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.

1 Introduction
One of important and widely applied properties of QCD is the Reggeiza-
tion of elementary particles. Contrary to QED, where only the electron
Reggeizes [1] while the photon does not [2], in QCD both quarks and gluons
are Reggeized [3], [4]. The gluon Reggeization is the base of the BFKL ap-
proach to the description of so-called high-energy semihard processes in QCD.
Such processes have two (hard) well separated energy scales so that one has
to sum large energy logarithms in all orders of perturbation theory. Derived
originally [5] in the Leading Logarithmic Approximation (LLA) the BFKL
equation is presently known up to the next-to-leading order accuracy [6] - [8].

Basing on the quark Reggeization instead of the gluon one, the BFKL-
like equation for amplitudes mediated by two (interacting) Reggeized quarks
in t- channel was derived in [4] in the LLA. This equation could be obviously
useful to study the high-energy behaviour of amplitudes with meson quantum
numbers in t- channel. However, the LLA has a big disadvantage related to
that no scale dependencies can be fixed there as it has been continuously
pointed before (see Refs. [6] - [8], for example). So, exactly as in the BFKL
case, a reliable theoretical description is impossible without knowledge of the
structure of the radiative corrections.

To study these radiative corrections, one has to know, in particular, the
interactions of Reggeized quarks with elementary particles in the Next-to-
leading Logarithmic Approximation (NLA). This paper is devoted to the
NLA calculation of quark-gluon-Reggeized quark effective vertex in QCD
with massive quarks. Let us note, that quite a lot of information about
Reggeized quarks in the NLA is already available in literature. Among this
there is the result of Ref. [9] for the same vertex we consider but in the
massless QCD case. Our calculation confirms the correctness of the Ref. [9].
The other important results are the two-loop Regge trajectory of the mass-
less Reggeized quark [10] and the quasi-multi-Regge amplitudes with quark
exchanges in crossing channels [11].
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Fig.1. Schematic representation of qq̄ → gg process.

In order to reach our aim we consider the one-loop amplitude qq̄ → gg
of the Fig. 1 with quark quantum numbers and positive signature in the
t- channel in the Regge kinematics

−u = −(pA − pB′)2 ≈ s = (pA + pB)2 → ∞ , t = q2 = (pA − pA′)2 − fixed .
(1.1)

Due to the quark Reggeization, the above amplitude A can be written as
follows [4]

−A = Γ̄B(q, s0)(� q −m)−1 1
2

[(−s
s0

)ω̂(q)

+
(−u
s0

)ω̂(q)
]

ΓA(q, s0) , (1.2)

with Γ̄B and ΓA being the quark-gluon-Reggeized quark (QGR) effective
interaction vertices which we are interested in here. The parameter s0 is
artificial and the amplitude (1.2) does not depend on it. The other notations
in the relation above are: m for the quark mass and ω̂(q) for the Reggeized
quark trajectory. In the LLA it looks

ω̂(1)(q) =
g2CF

2π
(� q −m)

∫
dD−2k⊥
(2π)D−2

� q⊥− � k⊥ +m

k2
⊥[(q − k)2⊥ −m2]

= −g2CF
Γ(1 − ε)
(4π)2+ε

(� q +m) � q
q2

(
m2 − q2

) ∫ 1

0

dx

[(1 − x) (m2 − xq2)]1−ε , (1.3)
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p = q + kk

Fig.2. Schematic representation of the t-channel quark-gluon intermediate
state.

where Γ(z) is the Euler gamma- function, CF is related to the standard
notation for the SU(N) colour group Casimir operator in the fundamental
representation

tata = CF I =
N2 − 1

2N
I , (1.4)

g is the gauge coupling constant and the integration is carried out over
(D−2)- dimensional vector orthogonal to the initial particle momenta plane.
Throughout all this note we use the dimensional regularization with the
space-time dimension D = 4 + 2ε.

To calculate the one-loop amplitude A (1.2) we follow the t- channel uni-
tarity approach developed in Ref. [12] which allows to considerably simplify
the problem. So, at the one-loop level we have to consider two t- channel
intermediate states: quark-gluon and quark ones. In the next section we
consider the former contribution.

