∣∣∣∣

2(
a(C)

e , b(C)
e

)
θ(1− β) ; β =

ωm2

2εε′|q‖|
,

(2.18)

a(C)
e =

1
4
ϕ(ε) + β(1− β) ,

b
(C)
e1 = −β2ν1ν2 ,

b
(C)
e2 = 0 ,

b
(C)
e3 = −1

2
β2(ν2

1 − ν2
2) .

Note that this result may be obtained from (2.13) by means of the substi-
tution mentioned above and evident change in the common multiplier. The
plane field contribution to the pair production probability ( first term in
(2.17)) was investigated in [9] where the CFA was used. Though the ap-
plicability of this approximation is questionable ( see discussion above ), we
used the results of [9] as a rough estimate and found that PFC to the pair
production probability should be neglected under our conditions.
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3 Radiation from thick crystals
As long as the crystal thickness, L, satisfies the condition Nγ ∼ W tot

γ L ¿ 1
(thin crystal), the radiation emitted is described by formulas obtained in the
previous Section. For such thicknesses, the relative energy loss, ∆ε/ε0, is even
smaller than the number, Nγ , of photons emitted. Since the total probability,
W tot

γ , depends on the initial electron energy ε0 and crystal orientation, the
same sample may prove to be thin or thick (Nγ ∼ 1) depending on settings.
At the noticeable (Nγ & 1) yield, an alteration of the particle energy can
no longer be neglected, several photons are emitted and the electron-photon
shower develops.

The main processes taken into account in our simulation of the e+e−γ-
shower development are: i) emission of photons due to the coherent and in-
coherent mechanisms, ii) absorbtion of photons due to the e+e−-pair produc-
tion by both mechanisms, iii) multiple scattering of electrons and positrons.
Many-dimensional maps of probabilities were created describing the photon
emission and pair production depending on the energy, momentum direction,
and polarization. In other words, thousands distributions like those shown in
Figs.1,2,3 have been obtained while a calculation of the PFC was the most
arduous task. Different mechanisms were simulated as independent ones. In
particular, each photon emitted by the coherent mechanism was provided
with the polarization according to Eq.(2.11) and was unpolarized when emit-
ted incoherently. The angular divergence of the initial electron beam was
also taken into account. The values for this divergence of 30 µrad and 50
µrad used in our calculations correspond to the experimental conditions of
[5] and [4] as do also the initial energies and angles of incidence. Note that
the same settings were used in above examples (see Figs.2, 3) illustrating
instantaneous characteristics of a radiation. So, we can compare the outputs
from thin and thick crystals.

One must distinguish the true power spectrum of a radiation from that
of energy losses. The latter is observed when a detector (e.g., a calorimeter)
sums up over the energies of all photons emitted by one electron. These spec-
tra coincide in the limit of vanishing crystal thickness when the multiplicity
(a number of photons at given nonzero total energy loss) tends to unity. In
our case, they are very different, especially for SOS orientation (cf. curves
1 and 2 in Fig.4a) when the PFC is dominant leading to rather soft power
spectrum. Note that due to the same mechanism (PFC) of photon emission,
the multiplicity is very high just for SOS orientation (cf. curves 1 and 3 in
Fig.5b). Remember that the multiplicity increases when the lower energy
boundary of photon recorded , ωth, decreases. Results presented in Fig.5b
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Figure 4: Yield from 1.5 cm-thick silicon crystal at (center of beam) settings
as in Figs.2,3;(a): Power and energy loss spectra for SOS (1,2) and CB (3,4);
(b): spectra (effective probabilities) for SOS (dotted) and CB (solid).

were obtained at ωth = 1GeV. In applications, power spectra are less inter-
esting than the distributions in number of photons (spectra). Such spectra
are presented in Fig.4b in the form of effective probabilities capable of direct
comparison with probabilities shown in Figs.2, 3. The shower spectra are
significantly softer than initial ones due to the decrease of the mean energy
of charged particles with the increasing depth, and to the incoherent mecha-
nism action. Recollect, that the parameter |q‖| which determines the position
of hard peaks in the instantaneous spectrum depends on the current energy
and velocity direction. The latter also changes in thick crystals mainly due
to the multiple scattering. Note that for conditions of Fig.4, the mean-square
scattering angle (at the initial energy) is about 50 µrad being larger than the
angular divergence of the initial electron beam. As a result, a smearing of
peaks takes place and sharp structures are not seen in shower spectra. All
the factors mentioned affect the shape of polarization distributions shown
in Fig.5a. For CB (see curve 3 in Fig.5a), this distribution is maximal at
ω ' 100 GeV. The shift left (by ∼ 11 GeV as compared to Fig.2b) is due to
the energy and angular spread mentioned above, while a diminution of the
magnitude is mainly caused by the incoherent (unpolarized photons) contri-
bution. For evident reasons, such changes are marked feebly for relatively
thin diamond ( see curve 2 in Fig.5a ) crystal.

