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.

1 Introduction
The BFKL approach [1] to the description of processes at large c.m.s. energy√

s and fixed momentum transfer
√−t is based on the gluon Reggeization.

In this approach the scattering amplitudes are given by the convolution of
the impact factors of the scattered particles and the Green function for the
Reggeon-Reggeon scattering. The Pomeron, which determines the high en-
ergy behavior of cross sections, and the Odderon, responsible for the differ-
ence of particle and antiparticle cross sections, appear in this approach as
compound states of two and three Reggeized gluons respectively.

Originally the BFKL approach was developed in the leading logarithmic
approximation (LLA), that means resummation of terms (αs ln s)n. Now for
the forward scattering (t = 0 and color singlet in the t-channel) the kernel
of the equation for the two-Reggeon Green function is known [2, 3] in the
next-to-leading order (NLO). The calculation of the NLO kernel for the non-
forward scattering [4] is not far from completion (see [5, 6]). The impact
factors of gluons [7] and quarks [8] are calculated in the NLO and the impact
factors of the physical (color singlet) particles are under investigation [9, 10,
11, 12, 13].

Note that although initially the gluon Reggeization appeared as the as-
sumption used in the derivation of the BFKL equation [1], later it was proved
in the LLA [14]. The key to the proof is given by the properties of the am-
plitudes with gluon quantum numbers (color octet with negative signature)
in the t-channels.

Whereas two Reggeized gluons in the color singlet state create the BFKL
Pomeron, in the antisymmetric color octet state they must reproduce the
Reggeon itself. This is the requirement of self-consistency of the BFKL ap-
proach, since it is based on the gluon Reggeization. The bootstrap conditions
for the color octet impact factors and the BFKL kernel in the NLO, arising
from the application of this requirement to the elastic scattering amplitudes,
were obtained in [4]. The condition for the impact factors was checked in [7]
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and [8] in the cases of gluon and quark, respectively, and was proved to be
satisfied at arbitrary space-time dimension D both for the helicity conserv-
ing and non-conserving parts of the impact factors, as well as the bootstrap
condition for the quark part of the kernel, which was analyzed in [5]. The
fulfillment of the bootstrap condition for the gluon part of the kernel was
proved in the limit D → 4 [15]. The evident reason for this restriction was
that the gluon part of the color octet kernel was known at that time [6] only
in this limit. Note that now the kernel at arbitrary D is calculated [16] and
it is possible to check the bootstrap condition at arbitrary D.

Although the bootstrap conditions arising from the elastic scattering am-
plitudes are rather restrictive, their fulfillment cannot justify completely the
BFKL equation. Evidently, the bootstrap conditions must be satisfied for all
amplitudes involved in the derivation of the BFKL equation, since they were
supposed to have (multi) Regge form, i.e. for the amplitudes of production
of any number of particles in the multi-Regge and (in the NLA) quasi multi-
Regge kinematics. The fulfillment of all these conditions gives the basis on
which the proof of Reggeization was constructed in the LLA [14]. An analo-
gous proof can be constructed in the next-to-leading approximation (NLA)
as well [17].

The requirement of bootstrap for the multi-particle production leads, in
particular, [17] to stronger restrictions on octet impact factors and kernel,
than it follows from the elastic amplitudes. These restrictions are just the so
called strong bootstrap conditions, which were suggested, without derivation,
in [18, 19]. They can be presented in the form [20]:

Φa
A′A(~q1, ~q) =

−ig
√

N

2
Γa

A′A(q)R(~q1, ~q) , (1.1)

∫
dD−2q2

~q 2
2 ~q ′ 22

K(~q1, ~q2; ~q)R(~q2, ~q) = ω(t)R(~q1, ~q) . (1.2)

Here and in the following Nc is the number of colors, ~q is the transverse part
of the total transferred momentum, t = −~q 2, ~qi and ~q ′i ≡ ~q − ~qi, i = 1, 2,
are the momenta of the Reggeized gluons; Φa

A′A is the octet impact factor for
the A → A′ transition, Γa

A′A is the Reggeon vertex, R(~q1, ~q) appears as an
universal (i.e. independent on properties of the scattered particles) function,
which occurs to be the eigenfunction of the octet kernel K(~q1, ~q2; ~q) with
eigenvalue ω(t) = j(t)− 1, j(t) is the gluon Regge trajectory. Note that here
we have changed the normalization of R compared to [20], so that now in the
leading order R = R(0) = 1. Fulfillment of (1.1) in this order is immediately
seen from explicit expressions for the impact factors and vertices, which are
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constant in this order. The remarkable property of the color octet impact
factors and Reggeon vertices exhibited by this relation is that their ratio is
a process-independent function. This property becomes quite nontrivial in
the NLO. It was verified by comparison of this ratio for quarks and gluons
in [20], where the NLO contribution R(1) to the function R was determined.

Taking into account a general relation [4]:

K(~q1, ~q2; ~q) =
(

ω(−~q 2
1 ) + ω(−~q ′ 21 )

)
~q 2
1 ~q ′ 21 δ(D−2)(~q1 − ~q2) +Kr(~q1, ~q2; ~q) ,

(1.3)
where Kr is the part of the kernel related to the real particle production, the
condition (1.2) can be rewritten as

∫
dD−2q2

~q 2
2 ~q ′ 22

Kr(~q1, ~q2; ~q)R(~q2, ~q) = (ω(t)− ω(t1)− ω(t′1)) R(~q1, ~q) , (1.4)

where ti = q2
i = −~q 2

i , i = 1, 2. The fulfillment of this relation in the leading
order (remember that R(0) = 1):

∫
dD−2q2

~q 2
2 ~q ′ 22

K(0)
r (~q1, ~q2; ~q) = ω(1)(t)− ω(1)(t1)− ω(1)(t′1) (1.5)

is evident, taking into account the leading order expressions for the “real”
part of the kernel

K(0)
r (~q1, ~q2; ~q) =

g2Nc

2(2π)D−1
fB(~q1, ~q2; ~q) , fB(~q1, ~q2; ~q) =

~q 2
1 ~q ′ 22 + ~q 2

2 ~q ′ 21

~k 2
−~q 2,

(1.6)
where ~k = ~q1 − ~q2, and the trajectory

ω(1)(t) =
g2Nct

2(2π)D−1

∫
dD−2q1

~q 2
1 ~q ′ 21

= −g2 NcΓ(1− ε)
(4π)D/2

Γ2(ε)
Γ(2ε)

(~q 2)ε , (1.7)

with D = 4 + 2ε.
In this paper we prove the fulfillment of the bootstrap condition (1.4)

in the NLO. It is explicitly formulated and simplified in the next Section;
Section 3 contains the proof. The details of the calculations are given in the
Appendices. The significance of the result is discussed in Section 4.
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2 Formulation and simplification
of the bootstrap condition

Let us work in pure gluodynamics, since the fulfillment of the strong boot-
strap condition for the quark part of the kernel simply follows from the results
of [5, 19, 21]. Then the condition (1.1), with account of R(0) = 1 and (1.5),
gives us in the NLO

∫
dD−2q2

~q 2
2 ~q ′ 22

[
K(1)

r (~q1, ~q2, ~q) +K(0)
r (~q1, ~q2, ~q)

(
R(1)(~q2, ~q)−R(1)(~q1, ~q)

)

= ω(2)(t)− ω(2)(t1)− ω(2)(t′1) . (2.8)

Here K(1)
r , ω(2) and R(1) are the NLO contributions to the “real” part of the

kernel K of the BFKL equation for the octet color representation in the t-
channel, to the gluon Regge trajectory and to the function R determined by
the bootstrap condition for the impact factors (1.1). We have

ω(2)(t) =
[
g2NcΓ(1− ε)(~q 2)ε

(4π)D/2ε

]2 [
11
3

+
(

2ψ′(1)− 67
9

)
ε

+
(

404
27

+ ψ′′(1)− 22
3

ψ′(1)
)

ε2
]

, (2.9)

where ψ(z) = Γ′(z)/Γ(z) and all non-vanishing terms for ε → 0 are held.
Although the expression of ω(2)(t) in terms of integrals in the transverse
momentum space was obtained for arbitrary ε [22], an explicit expression for
it is known only at ε → 0 [23, 24, 25].