2 The branch-point contribution
The quark-gluon t- channel discontinuity of the amplitude A is given by an
ordinary Cutkosky cut of the contributing diagrams as it is depictured in
the Fig. 2. After this cut we come to the consideration of the convolution
of two on-mass-shell Born amplitudes related to the upper (A) part of the
Fig. 2 and the lower one (B). Because of the on-mass-shellness and since
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the external gluons are physical there is the invariance of the A and B un-
der gauge transformations of the intermediate gluon’s polarization and one
is allowed to sum up over this polarization in an arbitrary gauge. We choose
the Feynman gauge to perform this sum, so that we use −gµν for the po-
larization tensor. Then, after this convolution one is allowed to perform the
loop integration with the complete propagators instead of the on-mass-shell
δ- functions. The amplitude obtained in this way has the same t- channel
singularities as the complete one that is enough to restore the correct Regge
asymptotics according to the conclusions of the Ref. [12]. So we have to
consider

A =
∫

dDp

i(2π)D

∑
(−)BA

(k2 + iδ) (p2 −m2 + iδ)
, k = p− q , (2.1)

where the convolution is performed on-mass-shell and the notations for rele-
vant momenta are given in the Fig. 2.

The amplitude A has a form

A = −ig2ū(p)
{(

tctA
′)

iA

[
� e(� q −m)−1 � e∗A′

− 2
s1

(
� e∗A′(epA′)+ � e(e∗A′k) + (� q −m)(ee∗A′)

)]

+
(
tA

′
tc

)
iA

[
(� q −m)

( � e∗A′ � e
u1 −m2

+
2(ee∗A′)
s1

)

+2 � e∗A′

(
(epA)
u1 −m2

+
(epA′)
s1

)
+ 2 � e(e∗A′k)

(
1

u1 −m2
+

1
s1

)]}
uA , (2.2)

and we have an analogous expression for the B. We introduce the notations
e, c (u(p), i) for the intermediate gluon (quark) spin wave function and
colour index respectively. Other notations for the external particles spin
wave functions are evident and for the external gluons we use the light-cone
gauges

(eA′pA′) = (eB′pB′) = (eA′pB′) = (eB′pA′) = 0 , (2.3)

which mean, in other words, that the final result in general gauges will be
given by the replacements

eA′ → eA′ − pA′(eA′pB′)
(pA′pB′)

, eB′ → eB′ − pB′(eB′pA′)
(pA′pB′)

. (2.4)
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We also introduce the intermediate invariants according to as follows

u1 = (k+pA)2 , s1 = (k−pA′)2 , u2 = (k−pB)2 , s2 = (k+pB′)2 . (2.5)

Looking at the expression of the Eq. (2.2) for the amplitude A, one can
realize that its convolution with the B is simple, but rather long, neverthe-
less. For this reason we explain simplifications we use on a relatively simple
example of the convolution of so-called “asymptotic” parts [12] of the A and
B which we choose in the form

Aas = −ig2
(
tctA

′)
iA
ū(p)

×
(
� e+ (� q −m)

[
(epA)
u1 −m2

− (epA′)
s1

])
(� q −m)−1 � e∗A′uA ,

Bas = −ig2
(
tB

′
tc

)
Bi
v̄B � e∗B′(� q −m)−1

×
(
� e∗ − (� q −m)

[
(e∗pB)
u2 −m2

− (e∗pB′)
s2

])
u(p) . (2.6)

This terminology “asymptotic” is because the amplitudes Aas and Bas give
the asymptotics of the complete amplitudes A and B in their Regge limits
|u1| ≈ |s1| � |t| and |u2| ≈ |s2| � |t|, respectively. They are invariant under
gauge transformations of the intermediate gluon’s polarization as well as the
complete amplitudes (let us remind that the prescription (2.4) is supposed in
the relations (2.6)).

The convolution of the asymptotic parts has a form∑
(−)BasAas = −g4CF

(
tB

′
tA

′)
BA

× v̄B

{
� e∗B′(� q −m)−1γµ(� p+m)γµ(� q −m)−1 � e∗A′

+ � e∗B′(� q −m)−1

[ � pA

u1 −m2
− � pA′

s1

]
(� p+m) � e∗A′

− � e∗B′(� p+m)
[ � pB

u2 −m2
− � pB′

s2

]
(� q −m)−1 � e∗A′

− � e∗B′(� p+m) � e∗A′
s

2

[
1

(u2 −m2)(u1 −m2)

+
1

s2s1
− 1

(u2 −m2)s1
− 1
s2(u1 −m2)