Let us define an enhancement as bin-by-bin ratio of the yields from ori-
ented to disoriented crystals. In the latter case, only incoherent (amorphous-
like) mechanism is acting, when dN

(am)
γ /dx ∼ Q(x)/x with Q(x) being rather

smooth function of x. Therefore, the ratio of numbers of photons (probability
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Figure 5: (a): Polarization (η3) at settings of Fig.4 for SOS (1), CB (3), and
for SOS from 0.05 cm-thick diamond crystal (2) at settings of Fig.1 in [4](
ε0 = 150 GeV, ϑ0 = 0.3 mrad |ψ| ≤ 10µrad); (b): multiplicities at these
conditions for ωth = 1GeV.

enhancement) is very like in the form to a power spectrum while the energy
loss enhancement bears a strong resemblance to the energy loss spectrum
shape (cf. corresponding curves in Figs.4a and 6a). Note that an enhance-
ment increases with decreasing thickness L, other things being equal. This
explains, along with a larger bare (at L → 0) probability enhancement for
diamond, the order of magnitude difference in these quantities for silicon
and diamond crystals (cf. curves 1 in Figs.6 a and 6b). Already from Figs.
4,5, the SOS orientation looks less favorable than CB for the hard photon
production. As explained above, this is due to the PFC which in itself is
characterized by relatively soft spectra with large intensities and total proba-
bilities. So that, the CB-like contribution providing a hard photon emission is
suppressed at SOS, in particular, due to the energy loss via competing mech-
anisms. However, the thickness in above examples was chosen to optimize
the yield of CB at ω ∼ 100GeV being not optimal for SOS. Additionally, the
positions of peaks (cf. Figs. 2 and 3 ) in the initial spectra were different for
two orientations. Let us now compare the yield from a diamond crystal at
ε0 = 250GeV for three different orientations characterized by the same peak
position in instantaneous spectra, xmax = 0.75. Those are two SOS orien-
tations ( 325 µrad off the < 110 >-axis in the (001)-plane and 180 µrad off
the < 001 >-axis in the (11̄0)-plane ) and CB ( 5 mrad off the < 001 >-axis
and 160 µrad off the (11̄0)-plane ). From Fig. 1, the weaker (001)-plane is
preferable to the stronger (11̄0)-plane for the purpose of hard photon pro-
duction. Additionally, stronger < 110 >-axes are involved in the first of the
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Figure 6: At settings of Fig.5; (a): probability and energy loss enhancements
in silicon for SOS (1,2) and CB (3,4); (b): the same for SOS in diamond

two SOS orientations increasing the CB-like contribution. As a result, the
hard (x > 0.5 ) photon yield turned out to be higher for this orientation at
any crystal thickness. For example, this is 1.5 times as large in the region
x ∼ 0.6 ÷ 0.75 at L = 0.2 cm. Just this orientation is compared to pure
CB in Fig. 7. For CB, a local maximum in the shower spectra situated at
x = 0.69 is seen even at larger L than those presented in Fig.7. At SOS, such
a maximum (at x = 0.71 ) is feebly marked already at L = 0.04 cm, so that
the spectra are monotonically decreasing for larger L. However, an increase
of the yield at x = 0.71 continues up to L = 0.3 cm where it amounts only
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Figure 7: Number of photons per bin ∆x = 0.02 in a diamond crystal at
ε0 = 250GeV for CB ( 5 mrad off the < 001 >-axis and 160 µrad off the
(11̄0)-plane) at L = 0.1cm (1) and L = 0.5 cm (2); for SOS (325 µrad off the
< 110 >-axis in the (001)-plane) at L = 0.04 cm (3) and L = 0.2 cm (4);
x = ω/ε0.
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to 3% of the yield at L = 0.2 cm. Thus, a saturation occurs in the hard part
of the SOS-spectrum at thicknesses L ∼ 0.2 cm. In our examples of CB, the
thicknesses are chosen so as being noticeably smaller than those leading to
the saturation of CB-spectra, they provide almost the same amount of hard
photons as at SOS. Even under these conditions ( the hard photon yield of
CB may be further increased ), CB-spectra would get the better in appli-
cations being on the whole much harder than SOS-spectra (cf. curves 1,3
and 2,4 in Fig.7), and having a polarization (about 40% near xmax). Numer-
ous relatively soft photons may provide rather severe background conditions,
producing, e.g., e+e−-pairs or hadrons directly in a radiator.