The NLO correction to R is [20]

R(1)(~q1, ~q) =
ω(1)(t)

2

[
εΓ(1 + 2ε)(~q 2)1−ε

2Γ2(1 + ε)

∫
dD−2k

Γ(1− ε)π1+ε

ln(~q 2/~k 2)

(~k − ~q1)2(~k + ~q ′1)2

+
((

~q 2
1

~q 2

)ε

+
(

~q ′ 21

~q 2

)ε

− 1
) (

1
2ε

+ ψ(1 + 2ε)− ψ(1 + ε) +
11 + 7ε

2(1 + 2ε)(3 + 2ε)

)

− 1
2ε

+ ψ(1) + ψ(1 + ε)− ψ(1− ε)− ψ(1 + 2ε)
]

. (2.10)

The NLO corrections to the part of the kernel related with the real particle
production, Kr, can be presented [15] as follows in the limit ε → 0:

K(1)
r =

ḡ4

π1+εΓ(1− ε)

(
K1 +K2 +K3

)
, ḡ2 ≡ g2NcΓ(1− ε)

(4π)D/2
, (2.11)
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with

K1 = −fB(~q1, ~q2; ~q)
(~k 2)ε

ε

[
11
3

+
(

2ψ′(1)− 67
9

)
ε

+
(

404
27

+ 7ψ′′(1)− 11
3

ψ′(1)
)

ε2
]

, (2.12)

where ~k = ~q1 − ~q2,

K2 =
{

~q 2

[
11
6

ln
(

~q 2
1 ~q 2

2

~q 2~k 2

)
+

1
4

ln
(

~q 2
1

~q 2

)
ln

(
~q ′ 21

~q 2

)
+

1
4

ln
(

~q 2
2

~q 2

)
ln

(
~q ′ 22

~q 2

)

+
1
4

ln2

(
~q 2
1

~q 2
2

)]
− ~q 2

1 ~q ′ 22 + ~q 2
2 ~q ′ 21

2~k 2
ln2

(
~q 2
1

~q 2
2

)

+
~q 2
1 ~q ′ 22 − ~q 2

2 ~q ′ 21

~k 2
ln

(
~q 2
1

~q 2
2

)(
11
6
− 1

4
ln

(
~q 2
1 ~q 2

2

~k4

))}
+

{
~qi ↔ ~q ′i

}
, (2.13)

K3 =
{

1
2

[
~q 2(~k 2 − ~q 2

1 − ~q 2
2 ) + 2~q 2

1 ~q 2
2 − ~q 2

1 ~q ′ 22 − ~q 2
2 ~q ′ 21

+
~q 2
1 ~q ′ 22 − ~q 2

2 ~q ′ 21

~k 2
(~q 2

1 − ~q 2
2 )

]

×
∫ 1

0

dx

(~q1(1− x) + ~q2x)2
ln

(
~q 2
1 (1− x) + ~q 2

2 x

~k 2x(1− x)

)}
+

{
~qi ↔ ~q ′i

}
. (2.14)

Using the result of [7] for the integral in (2.10) in the limit ε → 0,

(~q 2)1−ε

∫
dD−2k

Γ(1− ε)π1+ε

ln(~q 2/~k 2)

(~k − ~q1)2(~k + ~q ′1)2

= −1
ε

ln
(

~q 2
1 ~q ′ 21

(~q 2)2

)
− 1

2
ln2

(
~q 2
1

~q ′ 21

)
+ O(ε) , (2.15)

Eqs. (2.9), (2.10), (2.11), and taking into account the properties of the kernel

fB(~q1,~0; ~q) = fB(~q1, ~q; ~q) = K2(~q1,~0; ~q) = K2(~q1, ~q; ~q)

= K3(~q1,~0; ~q) = K3(~q1, ~q; ~q) = 0 , (2.16)
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we can present in this limit the bootstrap condition (2.8) in the following
form:

(~q 2)−2ε

π1+εΓ(1− ε)

∫
dD−2q2

~q 2
2 ~q ′ 22

[
K1 +K2 +K3 + fB

(
−11

6
ln

(
~q 2
2 ~q ′ 22

~q 2
1 ~q ′ 21

)

+
1
2

ln
(

~q 2
1

~q 2

)
ln

(
~q ′ 21

~q 2

)
− 1

2
ln

(
~q 2
2

~q 2

)
ln

(
~q ′ 22

~q 2

))]

= − 1
ε2

[
11
3

+
(

2ψ′(1)− 67
9

)
ε +

(
404
27

+ ψ′′(1)− 22
3

ψ′(1)
)

ε2
]

−2
ε

[
11
3

+
(

2ψ′(1)− 67
9

)
ε

]
ln

(
~q 2
1 ~q ′ 21

(~q 2)2

)
− 22

3

(
ln2

(
~q 2
1

~q 2

)
+ ln2

(
~q ′ 21

~q 2

))
.

(2.17)
It is easy to see that due to (2.16) the only divergent integral here is that of
K1. The divergent part of this integral should cancel the terms of order 1/ε
and 1/ε2 which appear explicitly in the R.H.S. of (2.17). Indeed, we have
(for details of the calculation see Appendix A) in the limit ε → 0

(~q 2)−2ε

π1+εΓ(1− ε)

∫
dD−2q2

~q 2
2 ~q ′ 22

fB
(~k 2)ε

ε
=

1
ε2

[
1 + 2ε ln

(
~q 2
1 ~q ′ 21

(~q 2)2

)

+ε2
(

2 ln2

(
~q 2
1

~q 2

)
+ 2 ln2

(
~q ′ 21

~q 2

)
+ ln

(
~q 2
1

~q 2

)
ln

(
~q ′ 21

~q 2

)
− ψ′(1)

)]
, (2.18)

and therefore (2.17) takes the form

(~q 2)−ε

π1+εΓ(1− ε)

∫
dD−2q2

~q 2
2 ~q ′ 22

[
K2 +K3 + fB

(
−11

6
ln

(
~q 2
2 ~q ′ 22

~q 2
1 ~q ′ 21

)

+
1
2

ln
(

~q 2
1

~q 2

)
ln

(
~q ′ 21

~q 2

)
− 1

2
ln

(
~q 2
2

~q 2

)
ln

(
~q ′ 22

~q 2

))]

= 6ψ′′(1) +
11
3

ln
(

~q 2
1

~q 2

)
ln

(
~q ′ 21

~q 2

)
. (2.19)

Although due to (2.16) the integrals in the L.H.S. of (2.19) are finite at ε → 0,
we retain the dimensional regularization, since separate terms in them are
still divergent. Using known integrals
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I1(~q) =
(~q 2)1−ε

π1+εΓ(1− ε)

∫
dD−2q2

1
~q 2
2 (~q2 − ~q)2

=
Γ2(ε)
Γ(2ε)