]}
uA . (2.7)
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When the first term in the curly brackets of the above relation is put into the
Eq. (2.1) as an integrand, the result of integration can be expressed through
the vector q only. Therefore, performing the projection we conclude that the
integration momentum p in this term can be replaced by

p→ q
m2 + q2

2q2
, (2.8)

where we have applied the on-mass-shellness of the intermediate particles
too. Therefore we obtain

� e∗B′(� q −m)−1γµ(� p+m)γµ(� q −m)−1 � e∗A′

= − � e∗B′(� q−m)−1

(
(1 + ε)(� q −m)

� q
q2

(� q −m) − 2m
)

(� q−m)−1 � e∗A′ (2.9)

for the first term of the Eq. (2.7). Analogously, the integration momentum
in the numerator of the second term of the Eq. (2.7) is expressed in terms of
the vectors pA′ and q (see Eq. (2.5)). The projection gives

p→ 1
m2 − q2

[
(m2 − q2)(m2 + q2) − 2(u1 −m2)q2

m2 − q2
pA′ + (u1 −m2)q

]
,

(2.10)
and this term gets a form

� e∗B′(� q −m)−1

[ � pA

u1 −m2
− � pA′

s1

]
(� p+m) � e∗A′

= � e∗B′(� q −m)−1

{
(2e∗A′q)

[(
2m2 � q
m2 − q2

+m− � q
)

× 1
u1 −m2

+
� q −m

s1
− 2m2 � q

(m2 − q2)2

]

−
[
q2 + 2m3(� q −m)−1

m2 − q2
+

(
m � q +m2 − q2 − 2mq2(� q −m)−1

) 1
u1 −m2

]
� e∗A′

}
.

(2.11)

The consideration of the third term in the curly brackets of the Eq. (2.7)
repeats the previous one with evident changes. The corresponding relations
are
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p→ 1
m2 − q2

[
− (m2 − q2)(m2 + q2) − 2(u2 −m2)q2

m2 − q2
pB′ + (u2 −m2)q

]
,

� e∗B′(� p+m)
[ � pB

u2 −m2
− � pB′

s2

]
(� q −m)−1 � e∗A′

= −
{

(2e∗B′q)
[(

2m2 � q
m2 − q2

+m− � q
)

1
u2 −m2

+
� q −m

s2
− 2m2 � q

(m2 − q2)2

]
− � e∗B′

[
q2 + 2m3(� q −m)−1

m2 − q2

+
(
m � q +m2 − q2 − 2mq2(� q −m)−1

) 1
u2 −m2

]}
(� q −m)−1 � e∗A′ . (2.12)

Finally, the integration momentum p in the numerator of the last term of
the Eq. (2.7) is expressed through the complete basis of the problem pA′ , pB′

and q

p→≈ u1 −m2

s

(
m2 − q2

2q2
q + pB′

)
+
u2 −m2

s

(
m2 − q2

2q2
q − pA′

)
+
m2 + q2

2q2
q ,

(2.13)
where we have kept the terms which survive (after the integration in the
Eq. (2.1)) in the Regge limit (1.1) only. Taking into account the previous
relation we get

� e∗B′(� p+m) � e∗A′
s

2

[
1

(u2 −m2)(u1 −m2)
+

1
s2s1

− 1
(u2 −m2)s1

− 1
s2(u1 −m2)

]

= − � e∗B′(� q −m)−1

(
1

u1 −m2
− 1
s1

)

×
(

(� q −m)(2e∗A′q) +
m2 − q2

2q2
(q2 +m � q) � e∗A′

)

−
(
(2e∗B′q)(� q −m)+ � e∗B′(q2 +m � q)m

2 − q2

2q2

)(
1

u2 −m2
− 1
s2

)
(� q−m)−1 � e∗A′

− � e∗B′(� q−m)−1m
2 − q2

4q2
(q2+m � q)s

(
1

u2 −m2
− 1
s2

) (
1

u1 −m2
− 1
s1

)
� e∗A′ .