In conclusion, we hope that explicit formulas presented along with a qual-
itative analysis performed allow anyone to make own estimations of radiation
characteristics at any orientation where polarized photons may be obtained
from unpolarized electrons or positrons penetrating through single crystals.
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Appendix A
Let x be the coordinate perpendicular to some system of crystal planes with
the inter-planar distance, dpl. Then the periodic plane potential for electrons
reads

Ue(x) = −
∞∑

n=−∞
G(nq) exp(iπny) , q =

2π

dpl
, y =

2x

dpl
.

As the direct use of this potential is impossible in analytical calculations, sev-
eral approximate forms (see Chapter 9,15 in [1]) were suggested. Being not
satisfied with previously used forms, we propose here the new one which pro-
vides a precise fit for any crystal plane potential and very simple expressions
for the velocity Fourier-transforms. For 0 ≤ y ≤ 1, it reads

Ue(y) = −Upl[θ(y1 − y)(1− a1y
2) + θ(y − y1)θ(y2 − y)(a2y

2 + by + c)

+θ(y − y2)a3(1− y)2] , (A.1)

where θ(x) was defined in (2.13) being the step function, Upl is the potential
well depth. The origin is set to the point where the potential is minimal
(Ue(0) = −Upl), i.e., just at the plane. Beyond the segment y ∈ [0, 1],
the values of Ue(y) may be obtained from (A.1) using evident symmetry
and periodicity conditions. For positrons, we also choose the origin at the
point where the corresponding potential, Up(y), is minimal (Up(0) = 0),i.e.,
in the middle between two neighboring planes. So, for 0 ≤ y ≤ 1, we have
Up(y) = −Ue(1−y) with Ue(y) defined in (A.1). Note that only three of seven
fitting parameters ai, yi,b, and c in (A.1) are independent. Using continuity
conditions of the potential and corresponding electric field in points y1,y2,
we can, for example, express the rest parameters via y1, a1, and a2:

a3 =
a2 − y2

1a1(a1 + a2)
1− a1 + (1− y1)2(a1 + a2)

, y2 =
y1(1− y1)(a1 + a2)− 1

a2 − y1(a1 + a2)
,

(A.2)
b = −2y1(a1 + a2) , c = 1 + y2

1(a1 + a2) .

Independent fitting parameters along with Upl and dpl are listed in Table A.1
for some crystal planes.

The equation of one - dimensional motion in the potential U(y) is

ẏ = ±κ
√

z − U(y)/Upl , κ = 2θpl/dpl , θpl =
√

2Upl/ε , (A.3)
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Table A.1: Potential well depths, Upl(eV ), inter-planar distances, dpl(Å), and
parameters of the fit (A.1) for some crystal planes.

Crystal, plane Upl dpl y1 a1 a2

diamond (110) 23.54 1.261 0.109 10.57 1.994
diamond (001) 12.06 0.892 0.152 7.16 1.623
silicon (110) 21.27 1.920 0.100 13.45 2.750
silicon (001) 11.73 1.358 0.140 8.63 2.018
copper (110) 34.14 1.278 0.161 7.00 1.660
iron (110) 68.88 2.027 0.084 17.38 3.104
tungsten (110) 132.69 2.238 0.054 34.90 5.656

where z = ε⊥/Upl = U(y)/Upl + (ẏ/κ)2 is the integral of motion (transverse
energy in units of Upl). Remember now that the integration over time in
formulas describing a radiation (see Section 1) is performed at fixed value of
z when, by means of a time shift, any initial conditions may be reduced to
the standard one x(0) = 0 providing the condition vx(−t) = vx(t). Then we
have vn = v−n = v∗n in the velocity fourier series

vx(t) =
∞∑

n=−∞
vn exp(inω0t) ,

where ω0 = 2π/T is the frequency of motion and T being its period. Finally,

vn =
2
T

T/2∫

0

dtvx(t) cos(nω0t) . (A.4)

There is an additional symmetry, vx(t ± T/2) = −vx(t), for channelled par-
ticles when Eq.(A.4) passes into

vch
n = sin

(nπ

2

) 4
T

T/4∫

0

dtvx(t) sin(nω0t) . (A.5)

From this equation, even harmonics vanish at channelling (at −1 ≤ z ≤ 0 for
electrons and at 0 ≤ z ≤ 1 for positrons). Let us define a quantity, ṽn, which
is related to vn by vn = ṽnθpl/g(z) where g(z) = κT/4 at channelling and
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g(z) = κT/2 at over-barrier motion. Solving Eq.(A.3) and taking elementary
integrals in Eqs.(A.4),(A.5), we obtain for electrons