=
2
ε

+ O(ε), (2.20)

I2(~q) =
(~q 2)1−ε

π1+εΓ(1− ε)

∫
dD−2q2

ln(~q 2
2 /~q 2)

~q 2
2 (~q2 − ~q)2

(2.21)

=
Γ2(ε)
Γ(2ε)

[
ψ(ε)− ψ(2ε) + ψ(1)− ψ(1− ε)

]
= − 1

ε2
+ ψ′(1) + O(ε) ,

I3(~q) =
(~q 2)1−ε

π1+εΓ(1− ε)

∫
dD−2q2

ln2(~q 2
2 /~q 2)

~q 2
2 (~q2 − ~q)2

(2.22)

=
Γ2(ε)
Γ(2ε)

[(
ψ(ε)− ψ(2ε) + ψ(1)− ψ(1− ε)

)2

+ ψ′(ε)− ψ′(2ε)

− ψ′(1) + ψ′(1− ε)
]

=
2
ε3
− 2ψ′(1)

ε
− 2ψ′′(1) + O(ε) ,

I4(~q) =
(~q 2)1−ε

π1+εΓ(1− ε)

∫
dD−2q2

ln(~q 2
2 /~q 2) ln((~q2 − ~q)2/~q 2)

~q 2
2 (~q2 − ~q)2

(2.23)

=
Γ2(ε)
Γ(2ε)

[(
ψ(ε)− ψ(2ε) + ψ(1)− ψ(1− ε)

)2

+ ψ′(1− ε)− ψ′(2ε)
]

= −2ψ′′(1) + O(ε) ,

which can be easily calculated with the help of the generalized Feynman
parametrization (see Eq. (A.1) in Appendix A), and (2.15), we obtain the
bootstrap condition in the form:

[{
−3ψ′′(1) +

1
24

ln3

(
~q 2
1

~q 2

)
− 1

4
ln2

(
~q 2
1

~q 2

)
ln

(
~q ′ 21

~q 2

)
− 1

2
I(~q ′ 21 , ~q 2; ~q 2

1 )

+
1
2
I(~q 2, ~q 2

1 ; ~q ′ 21 )− 3
4
J(~q 2

1 , ~q 2; ~q ′ 21 )
}

+
{

~q1 ↔ ~q ′1

}]
+

1
π

∫
d~q2

~q 2
2 ~q ′ 22

K3 = 0 ,

(2.24)
where

I(~p 2
1 , ~p 2

2 ; (~p1 − ~p2)2) =
(~p1 − ~p2)2

π

∫
d~p

ln(~p 2
2 /~p 2) ln((~p1 − ~p2)2/(~p− ~p2)2)

(~p− ~p1)2(~p− ~p2)2
,

(2.25)

J(~p 2
1 , ~p 2

2 ; (~p1 − ~p2)2) =
(~p1 − ~p2)2

π

∫
d~p

ln(~p 2
1 /~p 2) ln(~p 2

2 /~p 2)
(~p− ~p1)2(~p− ~p2)2

, (2.26)

and K3 is defined in (2.14).
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3 Proof of the fulfillment of the bootstrap
condition

Although all integrals in (2.24) can in principle be calculated analytically, the
arising expressions are so long and cumbersome that we restrict ourselves to
present them in terms of one-dimensional integrals. The derivation of such
representations for the integrals I and J defined in Eqs. (2.25) and (2.26) is
given in Appendix A and for the integral with K3 in Appendix B.

Moreover, the proof of the bootstrap relation can be simplified in the
following way. The integrals entering the bootstrap condition, as well
as the explicitly presented logarithms, are functions of three variables:
q2
1 ≡ −~q 2

1 , q ′ 21 ≡ −~q ′ 21 and q2 ≡ −~q 2 . Let us fix q 2
1 ≤ 0, q ′ 21 ≤ 0

and consider the dependence from q2. All integrals entering the bootstrap
condition (2.24), as well as the explicit logarithms presented there, are real
analytical functions (i.e. functions with the property f∗(z) = f(z∗)) of q2

with the cut 0 ≤ q2 < ∞. They are determined, up to a constant (from the
point of view of dependence from q2; but it still can be a function of q2

1 and
q ′ 21 ), by their discontinuities on the cut. The calculation of the discontinu-
ities on the cut is a much easier problem than the calculation of the whole
functions; therefore, let us prove the bootstrap relation for the discontinu-
ities. If we manage to do it, the only thing which will remain to be done is
to prove the bootstrap at some fixed point in the q2 plane. Taking this point
at ∞, we again drastically simplify the calculations.

Let us start with the discontinuities. For real analytical functions they
are equal to their imaginary parts on the upper edge of the cut multi-
plied by 2i. The values of the functions on the upper edge of the cut are
given by the expressions obtained for q2 = −~q 2 ≤ 0 with the substitution
~q 2 → −q2 − i0. Therefore for the logarithmic functions explicitly presented
in (2.24) the calculation of the discontinuities is trivial. For the integrals I
is easy to obtain from the representations given in Appendix A:

1
π
=I(~q 2

1 ,−q2−i0; ~q ′ 21 ) = 2ψ′(1)+
1
2

ln
(

1− a

a

)
ln(a(1−a))+Li2(a)−Li2(1−a)

+
∫ a

0

dx

x(1− x)
ln

(
1− x

a
+

x(1− x)~q ′ 21

q2

)
, (3.27)

1
π
=I(−q2 − i0, ~q 2

1 ; ~q ′ 21 ) = ψ′(1) + ln
(

1− a

a

)
ln(1− a) + Li2(a)− Li2(1− a)

+
∫ a

0

dx

x(1− x)
ln

(
1− x

a
+

x(1− x)~q ′ 21

q2

)
, (3.28)
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where

a =
q2

~q 2
1 + q2

, Li2(z) = −
∫ z

0

dx

x
ln(1− x) . (3.29)

The bootstrap relation contains these integrals in the combination for which
the imaginary part is quite simple:

−1
2

1
π
=I(~q 2

1 ,−q2−i0; ~q ′ 21 )+
1
2

1
π
=I(−q2−i0, ~q 2

1 ; ~q ′ 21 ) = −ψ′(1)
2

+
1
4

ln2

(
~q 2
1

q2

)
.

(3.30)
For the integral J the representation of Appendix A gives:

1
π
=J(~q 2

1 ,−q2−i0; ~q ′ 21 ) = 2ψ′(1)+
1
2

ln
(

1− a

a

)
ln(a(1−a))+Li2(a)−Li2(1−a)

−2Li2

( −a

1− a

)
+ 2

∫ a

0

dx

x(1− x)
ln

(
1− x

a
+

x(1− x)~q ′ 21

q2

)
. (3.31)

The integral terms in (3.31) give dilogarithms with rather complicated argu-
ments:

∫ a

0

dx

x(1− x)
ln

(
1− x

a
+

x(1− x)~q ′ 21

q2

)
= −2Li2

(
κ+ − ~q ′ 21

q2 + ~q 2
1

)

−2Li2

(
κ− − ~q ′ 21

q2 + ~q 2
1

)
− Li2

(
~q ′ 21

κ+

)
+ Li2

(
~q 2
1

κ+

)
+ ln

(
κ+ − ~q ′ 21

q2

)
ln

(
κ+

κ−

)

+
1
2

ln2

(
κ+

q2

)
− ln

(
κ+

q2

)
ln

(
~q 2
1 ~q ′ 21

(q2)2

)
− 2 ln2

(
q2 + ~q 2

1

q2

)