(2.14)
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Combining the relations (2.9, 2.11, 2.12, 2.14) according to the Eq. (2.7) we
come to the following equality∑

(−)BasAas =

= −g4CF

(
tB

′
tA

′)
BA

v̄B

(
� e∗B′(� q−m)−1

{(
m2 − q2

u1 −m2
− 1

)
2m2 � q

(m2 − q2)2
(2e∗A′q)

+
[
(1 + ε)

� q(� q +m)
2q2

− ε+m(� q −m)−1 +m2(� q −m)−2

+
(� q +m2(� q −m)−1

) � q +m

u1 −m2
+

(
1

u1 −m2
− 1
s1

)
m2 − q2

2q2
� q(� q+m)

]
� e∗A′

}

+
{

(2e∗B′q)
2m2 � q

(m2 − q2)2

(
m2 − q2

u2 −m2
− 1

)

+ � e∗B′

[
(1 + ε)

(� q +m) � q
2q2

− ε+m(� q −m)−1 +m2(� q −m)−2

+
� q +m

u2 −m2

(� q +m2(� q −m)−1
)

+(� q +m) � qm
2 − q2

2q2

(
1

u2 −m2
− 1
s2

)]}
(� q −m)−1 � e∗A′

+� e∗B′(� q−m)−1m
2 − q2

4q2
� q(� q+m)s

(
1

u2 −m2
− 1
s2

)(
1

u1 −m2
− 1
s1

)
� e∗A′

)
uA .

(2.15)
Let us note, that the Dirac equations as well as the conditions (2.3) were also
used in order to express the convolution in the above form. This convolution
is to be put into the Eq. (2.1) as the integrand and only scalar loop integrals
appear there.

We see that in the t- channel unitarity approach the amplitude A (1.2) is
naturally expressed through a set of independent scalar loop integrals. The
algebra used for this purpose is strongly simplified by the on-mass-shellness
of the intermediate particles and by the particular (Regge) kinematics we
are interested in. We have shown that for the simple contribution of the
asymptotic parts of the intermediate amplitudes A and B but evidently the
same can be applied to the complete amplitude A. Here we skip the details
of the complete consideration and just quote the result

A2 = −g2
(
tB

′
tA

′)
BA

v̄B � e∗B′(� q−m)−1 ω̂(q)
2

(
ln

(−s
s0

)
+ ln

(−u
s0

))
� e∗A′uA
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−g4CF

(
tB

′
tA

′)
BA

v̄B

(
� e∗B′(� q −m)−1

{
−

[
m(� q −m)−1 � e∗A′

+
(

2 − (1 + ε)
(� q −m) � q

2q2

)
� e∗A′

−
(

2m+ (1 + ε)
m2 − q2

q2
� q + (1 + 2ε)(� q −m)

)
� e∗A′(� q +m)−1

− (
1 + ε− � q(� q +m)−1

) � q � e∗A′(� q +m)−1

CACF

] (
I1 − I1(q2 = m2)

)

+m(� q +m) � e∗A′I ′1(q
2 = m2) +

� q −m

CACF

×
[
m2 − q2

2q2
� q � e∗A′ −m ((1 − ε)m− ε � q) � e∗A′(� q +m)−1

]
I2

+
(

2 +
1

CACF

)
m2 − q2

2q2
(� q −m)

× � q � e∗A′I3 +
m2 − q2

8q2
(� q +m) � q � e∗A′

[(
2 +

1
CACF

)2

I4

+
I5

C2
AC

2
F

− 2I6
CACF

(
2 +

1
CACF

)]}

+
{
−

[
m � e∗B′(� q −m)−1+ � e∗B′

(
2 − (1 + ε)

� q(� q −m)
2q2

)
− (� q +m)−1 � e∗B′

×
(

2m+ (1 + ε)
m2 − q2

q2
� q + (1 + 2ε)(� q −m)

)
− (� q +m)−1 � e∗B′ � q

CACF

× (
1 + ε− (� q +m)−1 � q)] (

I1 − I1(q2 = m2)
)

+m � e∗B′(� q +m)I ′1(q
2 = m2)

+
[
� e∗B′ � qm

2 − q2

2q2
−m(� q +m)−1 � e∗B′ ((1 − ε)m− ε � q)

] � q −m

CACF
I2

+
(

2 +
1

CACF

)
m2 − q2

2q2
� e∗B′ � q(� q −m)I3+ � e∗B′ � q(� q +m)

m2 − q2

8q2

×
[(

2 +
1

CACF

)2

I4+
I5

C2
AC

2
F

− 2I6
CACF

(
2 +

1
CACF

)]}
(� q−m)−1 � e∗A′

)
uA ,

(2.16)
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Fig.3. The diagrams for a gluon emission by a quark.