ṽ(e)
n = θ(z1e − z)

π

4

√
z + 1
a1

(
δn,1 + δn,−1

)

(A.6)

+
1

Q2
e + a2

{
θ(z − z1e)

a1 + a2

Q2
e − a1

[√
z − z1eQe sinΨ1e − a1y1 cosΨ1e

]

+ θ(z − z2e)
a3 − a2

Q2
e + a3

[√
z − z2eQe sinΨ2e − a3(1− y2) cosΨ2e

]}
,

where z1e = Ue(y1)/Upl = a1y
2
1 − 1 , z2e = Ue(y2)/Upl = −a3(1 − y2)2 ,

−1 < z1e < z2e < 0 , and

ge(z) = θ(z1e − z)
π

2
√

a1
+ θ(z − z1e)

[
1√
a1

arcsin

(√
1 + z1e

1 + z

)

+ ln

(
a1y1 +

√
a2(z − z1e)√

|a2(z + c)− b2/4|

)
θ(z2e − z)√

a2

]

+θ(z − z2e)

[
1√
a2

ln

(
a1y1 +

√
a2(z − z1e)

a3(1− y2) +
√

a2(z − z2e)

)

(A.7)

+
1√
a3

ln

(
(1− y2)

√
a3 +

√
z − z2e√

|z|

)]
,

Ψ1e =
Qe√
a1

arcsin

(√
1 + z1e

1 + z

)
,

Ψ2e = Qe

[
ge(z)− 1√

a3
ln

(
(1− y2)

√
a3 +

√
z − z2e√

|z|

)]
,

Qe =
πn

2ge(z)
[1 + θ(z)] ≡ nω

(e)
0

κ
.
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Analogously, we find for positrons

ṽ(p)
n = θ(z1p − z)

π

4

√
z

a3

(
δn,1 + δn,−1

)
+

1
Q2

p − a2

{
θ(z − z1p)

a3 − a2

Q2
p − a3

(A.8)

×
[√

z − z1pQp sin Ψ1p − a3(1− y2) cos Ψ1p

]

+θ(z − z2p)
a1 + a2

Q2
p + a1

[√
z − z2pQp sinΨ2p − a1y1 cosΨ2p

]}
,

where z1p = −z2e , z2p = −z1e , 0 < z1p < z2p < 1 , and

gp(z) = θ(z1p − z)
π

2
√

a3
+ θ(z − z1p)

[
1√
a3

arcsin

(√
z1p

z

)

(A.9)

+arccos

(
a3(1− y2)√

a2(z − c) + b2/4

)
θ(z2p − z)√

a2

]

+θ(z − z2p)

[
1√
a2

arctan

(
a1y1

√
a2(z − z1p)− a3(1− y2)

√
a2(z − z2p)

a1a3y1(1− y2) + a2

√
(z − z1p)(z − z2p)

)

+
1√
a1

ln

(
y1
√

a1 +
√

z − z2p√
|1− z|

)]
,

Ψ1p =
Qp√
a3

arcsin

(√
z1p

z

)
,

Ψ2p = Qp

[
gp(z)− 1√

a1
ln

(
y1
√

a1 +
√

z − z2p√
|1− z|

)]
,

Qp =
πn

2gp(z)
[1 + θ(z − 1)] ≡ nω

(p)
0

κ
.

As expected, differences in electron and positron motion diminish when z
(transverse energy) increases. We obtain from above formulas for z À 1
(high above the potential barrier when z ' (ψ/θpl)2 where ψ is the angle of
a particle velocity w.r.t. the plane ) ge ' gp ' 1/

√
z and therefore ω

(e)
0 '
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ω
(p)
0 ' πκ

√
z ' 2πψ/dpl ≡ qψ. From Eq.(A.6) we find for z À 1

ṽ(e)
n ' 1

(πn)3
[
(a1 + a2) sin(πny1) + (a3 − a2) sin(πny2)

]

= − 1
2zUpl

1∫

0

dy cos(πny)Ue(y).

So, the velocity Fourier transform is expressed via Fourier coefficients of a
potential. This happens when the rectilinear trajectory approximation is
valid. If we substitute the original (periodic) plane potential for Ue(y) in
this integral, ṽ

(e)
n takes the form ṽ

(e)
n ' G(nq)/(2zUpl). Then the quantity

γvn appearing in (2.10) reads: γvn ' G(nq)/(mψ). At z À 1 , the velocity
Fourier transform for positrons differs from that for electrons by the factor,
− cos(πn), which does not lead to some changes in (2.10) as only v2

n enters
into this formula.
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