+2 ln
(

q2 + ~q 2
1

q2

)
ln

(
~q 2
1 ~q ′ 21

(q2)2

)
− 1

2
ln2

(
~q 2
1

q2

)
, (3.32)

where
κ± =

1
2

(
q2 + ~q 2

1 + ~q ′ 21 ±
√

(q2 + ~q 2
1 + ~q ′ 21 )2 − 4~q 2

1 ~q ′ 21

)
. (3.33)

But their sum with the terms (~q1 ↔ ~q ′1), with account of (C.12), drastically
simplifies:
∫ a

0

dx

x(1− x)
ln

(
1− x

a
+

x(1− x)~q ′ 21

q2

)
+(~q 2

1 ↔ ~q ′ 21 ) = 2Li2 (1− a) (3.34)

−1
2

ln
(

κ−

q2

)
ln

(
κ+

q2

)
− 2ψ′(1) + ln2(a)− 1

2
ln2

(
1− a

a

)
+ (~q 2

1 ↔ ~q ′ 21 ) .
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Using this relation and the identity

Li2(a) + 3Li2(1− a)− 2Li2

( −a

1− a

)

= 3ψ′(1) + ln
(

1− a

a

)
ln

(
1− a

a2

)
− 2 ln2(a) , (3.35)

which one can easily check comparing both sides of the identity at a = 0 and
their derivatives with respect to a, we obtain from (3.31)

1
π
=J(~q 2

1 ,−q2 − i0; ~q ′ 21 ) + (~q 2
1 ↔ ~q ′ 21 )

= − ln
(

κ−

q2

)
ln

(
κ+

q2

)
+

1
2

ln2

(
~q 2
1

q2

)
+ ψ′(1) + (~q 2

1 ↔ ~q ′ 21 ) . (3.36)

The discontinuity of the term with K3 in (2.24) can be calculated using
the representations obtained in Appendix B. But it seems that the easiest
way to find it is to rewrite the integral with K3 in (2.24) in the Minkowski
space and to take the discontinuity according to Cutkosky rules. This way is
described in Appendix C. In any case, the result is

=A

π
= −3

2
ln

(
κ−

q2

)
ln

(
κ+

q2

)
+

1
4

ln2

(
~q 2
1 ~q ′ 21

(q2)2

)
+

1
2

ln
(

~q 2
1

q2

)
ln

(
~q ′ 21

q2

)
.

(3.37)
Here A is the analytic continuation (see (C.2)) of the term with K3 in the
bootstrap relation (2.24).

The relation imposed by (2.24) on the imaginary parts is:
{[
−1

8
ln2

(
~q 2
1

q2

)
+

5π2

24
− 1

2
ln

(
~q 2
1

q2

)
ln

(
~q ′ 21

q2

)
− 1

2
1
π
=I(~q 2

1 ,−q2 − i0; ~q ′ 21 )

+
1
2

1
π
=I(−q2 − i0, ~q 2

1 ; ~q ′ 21 )− 3
4

1
π
=J(~q 2

1 ,−q2 − i0; ~q ′ 21 )
]

+
[
~q 2
1 ↔ ~q ′ 21

]}
+
=A

π
= 0. (3.38)

Using (3.35), (3.36) and (3.37) it is easy to see that this relation is satisfied.
Now in order to complete the proof of fulfillment of the bootstrap condi-

tion it is sufficient to prove that it is satisfied in the limit ~q 2 À ~q 2
1 , ~q 2 À ~q ′ 21 .

12



From the expressions for the integrals I and J obtained in Appendix A we
obtain in this limit

I(~q 2
1 , ~q 2; ~q ′ 21 ) ' −ζ(2) ln

(
~q 2

~q 2
1

)
+ 2ζ(3) , (3.39)

I(~q 2, ~q 2
1 ; ~q ′ 21 ) ' −1

6
ln3

(
~q 2

~q 2
1

)
− ζ(2) ln

(
~q 2

~q 2
1

)
+ 2ζ(3) , (3.40)

and

J(~q 2
1 , ~q 2; ~q ′ 21 ) ' −1

6
ln3

(
~q 2

~q 2
1

)
− 2ζ(2) ln

(
~q 2

~q 2
1

)
+ 4ζ(3) , (3.41)

where ζ(n) is the Riemann zeta-function, ζ(2) = ψ′(1) = π2/6 , 2ζ(3) =
−ψ′′(1).

The value of the contribution of the term with K3 in this limit is found
in Appendix B:

1
π

∫
d~q2

~q 2
2 ~q ′ 22

K3 ' −1
4

ln
(

~q 2

~q ′ 21

)
ln

(
~q 2

~q 2
1

) (
ln

(
~q 2

~q 2
1

)
+ ln

(
~q 2

~q ′ 21

))

−3ζ(2)
2

(
ln

(
~q 2

~q 2
1

)
+ ln

(
~q 2

~q ′ 21

))
− 6ζ(3) . (3.42)

Putting the expressions (3.39)-(3.42) into the equation (2.24) one can easily
see that it is satisfied in the limit of large ~q 2.

This completes the proof of the strong bootstrap condition for the NLO
color octet kernel.

4 Discussion
The BFKL approach to the description of high energy processes is based on
the gluon Reggeization. More precisely, in the derivation of the representa-
tion for scattering amplitudes and of the BFKL equation, the Reggeized form
for the amplitudes with the gluon quantum numbers in the t-channels was
assumed. This assumption was proved in the leading logarithmic approxi-
mation [14], but still remains a hypothesis beyond this approximation. Now
a lot of results in the BFKL approach are obtained in the next-to-leading
order for the kernel of the BFKL equation [2, 3, 4, 5, 6] and the impact
factors [7, 8, 9, 10, 11, 12, 13]. These results are widely discussed in the
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literature. Therefore it is very desirable to prove the hypothesis of the gluon
Reggeization in the NLO or, at least, to check it as carefully as possible.

The self-consistency of the hypothesis demands the fulfillment of the boot-
strap conditions arising from the requirement that amplitudes obtained in
the BFKL approach by use of the BFKL equation in the antisymmetric color
octet state must have the Reggeized form which was assumed in the deriva-
tion. Now the fulfillment of the NLO bootstrap conditions for the elastic
scattering amplitudes [4] is proved [5, 7, 8, 15].

The bootstrap conditions must be satisfied for all amplitudes involved in
the derivation of the BFKL equation, i.e. for the amplitudes of production of
any number of particles in the multi-Regge and quasi multi-Regge kinemat-
ics. The so called strong bootstrap conditions suggested without derivation
in [18, 19] appear among them [17]. Although the conditions for the elastic
amplitudes are already very restrictive, so that their fulfillment can convince
about the correctness of the hypothesis of Reggeization, the conditions for
inelastic amplitudes are even stronger.

In this paper we have completed the proof of the strong bootstrap con-
ditions. The bootstrap condition proved to be satisfied is so strong that
without the Reggeization its fulfillment would seem a miracle. Although the
Reggeized form for inelastic amplitudes implies another set of conditions [17],
which are not yet proved, the fulfillment of the strong bootstrap heavily sup-
ports the conclusion that also these conditions are satisfied. Moreover, the
fulfillment of these conditions has to give the possibility to prove the hypoth-
esis of gluon Reggeization in the NLO.