where the large energy logarithms responsible for the quark Reggeization were
explicitly written in the first term of the A2. The subscript 2 in the notation
A2 is to say that this part of the complete amplitude A has the correct t-
channel singularities related to the two-particle t- channel intermediate state.
As for the pole singularity contribution appeared “by accident” at the above
consideration, it was completely removed from the A2 in order to be correctly
restored from the one-particle t-channel unitarity relation. That will be done
in the next section. Also, the amplitude A2 was already projected on the
positive signature and quark colour quantum numbers in the t-channel since
we are interested only in these quantum numbers as it was mentioned above.
The definitions of the six independent scalar integrals entering the Eq. (2.16)
are the following

I1 =
∫

dDp

i(2π)D

1
((p− q)2 + iδ) (p2 −m2 + iδ)

,

I2 =
∫

dDp

i(2π)D

1
((p− q)2 + iδ) (p2 −m2 + iδ) ((p+ pA′)2 −m2 + iδ)

,

I3 =
∫

dDp

i(2π)D

1
((p− q)2 + iδ) (p2 −m2 + iδ) ((p− pA)2 + iδ)

,

I4 =
∫

dDp

i(2π)D

s

((p− q)2 + iδ) (p2 −m2 + iδ) ((p− pA)2 + iδ) ((p+ pB)2 + iδ)

−ω(q2) ln
(−s
s0

)
, I5 =

∫
dDp

i(2π)D

12



× s

((p− q)2 + iδ) (p2 −m2 + iδ) ((p− pB′)2 −m2 + iδ) ((p+ pA′)2 −m2 + iδ)

−ω(q2) ln
(−s
s0

)
, I6 =

∫
dDp

i(2π)D

× u

((p− q)2 + iδ) (p2 −m2 + iδ) ((p− pB′)2 −m2 + iδ) ((p− pA)2 + iδ)

−ω(q2) ln
(−u
s0

)
, (2.17)

with ω(q2) defined by the Eq. (1.3) and

ω̂(q) = g2CF
m2 − q2

q2
(� q +m) � qω(q2) . (2.18)

As it is clear from the LLA results of Ref. [4] the terms with ω(q2) cancel the
large energy logarithms in the box integrals I4 - I6. The results of integration
in the Eqs. (2.17) are listed in the Appendix of this paper.

3 The pole contribution
The calculation of the pole contribution is much simpler than the previous
one. One has to convolute two amplitudes of a real gluon emission by an on-
mass-shell quark. Diagrammatically such the amplitude is presented in the
Fig. 3 where the diagrams related to the external lines renormalization are
not explicitly shown. The calculation of this amplitude is done according to
the ordinary rules and is very simple due to the on-mass-shellness. Because of
the simplicity we just present below the result for the renormalized amplitude
skipping the details of this calculation

Aλ
QQG = −igγλtc

(
1 + g2CF

[
Γ(1 − ε)
(4π)2+ε

∑
f

(
m2

f

)ε

3εCF
+

(
1 +

1
2CACF

)

×
(

Γ(1 − ε)
(4π)2+ε

(
m2

)ε

ε
+ (3 + 2ε)I1(q2 = m2) + 4m2I ′1(q

2 = m2)
)])

, (3.1)

where the integral I1 was defined by the Eqs. (2.17) and the sum is over active
quark flavours (including the quark with the mass m by which the gluon is
emitted). The notation γλ in the above relation is for the Dirac matrix and
the other notations there are clear from the Fig. 3.
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Now one has to perform the convolution of the two above on-mass-shell
amplitudes in the intermediate t- channel quark quantum numbers, multiply
it with the external particles wave functions and then, exactly as in the
previous section, replace the on-mass-shell δ- function of the intermediate
quark by the complete propagator. Doing so one gets the amplitude

A1 = −g2
(
tB

′
tA

′)
BA

v̄B

(
� e∗B′(� q −m)−1 � e∗A′

+ � e∗B′(� q −m)−1g2CF

[
Γ(1 − ε)
(4π)2+ε

∑
f

(
m2

f

)ε

3εCF
+

(
1 +

1
2CACF

)

×
(

Γ(1 − ε)
(4π)2+ε

(
m2

)ε

ε
+ (3 + 2ε)I1(q2 = m2) + 4m2I ′1(q

2 = m2)
)]

� e∗A′

+g2CF � e∗B′

[
Γ(1 − ε)
(4π)2+ε

∑
f

(
m2

f

)ε

3εCF
+

(
1 +

1
2CACF

) (
Γ(1 − ε)
(4π)2+ε

(
m2

)ε

ε

+(3 + 2ε)I1(q2 = m2) + 4m2I ′1(q
2 = m2)

)]
(� q −m)−1 � e∗A′

)
uA (3.2)

which restores the correct pole (and only pole) singularity of the complete
amplitude Fig. 1 due to the quark t- channel intermediate state.