Acknowledgment: V.S.F. thanks the Alexander von Humboldt foundation
for the research award, the Universität Hamburg and DESY for their warm
hospitality while a part of this work was done. F. Caporale (Università
della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di
Cosenza) participated to the early stages of the present work.
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A Appendix
In this Appendix we give some details about the calculation of the integral
in the L.H.S. of Eq. (2.18) and of the integrals I(~p 2

1 , ~p 2
2 ; (~p1 − ~p2)2) and

J(~p 2
1 , ~p 2

2 ; (~p1 − ~p2)2) defined in (2.25) and (2.26), respectively. The first of
these three integrals will be calculated analytically in the ε-expansion. The
other two will instead be presented in terms of one-dimensional integrals,
since they cannot be expressed in terms of elementary functions, and their
expressions in terms of known dilogarithms would be long and cumbersome.

A necessary ingredient in all three cases will be the generalized Feynman
parametrization, which we recall here for the convenience:

1
aα1
1 . . . aαn

n
=

Γ(
∑

i αi)
Γ(α1). . . Γ(αn)

∫ 1

0

. . .

∫ 1

0

dx1 . . . dxn δ(1−∑
i xi) xα1−1

1 . . . xαn−1
n(∑

i aixi

)P
i αi

.

(A.1)
Let us start from the integral in (2.18), related to the contribution of K1

to the bootstrap condition (2.17),

IK1 ≡
(~q 2)−2ε

π1+εΓ(1− ε)

∫
dD−2q2

~q 2
2 ~q ′ 22

fB
(~k2)ε

ε

=
(~q 2)−2ε

π1+εΓ(1− ε)

∫
dD−2q2

~q 2
2 ~q ′ 22

(
~q 2
1 ~q ′ 22 + ~q 2

2 ~q ′ 21

(~q1 − ~q2)2
− ~q 2

)
[(~q1 − ~q2)2]ε

ε
, (A.2)

where the definition of fB , given in (1.6), and ~k = ~q1 − ~q2 have been used.
We need to calculate IK1 with accuracy up to order ε0. First of all, IK1 can
be split into the sum of three contributions:

IK1 =
1

π1+εΓ(1− ε)
(~q 2)−2ε ~q 2

1

ε

∫
dD−2q2

~q 2
2 [(~q2 − ~q1)2]1−ε

+
1

π1+εΓ(1− ε)
(~q 2)−2ε ~q ′ 21

ε

∫
dD−2q2

~q ′ 22 [(~q2 − ~q1)2]1−ε

− 1
π1+εΓ(1− ε)

(~q 2)1−2ε

ε

∫
dD−2q2

~q 2
2 ~q ′ 22 [(~q2 − ~q1)2]−ε

(A.3)

≡ I
(a)
K1

(~q1) + I
(a)
K1

(~q ′1)− I
(b)
K1

,

with obvious notation. The integral I
(a)
K1

(~q1) can by easily calculated for
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arbitrary ε through Feynman parametrization and by use of
∫

dD−2k

(2π)D−1

1

(~k 2 − 2~k · ~p + m2)α
=

2
(4π)D/2

Γ(α + 1−D/2)
Γ(α)

1
(m2 − ~p 2)α+1−D/2

, (A.4)

giving
I
(a)
K1

(~q1) =
1
ε

Γ(1− 2ε)
Γ2(1− ε)

Γ(ε)Γ(2ε)
Γ(3ε)

(
~q 2
1

~q 2

)2ε

. (A.5)

The integral in I
(b)
K1

is less trivial than the previous one, since it contains
three factors in the denominator. Moreover, in the expression for I

(b)
K1

the
parameter ε appears both explicitly (in the integrand and in the pre-factors)
and implicitly, through D, in the integration measure over ~q2. This cre-
ates a problem: for the convergence of the integral over q2 the real part of
ε = (D−4)/2 has to be positive, whereas for the convergence of the integrals
in the Feynman parametrization (A.1) with one of α-s equal to −ε we have
to suppose that ε has a negative real part. To escape this contradiction let
us consider

I
(b)
K1

=
1

π1+εΓ(1− ε)
(~q 2)1−2ε

ε

∫
dD−2q2

~q 2
2 ~q ′ 22 [(~q2 − ~q1)2]−ε1

.

Since this integral is an analytic function of ε1 in the vicinity of ε1 = 0, we
will calculate it supposing that the real part of ε1 is negative (and keeping
|ε1| ∼ ε) and put ε1 = ε after this.

The first step for the calculation of this integral is to apply the generalized
Feynman parametrization (A.1) and to perform the integration over ~q2 by use
of (A.4); this gives

I
(b)
K1

= − Γ(1− ε1 − ε)
Γ(1− ε1)Γ(1− ε)

ε1
ε

(~q 2)1−2ε

×
∫ 1

0

dx

∫ 1

0

dy
(1− y)ε+ε1 y−1−ε1

[y(x~q ′ 21 + (1− x)~q 2
1 ) + x(1− x)(1− y)~q 2]1−ε−ε1

= − Γ(1− ε1 − ε)
Γ(1− ε1)Γ(1− ε)

ε1
ε

(~q 2)1−2ε

×
[∫ 1

0

dx

∫ 1

0

dy
[(1− y)ε+ε1 − (1− y)−ε] y−1−ε1

[y(x~q ′ 21 + (1− x)~q 2
1 ) + x(1− x)(1− y)~q 2]1−ε−ε1

+
∫ 1

0

dx

∫ 1

0

dy
(1− y)−ε y−1−ε1

[y(x~q ′ 21 + (1− x)~q 2
1 ) + x(1− x)(1− y)~q 2]1−ε−ε1

]
. (A.6)
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The last equality was done for convenience because the first integral in square
brackets is O(ε) and can be neglected, while in the second one, the integra-
tion over y can be easily done by using backwards the Feynman parametriza-
tion (A.1):

∫ 1

0

dx

∫ 1

0

dy
(1− y)−ε y−1−ε1

[y(x~q ′ 21 + (1− x)~q 2
1 ) + x(1− x)(1− y)~q 2]1−ε−ε1

= − 1
ε1

Γ(1− ε1)Γ(1− ε)
Γ(1− ε− ε1)

∫ 1

0

dx
[x~q ′ 21 + (1− x)~q 2

1 ]ε1

[x(1− x)~q 2]1−ε
.

So, replacing back ε1 with ε, we can write with O(ε0) accuracy

I
(b)
K1

=
(~q 2)1−2ε

ε

∫ 1

0

dx
[x~q ′ 21 + (1− x)~q 2

1 ]ε

[x(1− x)~q 2]1−ε
. (A.7)

The one-dimensional integral in the previous expression is needed up to O(ε)
and its calculation can be performed by splitting the integration region into
three parts, (i) 0 < x < δ, (ii) δ < x < 1− δ and (iii) 1− δ < x < 1, and by
calculating the three resulting integrals in the limit δ → 0. This can be done
without any difficulty and leads finally to

I
(b)
K1

=
1
ε

{
1
ε

[(
~q 2
1

~q 2

)ε

+
(

~q ′ 21

~q 2

)ε]
+ ε

(
1
2

ln2 ~q 2
1

~q ′ 21

− 2ψ′(1)
)}

+O(ε) . (A.8)

Putting the results of (A.5) and (A.8) into (A.3), we obtain, with O(ε0)
accuracy,

IK1 =
1
ε2

[
1 + 2ε ln

(
~q 2
1 ~q ′ 21

(~q 2)2

)

+ε2
(

2 ln2

(
~q 2
1

~q 2

)
+ 2 ln2

(
~q ′ 21

~q 2

)
+ ln

(
~q 2
1

~q 2

)
ln

(
~q ′ 21

~q 2

)
− ψ′(1)

)]
. (A.9)

Let us consider now the integral I(~p 2
1 , ~p 2

2 ; (~p1 − ~p2)2) defined in (2.25):

I(~p 2
1 , ~p 2

2 ; (~p1 − ~p2)2) =
(~p1 − ~p2)2

π

∫
d~p

ln(~p 2
2 /~p 2) ln((~p1 − ~p2)2/(~p− ~p2)2)

(~p− ~p1)2(~p− ~p2)2

=
1
π

∫
d~k

ln(~k 2
2 /~k 2) ln(1/(~k − ~k2)2)

(~k − ~k1)2(~k − ~k2)2
≡ Ĩ(~k 2

1 ,~k 2
2 ) ,

(A.10)
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where we have performed the change of integration variable

~p −→ |~p1 − ~p2|~k
and defined

~k1 ≡ ~p1

|~p1 − ~p2| , ~k2 ≡ ~p2

|~p1 − ~p2| ,

(
(~k1 − ~k2)2 = 1

)
. (A.11)

Although Ĩ(~k 2
1 ,~k 2

2 ) is convergent, we introduce nevertheless dimensional reg-
ularization, since divergences will appear in intermediate steps of the calcu-
lation. We will consider therefore the integral

Ĩ(~k 2
1 ,~k 2

2 ) =
1

π1+εΓ(1− ε)

∫
dD−2k

ln(~k 2
2 /~k 2) ln(1/(~k − ~k2)2)

(~k − ~k1)2(~k − ~k2)2
, (A.12)

and keep only terms up to O(ε0). First of all, we rewrite Ĩ in the following
form:

Ĩ(~k 2
1 ,~k 2

2 ) =
1

π1+εΓ(1− ε)
∂

∂α

∂

∂β
(∫

dD−2k
(~k 2

2 )β

(~k − ~k1)2[(~k − ~k2)2]1+α(~k 2)β

)

α=0, β=0

. (A.13)

Then, after Feynman parametrization and integration over ~k, we obtain

Ĩ(~k 2
1 ,~k 2

2 ) =
1

Γ(1− ε)
∂

∂α

∂

∂β

(
Γ(1 + α + β − ε)
Γ(1 + α)Γ(1 + β)

β

×
∫ 1

0

dx

∫ 1

0

dy
yε

1− y

(
1− x

Dy

)α
(

(1− y)~k 2
2

yDy

)β

Dε−1
y




α=0, β=0

=
1

Γ(1− ε)
∂

∂β


Γ(1 + β − ε)

Γ(1 + β)
β

∫ 1

0

dx

∫ 1

0

dy
yε

1− y

(
(1− y)~k 2

2

yDy

)β

Dε−1
y

×
[
ψ(1 + β − ε)− ψ(1)− ln

(
Dy

1− x

)])

β=0

, (A.14)

where Dy ≡ (1− y)(x~k 2
1 + (1− x)~k 2

2 ) + yx(1− x). Using the property
∫ 1

0

dy(1− y)β−1f(y) =
f(1)
β

+
∫ 1

0

dy(1− y)β−1[f(y)− f(1)]
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and performing the derivative with respect to β, we arrive at

Ĩ(~k 2
1 ,~k 2

2 ) =
∫ 1

0

dx

{(
ψ(1− ε)− ψ(1) + ln

(
~k 2

2

D1

))

×
(

ψ(1− ε)− ψ(1)− ln
(

D1

1− x

))
Dε−1

1 + ψ′(1− ε)Dε−1
1

+
∫ 1

0

dy

1− y

[(
ψ(1− ε)− ψ(1)

)(
yεDε−1

y −Dε−1
1

)
(A.15)

− ln
(

Dy

1− x

)
yεDε−1

y + ln
(

D1

1− x

)
Dε−1

1

]}
,

where D1 ≡ x(1−x). The one-dimensional integral in the previous expression
can be easily calculated and gives

Ĩ1 =
Γ2(ε)
Γ(2ε)

[(
ψ(1− ε)− ψ(1)− ψ(ε) + ψ(2ε)

)(
ψ(1− ε)− ψ(1)

−2(ψ(ε)− ψ(2ε)) + ln~k 2
2

)
+ ψ′(ε)− 2ψ′(2ε) + ψ′(1− ε)

]
. (A.16)

For the two-dimensional integral in (A.15),

Ĩ2 =
∫ 1

0

dx

∫ 1

0

dy

1− y

[(
ψ(1− ε)− ψ(1)

)(
yεDε−1

y −Dε−1
1

)

− ln
(

Dy

1− x

)
yεDε−1

y + ln
(

D1

1− x

)
Dε−1

1

]}
, (A.17)

it is convenient to separate the integration region over x into three parts, (i)
0 < x < δ, (ii) δ < x < 1− δ, (iii) 1− δ < x < 1, and to calculate the three
corresponding integrals in the limit δ → 0. In the integration region (i) it is
possible to make the approximations Dy ' (1− y)~k 2

2 + x and D1 ' x and a
straightforward calculation leads to the following result, with accuracy up to
O(ε0):

Ĩ
(i)
2 ' − 2

ε3
− 1

3
ln3 δ − ψ′(1)

(
ln δ − 1

ε

)
+ ln~k 2

2

(
− 1

ε2
+

1
2

ln2 δ + ψ′(1)
)

.

(A.18)
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Similarly, in the integration region (iii) it is possible to make the approxima-
tions Dy ' (1− y)~k 2

2 + 1− x and D1 ' 1− x and to obtain, with accuracy
up to O(ε0):

Ĩ
(iii)
2 ' ψ′(1) ln

(
~k 2

1

δ

)
+

1
2
ψ′′(1) . (A.19)

Finally, in the integration region (ii) ε can be put equal to zero, since there
are no divergences, and we obtain

Ĩ
(ii)
2 ' ln δ

[
1
2

ln2

(
~k 2

1

δ

)
+

1
2

ln2

(
~k 2

2

δ

)
+ 2ψ′(1)

]

−1
2

∫ 1−δ

δ

dx

D1

[
ln2 x− ln2

(
D0

1− x

)]

+
∫ 1−δ

δ

dx ln
(

x

1− x

)
ln

(
D1

D0

) [
1− 2x

D1
+

~k 2
1 − ~k 2

2 − (1− 2x)
D1 −D0

]

=
1
3

ln3 δ − 1
2

ln2 δ ln~k 2
2 + 2ψ′(1) ln δ + 2ψ′′(1)

+
1
2

∫ 1

0

dx

x
ln2

(
D0

~k 2
2

)
+

1
2

∫ 1

0

dx

1− x
ln2

(
D0

~k 2
1

)

+ ln~k 2
2

∫ 1

0

dx

x
ln

(
D0

~k 2
2

)
+ ln~k 2

1

∫ 1

0

dx

1− x
ln

(
D0

~k 2
1

)

+
∫ 1

0

dx

1− x
ln x ln D0−

∫ 1

0

dx

x
ln x ln

(
D0

~k 2
2

)
−2

∫ 1

0

dx

1− x
ln(1−x) ln

(
D0

~k 2
1

)

−
∫ 1

0

dx ln
(

x

1− x

)
ln

(
D1

D0

) ~k 2
1 − ~k 2

2 − (1− 2x)
D0 −D1

, (A.20)

where D0 ≡ x~k 2
1 + (1− x)~k 2

2 and we have used
∫ 1

0

dx

x
ln(1−x) = −Li2(1) = −ψ′(1) ,

∫ 1

0

dx

x
ln2(1−x) = 2Li3(1) = −ψ′′(1).