Now we sum the Eqs. (2.16) and (3.2) and obtain the complete Regge
asymptotics A = A1 +A2 which is to be compared with the one-loop expan-
sion of the Eq. (1.2) in order to find the quark-gluon-Reggeized quark NLA
effective vertices we are interested in. This gives

ΓA(q, s0) = gtA
′
(
� e∗A′ + g2CF

{[
Γ(1 − ε)
(4π)2+ε

∑
f

(
m2

f

)ε

3εCF

+
(

1 +
1

2CACF

)(
Γ(1 − ε)
(4π)2+ε

(
m2

)ε

ε
+ (3 + 2ε)I1(q2 = m2)

)]
� e∗A′

+
(

3 +
1

CACF

)
2m2I ′1(q

2 = m2) � e∗A′ −
[
m(� q −m)−1 � e∗A′

+
(

2 − (1 + ε)
(� q −m) � q

2q2

)
� e∗A′−

(
2m+ (1 + ε)

m2 − q2

q2
� q + (1 + 2ε)(� q −m)

)

× � e∗A′(� q+m)−1−(
1 + ε− � q(� q +m)−1

) � q � e∗A′(� q +m)−1

CACF

] (
I1 − I1(q2 = m2)

)
14



+
� q −m

CACF

[
m2 − q2

2q2
� q � e∗A′ −m ((1 − ε)m− ε � q) � e∗A′(� q +m)−1

]
I2

+
(

2 +
1

CACF

)
m2 − q2

2q2
(� q −m) � q � e∗A′I3

+
m2 − q2

8q2
(� q +m) � q � e∗A′

[(
2 +

1
CACF

)2

I4

+
1

C2
AC

2
F

I5 − 2
CACF

(
2 +

1
CACF

)
I6

]})
uA (3.3)

and

Γ̄B(q, s0) = v̄Bgt
B′

(
� e∗B′ + g2CF

{
� e∗B′

[
Γ(1 − ε)
(4π)2+ε

∑
f

(
m2

f

)ε

3εCF

+
(

1 +
1

2CACF

)(
Γ(1 − ε)
(4π)2+ε

(
m2

)ε

ε
+ (3 + 2ε)I1(q2 = m2)

)]

+ � e∗B′

(
3 +

1
CACF

)
2m2I ′1(q

2 = m2)

−
[
m � e∗B′(� q −m)−1+ � e∗B′

(
2 − (1 + ε)

� q(� q −m)
2q2

)

−(� q +m)−1 � e∗B′

(
2m+ (1 + ε)

m2 − q2

q2
� q + (1 + 2ε)(� q −m)

)

− (� q +m)−1 � e∗B′ � q
CACF

(
1 + ε− (� q +m)−1 � q)] (

I1 − I1(q2 = m2)
)

+
[
� e∗B′ � qm

2 − q2

2q2
−m(� q +m)−1 � e∗B′ ((1 − ε)m− ε � q)

] � q −m

CACF
I2

+
(

2 +
1

CACF

)
m2 − q2

2q2
� e∗B′ � q(� q −m)I3

+ � e∗B′ � q(� q +m)
m2 − q2

8q2

[(
2 +

1
CACF

)2

I4

+
1

C2
AC

2
F

I5 − 2
CACF

(
2 +

1
CACF

)
I6

]})
. (3.4)

The vertices (3.3) and (3.4) (of course, they are related each to other by
an evident symmetry), together with the list of integrals of the Appendix are
the results of this paper.

15



4 Discussion
We have calculated here the NLA quark-gluon-Reggeized quark effective in-
teraction vertices for the case of QCD with massive quarks. They are to
be applied for the determination of two-loop Regge trajectory of massive
Reggeized quark, for instance. For massless QCD such vertices are known
from Ref. [9] and we have checked that our result is in complete agreement
with that of the Ref. [9]. Let us note that in the massless case in our approach
one does not need to consider the pole contribution at all - it is completely
given by the Born amplitude and the radiative corrections can contribute to
the branch point singularity only.