Summing up the results in (A.16) and (A.18)-(A.20) to obtain Ĩ(~k 2
1 ,~k 2

2 ) with
O(ε0) accuracy, it is easy to check that all δ-dependent terms disappear and
that divergences cancel each other. The final result is the following:
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I(~p 2
1 , ~p 2

2 ; (~p1 − ~p2)2) = Ĩ(~k 2
1 ,~k 2

2 )

= ψ′(1) ln~k 2
1 +

[
one-dimensional integrals in (A.20)

]
, (A.21)

with ~k1 and ~k2 defined as in (A.11) and D1 ≡ x(1 − x) and D0 ≡
x~k 2

1 + (1− x)~k 2
2 .

The third integral we should consider in this Appendix is J(~p 2
1 , ~p 2

2 ;
(~p1 − ~p2)2) defined in (2.26). Its calculation can be carried on following
the same strategy as for I(~p 2

1 , ~p 2
2 ; (~p1 − ~p2)2). We will not present here the

calculation, but merely show the final result, which reads

J(~p 2
1 , ~p 2

2 ; (~p1 − ~p2)2) =
(~p1 − ~p2)2

π

∫
d~p

ln(~p 2
1 /~p 2) ln(~p 2

2 /~p 2)
(~p− ~p1)2(~p− ~p2)2

=
1
π

∫
d~k

ln(~k 2
1 /~k 2) ln(~k 2

2 /~k 2)

(~k − ~k1)2(~k − ~k2)2

= ln

(
~k 2

1

~k 2
2

)[∫ 1

0

dx

1− x
ln

(
D0

~k 2
1

)
−

∫ 1

0

dx

x
ln

(
D0

~k 2
2

)]

+
∫ 1

0

dx

x
ln2

(
D0

~k 2
2

)
+

∫ 1

0

dx

1− x
ln2

(
D0

~k 2
1

)

−2
∫ 1

0

dx

D1 −D0
ln

(
x

1− x

)
ln

(
D1

D0

) [
(1− 2x)− D1(~k 2

1 − ~k 2
2 )

D0

]
,

with the same notations as the previous calculation, i.e. with ~k1 and ~k2

defined as in (A.11) and D1 ≡ x(1− x) and D0 ≡ x~k 2
1 + (1− x)~k 2

2 .

B Appendix
It is interesting to note (and can be useful for applications) that the integral
I entering the contribution K3 to the kernel is a totally symmetric function
of the variables ~q 2

1 , ~q 2
2 and ~k 2. It is obvious from the representation

I =
∫ 1

0

∫ 1

0

∫ 1

0

dx1dx2dx3δ(1− x1 − x2 − x3)

(~q 2
1 x1 + ~q 2

2 x2 + ~k 2x3)(x1x2 + x1x3 + x2x3)
, (B.1)
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which also can be useful in applications. One can easily check that this
representation reproduces the original form, performing the integration over
x3, then making the change of variables

x =
x2

x1 + x2
, z =

x1x2

x3(1− x3) + x1x2
=

x1x2

x1(1− x1) + x2(1− x2)− x1x2
;

x1 =
(1− x)z

z + x(1− x)(1− z)
, x2 =

xz

z + x(1− x)(1− z)
,

x3 =
x(1− x)(1− z)

z + x(1− x)(1− z)
, (B.2)

with the Jacobian

J

(
x1, x2

x, z

)
=

zx(1− x)
(z + x(1− x)(1− z))3

, (B.3)

and integrating over z.
Another useful representation is

I =
∫ 1

0

dx

∫ ∞

1

dt

t

1

~q 2
1 x(1− x)(t− 1) + ~q 2

2 (1− x) + ~k 2x
. (B.4)

Using this representation it is possible in a relatively simple way to express the
contribution with K3 in the bootstrap condition in terms of a one-dimensional
integral. Let us divide this contribution into several pieces:

A ≡ 1
π

∫
d2q2

~q 2
2 ~q ′ 22

K3 = (A1 + A2 + A3) + (~q1 ↔ ~q ′1) , (B.5)

where

A1 =
1
2π

∫
d2q2

~q 2
2 ~q ′ 22

[
~q 2(~k 2 − ~q 2

1 ) + ~q 2
2 (~q 2

1 − ~q ′ 21 )
]

I , (B.6)

A2 =
1
2π

∫
d2q2

~k 2~q ′ 22

[
~q ′ 21 (~q 2

2 − ~q 2
1 ) + ~k 2(~q 2

1 − ~q 2)
]

I , (B.7)

A3 =
1
2π

∫
d2q2

~q 2
2
~k 2

~q 2
1 (~q 2

1 − ~k 2 − ~q 2
2 ) I . (B.8)

It is easy to see, with account of the relations ~k = ~q1−~q2 and ~q ′1,2 = ~q−~q1,2 ,
that

A2 = A1(~q ′1 ↔ −~q) , A3 = −A1(~q ′1 = 0) , (B.9)
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so that we need to calculate only A1.
Let us write the Feynman parametrization in the form:

1

~q 2
2 ~q ′ 22 (~q 2

1 x(1− x)(t− 1) + ~q 2
2 (1− x) + ~k 2x)

= 2
∫ x

0

dz

x

∫ 1

0

dv(1− v)

(B.10)

× 1

(~q 2
2 (1− v)(1− z/x) + ~q ′ 22 v + (~q 2

1 x(1− x)(t− 1) + ~q 2
2 (1− x) + ~k 2x)(1− v)z/x)3

.

Then, after the integration over ~q2 (of course, with account of the relation
~k = ~q1 − ~q2), the subsequent integrations over v and t are quite simple and
we arrive at

A1 =
1
2

∫ 1

0

dx

x

∫ x

0

dz

(~q 2 − ~q 2
1 z)(1− z) + ~q ′ 21 z

[
(
(~q 2 + ~q 2

1 − ~q ′ 21 )x− 2~q 2
)

×
(

1
x− z

ln
(

1− z

1− x

)
− ~q 2

1 z

~q 2(1− z)− ~q 2
1 z(1− x) + ~q ′ 21 z

(B.11)

× ln
(

~q 2(1− z) + ~q ′ 21 z

~q 2
1 z(1− x)

))
+(~q 2 + ~q 2

1 − ~q ′ 21 ) ln
(

~q 2(1− z) + ~q ′ 21 z

~q 2
1 z(1− z)

)]
.

The result of the further integration of the total integrand in any of the
variables x, z cannot be expressed in terms of elementary functions. But we
can perform the integration in such a way: integrate over x all terms except
those which contain ln(1 − x); these terms must be integrated over z first.
The terms with the denominator x− z must be regularized (for example, we
can perform the integration over the region z ≥ 0, x ≤ 1, x − z ≥ δ → 0.
The result is

A1 =
1
2

∫ 1

0

dz

~q 2(1− z) + ~q ′ 21 z − ~q 2
1 z(1− z)

[(
2~q 2~q 2

1 z

~q 2(1− z) + ~q ′ 21 z − ~q 2
1 z

+~q 2 + ~q 2
1 − ~q ′ 21

)
ln

(
~q 2(1− z) + ~q ′ 21 z − ~q 2

1 z(1− z)
z(~q 2(1− z) + ~q ′ 21 z)

)
ln

(
~q 2(1− z) + ~q ′ 21 z

~q 2
1 z

)

+
(

2~q 2

z
− ~q 2 − ~q 2

1 + ~q ′ 21

)
ln(1− z) ln

(
~q 2(1− z) + ~q ′ 21 z − ~q 2

1 z(1− z)
~q 2(1− z)

)]
.

(B.12)
It is rather easy to obtain from this representation exact value of A3.

Putting ~q 2 = ~q 2
1 , ~q ′ 21 = 0 we have

A3 = −2ζ(3) . (B.13)
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It is not difficult as well to calculate the asymptotic behavior of A1 and A2

at ~q 2 À ~q 2
1 , ~q 2 À ~q ′ 21 . We obtain

A1 ' −ζ(2)
2

ln
(

~q 2
1

~q ′ 21

)
, (B.14)

A2 ' −1
4

ln2

(
~q 2

~q ′ 21

)
ln

(
~q 2

~q 2
1

)
− ζ(2)

2

(
ln

(
~q 2

~q 2
1

)
+ 2 ln

(
~q 2

~q ′ 21

))
− ζ(3) ,

(B.15)
so that

A ' −1
4

ln
(

~q 2

~q ′ 21

)
ln

(
~q 2

~q 2
1

)(
ln

(
~q 2

~q 2
1

)
+ ln

(
~q 2

~q ′ 21

))

−3ζ(2)
2

(
ln

(
~q 2

~q 2
1

)
+ ln

(
~q 2

~q ′ 21

))
− 6ζ(3) . (B.16)

For the calculation of the discontinuity of A at q2 = −~q 2 ≥ 0 the last
representation of A3 is not very convenient, since its analytical properties are
not simple. In fact, it is more convenient to do one step back and to use the
representation in the form of the two-dimensional integral.

C Appendix
Another way of calculation of the discontinuity of A at q2 = −~q 2 ≥ 0 is to
rewrite the integral over q2 in Minkowski space and to use the Cutkosky rules
for the calculation of the discontinuity. Let us use the representation

I =
∫ 1

0

dx

∫ ∞

0

dz
1

z − k2x(1− x)− i0
1

z − q2
1(1− x)− q2

2x− i0
, (C.1)

where k, q1, q2 are considered as vectors in the two-dimensional Minkowski
space, i.e. k2 = −~k 2, q2

1 = −~q 2
1 , q2

2 = −~q 2
2 . This representation can be used

for arbitrary values of k2, q2
1 , q2

2 . Analogous representation can be written
for I(qi ↔ q′i). It permits to rewrite the integral with K3 in the bootstrap
relation in the form

A =
1
iπ

∫
d2q2

(q 2
2 + i0)((q − q2)2 + i0)

K3 , (C.2)

where now
d2q2 = dq

(0)
2 dq

(1)
2 , q 2

2 = (q(0)
2 )2 − (q(1)

2 )2 , (C.3)
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etc., which determines A as function of q2
1 , q ′ 21 and q2 for arbitrary values

of these variables. For q2
1 ≡ −~q 2

1 ≤ 0, q ′ 21 ≡ −~q ′ 21 ≤ 0 and q2 ≡ −~q 2 ≤ 0
it is just the function entering (2.24), that is easily seen by making the Wick
rotation of the contour of integration over q

(0)
2 . We are interested in the

region q2
1 ≤ 0, q ′ 21 ≤ 0 and q2 ≥ 0. According to the Cutkosky rules, the

discontinuity of A related to the terms with I is determined by the two cuts,
with the contributions obtained by the substitutions:

1
(q 2

2 + i0)((q − q2)2 + i0)
→ (−2πi)2δ(q 2

2 )δ((q − q2)2) (C.4)

and
1

(z − q2
1(1− x)− q2

2x− i0)((q − q2)2 + i0)
→

−(−2πi)2δ(z − q2
1(1− x)− q2

2x)δ((q − q2)2) . (C.5)

Using these rules and removing the δ-functions by the integration over q2

(the most appropriate system for this is q(1) = 0, q2 = (q(0))2), we obtain

=A

π
= f1 + f2 + (q2

1 ↔ q ′ 21 ) , (C.6)

where the contributions f1 and f2 come from the first and second cuts, re-
spectively. We obtain for them

f1 =
1
2

∫ 1

0

dx

∫ ∞

0

dz
~q 2
1 − κ+

(z + κ+x(1− x))(z + ~q 2
1 (1− x))

+ (κ+ → κ−) , (C.7)

where κ± are the values of −k2 on the mass shell q 2
2 = 0, (q − q2)2 = 0,

related to the two possible solutions for q
(1)
2 :

κ± =
1
2

(
q2 + ~q 2

1 + ~q ′ 21 ±
√

(q2 + ~q 2
1 + ~q ′ 21 )2 − 4~q 2

1 ~q ′ 21

)
, (C.8)

and

f2 =
1
2

∫ 1

0

dx

∫ ∞

0

dz θ(q2x− ~q 2
1 (1− x)− z)

z + κ̃+x(1− x)

[
κ+ − ~q 2

1

z + ~q 2
1 (1− x)

+
κ+(q2 + ~q 2

1 )− ~q 2
1 ~q ′ 21

xq2κ̃+

]
+ (κ+ → κ−) , (C.9)
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where κ̃± are given by values of −k2 on the mass shell z−q2
1(1−x)−q2

2x = 0,
(q − q2)2 = 0, so that

κ̃± = κ±
(

1− z + ~q 2
1 (1− x)
q2x

)
+ ~q ′ 21

z + ~q 2
1 (1− x)
q2x

. (C.10)

The integration over z is quite elementary. Making subsequent integration
over x one has to pay attention that the contributions f1,2 are separately
divergent at x = 1. The cancellation of the divergent terms is done easily
and unambiguously. After that, a straightforward integration gives

=A

π
= Li2

(
κ+ − ~q ′ 21

q2 + ~q 2
1

)
+ Li2

(
κ− − ~q ′ 21

q2 + ~q 2
1

)
+ Li2

(
~q 2
1

q2 + ~q 2
1

)
− ζ(2)

+
1
8

ln2

(
κ+

q2

)
+

1
8

ln2

(
κ−

q2

)
+

1
2

ln
(

q2 + ~q 2
1

q2

)
ln

(
q2(q2 + ~q 2

1 )3

(~q 2
1 ~q ′ 21 )2

)

+
1
4

ln
(

~q 2
1

q2

)
ln

(
~q ′ 21

q2

)
+ (q2

1 ↔ q ′ 21 ) . (C.11)

This expression can be considerably simplified using the identity

Li2

(
κ+ − ~q ′ 21

q2 + ~q 2
1

)
+ Li2

(
κ− − ~q ′ 21

q2 + ~q 2
1

)
+

1
2

ln
(

κ−

q2

)
ln

(
κ+

q2

)
+ (q2

1 ↔ q ′ 21 )

= ζ(2)−Li2

(
~q 2
1

q2 + ~q 2
1

)
− 1

2
ln

(
q2 + ~q 2

1

q2

)
ln

(
q2(q2 + ~q 2

1 )3

(~q 2
1 ~q ′ 21 )2

)
+ (q2

1 ↔ q ′ 21 ) ,

(C.12)
which is not evident, of course, but can be proved, for example, considering
both sides of the identity as the functions of ~q 2

1 (evidently, taking into account
the dependence of κ± from ~q 2

1 ) and comparing their derivatives and their
limits at ~q 2

1 → 0. Using this identity we obtain finally

=A

π
= −3

2
ln

(
κ−

q2

)
ln

(
κ+

q2

)
+

1
4

ln2

(
~q 2
1 ~q ′ 21

(q2)2

)
+

1
2

ln
(

~q 2
1

q2

)
ln

(
~q ′ 21

q2

)
.

(C.13)
Of course, the same result follows from the representation of A obtained in
Appendix B.
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