We also note that throughout all this paper we worked with the bare cou-
pling g instead of the renormalized one gµ. In order to remove the ultraviolet
divergences from our results (3.3) and (3.4) it is enough to re-express them
in terms of the renormalized coupling (in MS)

g = gµµ
−ε

[
1 +

(
11
3

− 2nf

3N

)
g2

µNΓ(1 − ε)
2ε(4π)2+ε

]
. (4.5)

At the moment such renormalization does not look so sensible to perform
since our results are in any case intermediate and contain infrared poles in
ε which would cancel only in final physical results. As for the quark mass
which enters the results, in our approach it appears automatically as the
renormalized pole quark mass because we always used the unitarity relations
with the renormalized intermediate amplitudes. Of course, it is very easy
to express back through the bare mass (or through the mass in any other
scheme).
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sitá della Calabria (Italy) for their warm hospitality while a part of this work
was done. A. Principe thanks Dr. A. Papa for his kind attention to this work
and many fruitful discussions.
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A Appendix
Here we present the results of integration in the Eqs. (2.17). Since in the
massive quark case the integrals can not be explicitly calculated without the
ε- expansion we perform only those integrations over Feynman parameters
which can be done exactly and leave the others untouched.

I1 = −Γ(1 − ε)
(4π)2+ε

1
ε

∫ 1

0

dx
[
(1 − x)

(
m2 − xq2

)]ε
, (A.1)

I1(q2 = m2) = −Γ(1 − ε)
(4π)2+ε

m2ε

ε(1 + 2ε)
, (A.2)

I ′1(q
2 = m2) =

Γ(1 − ε)
(4π)2+ε

(
m2

)ε−1

2ε(1 + 2ε)
, (A.3)

I2 = −Γ(1 − ε)
(4π)2+ε

1
ε (m2 − q2)

∫ 1

0

dx

x

([
(1 − x)

(
m2 − xq2

)]ε − [(1 − x)m]2ε
)
,

(A.4)

I3 = −Γ(1 − ε)
(4π)2+ε

1
2ε

∫ 1

0

dx

[(1 − x) (m2 − xq2)]1−ε , (A.5)

I4 = −Γ(1 − ε)
(4π)2+ε

∫ 1

0

dx

[(1 − x) (m2 − xq2)]1−ε

[
1
ε

+ ψ(1) + ψ(1 − ε)

−2ψ(1 + 2ε) + ln
(

s0
(1 − x) (m2 − xq2)

)]

= −Γ(1 − ε)
(4π)2+ε

[
1
ε

+ ψ(1) + ψ(1 − ε) − 2ψ(1 + 2ε) − sε
0

d

dε
s−ε
0

]

×
∫ 1

0

dx

[(1 − x) (m2 − xq2)]1−ε , (A.6)

I5 = I4 +
2Γ(1 − ε)
(4π)2+ε

∫ 1

0

dx ln (x/(1 − x))
[(1 − x) (m2 − xq2)]1−ε , (A.7)

I6 = I4 +
Γ(1 − ε)
(4π)2+ε

∫ 1

0

dx ln (x/(1 − x))
[(1 − x) (m2 − xq2)]1−ε , (A.8)

where ψ(z) is the logarithmic derivative of the Euler gamma- function.
Let us note that the relation (see Eqs. (A.6-A.8))

I4 + I5 − 2I6 = 0 , (A.9)
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valid for the Regge asymptotics of the above box integrals, is not accidental.
The matter is that such the combination of the boxes is proportional to the
purely nonasymptotic contribution (compare with the Eq. (2.1))

A(3,+)
na =

(∫
dDp

i(2π)D

∑
(−)BnaAna

(k2 + iδ) (p2 −m2 + iδ)

)(3,+)

(A.10)

to the Regge asymptotics of the amplitude A with quark colour quantum
numbers and positive signature in the t- channel. In the above relation we
have introduced Ana = A−Aas, where the amplitude A and its Regge asymp-
totics Aas are given by the Eqs. (2.2) and (2.6) respectively, and analogously
for the Bna. From other side, one can show without real calculations that for
the quark colour quantum numbers in the t- channel the "na×na" term can
contribute to the negative signature only and therefore both (A.10) and (A.9)
must vanish (see also Ref. [12]).
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