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Abstract

The radiation at collision of high-energy particles is formed over
a rather long distances and therefore is sensitive to an environment.
In particular the smallness of the transverse dimensions of the collid-
ing beams leads to suppression of bremsstrahlung cross section for soft
photons. This beam-size effect was discovered and investigated at INP,
Novosibirsk around 1980. At that time an incomplete expression for
the bremsstrahlung spectrum was calculated and used because a sub-
traction associated with the extraction of pure fluctuation process was
not performed. Here this procedure is done. The complete expres-
sion for the spectral-angular distribution of incoherent bremsstrahlung
probability is obtained. The case of Gaussian colliding beams is in-
vestigated in details. In the case of flat beams the expressions for the
bremsstrahlung spectrum are simplified essentially. Comparison of the-
ory with VEPP4 and HERA data is performed. Possible application
of the effect to linear e™e™ collider tuning is discussed.
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1 Introduction

The formation of the bremsstrahlung process of high-energy particles occurs
with extremely small momentum transfers. In the space-time picture this
means that the process takes place at the large (macroscopic) distances. The
longitudinal length (with respect to the direction of the initial momentum) of
formation of the radiation usually is called the coherence (formation) length
l¢. For emission of a photon with energy w the coherence length is {;(w) ~
e(e —w)/m2w, where € and m is the energy and mass of the emitting particle
( here the system h = ¢ =1 is used). If the particle experiences some action
in this length, the radiation pattern changes (in the case when the action
is the multiple scattering of the emitting particle one observes the famous
Landau-Pomeranchuk effect [1]).

A different situation exists in the bremsstrahlung process at the collision
of electron and electron (positron) in colliding beams experiments. The point
is that the external factors act differently on the radiating particle and on
the recoil particle. For the radiating particle the criterion of influence of
external factors is the same both at an electron scattering from a nucleus
and at a collision of particles. For the recoil particle the effect turns out to
be enhanced by the factor £2/m?, which is due to the fact that the main
contribution to the bremsstrahlung cross section give emitted by the recoil
particle virtual photons with very low energy

m2w

(1.1)

qo ~ E(E—OJ)’

so that the formation length of virtual photon is

4e3(e — w).

Lo() = bya0) = = (12)

This means that the effect for the recoil particles appears much earlier than
for the radiating particles. For example, the Landau-Pomeranchuk effect
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distorted the whole bremsstrahlung spectrum in a TeV range (for heavy ele-
ments) while it turns out that the action on the recoil particle can be impor-
tant for contemporary colliding beam facilities in GeV range [2].

There are a few factors which could act on the recoil electron. One of
them is the presence of an external magnetic field in the region of collision
of particles [2-4] If the formation length of virtual photon L, turns out to
be larger than the formation length Iy (w) of a photon with energy w in a
magnetic field H than the magnetic field will limit the region of minimal
momentum transfers, which will lead to a decrease of the bremsstrahlung
cross section and a change of its spectrum. Another effect can appear due to
the smallness of the linear interval [ where the collision occurs in comparison
with L, (w) (see (1.2)). This was pointed out in [5].

In the experiment [6] devoted to study of the bremsstrahlung spectrum
do.(w) carried out at the electron-positron colliding beam facility VEPP-
4 of Institute of Nuclear Physics at an energy ¢ = 1.84 GeV, a deviation
of the bremsstrahlung spectrum from the standard QED spectrum was ob-
served. This was attributed to the smallness of the transverse size of the
colliding beams. Theoretically the problem of finite transverse dimensions
was investigated in |7] were the bremsstrahlung spectrum at ete™ collision
was calculated to within the power accuracy (the neglected terms are of the
order 1/ = m/e) . Later the problem was analyzed in [8], [9], [10] where
the found bremsstrahlung spectra coincide with obtained in [7].

It should be noted that in [7] (as well as in all other papers mentioned
above) an incomplete expression for the bremsstrahlung spectrum was cal-
culated. One has to perform the subtraction associated with the extraction
of pure fluctuation process. Let us discuss this item in some details. The
momentum transfer q at collision is important for the radiation process (the
cross section contains factor 2 at q? < m?). At the beam collision the mo-
mentum transfer may arise due to interaction of the emitting particle with
the opposite beam as a whole (due to coherent interaction with averaged
field of the beam) and due to interaction with an individual particle of the
opposite beam. Here we are considering the incoherent process only (con-
nected with the incoherent fluctuation of density) and so we have to subtract
the coherent contribution. The expression for the bremsstrahlung spectrum
found in [7] contains the mean value < q? >, while the coherent contribution
contains < q >2 and this term has to be subtracted. We encountered with an
analogous problem in analysis of incoherent processes in the oriented crystals
[11] where it was pointed out (see p.407) that the subtraction has to be done
in the spectrum calculated in [7]. Without the subtraction the results for the
incoherent processes in oriented crystals would be qualitatively erroneous.
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In Sec.2 a qualitative analysis of the incoherent radiation process is given.
In Sec.3 the general formulas for the spectral-angular distributions of inco-
herent bremsstrahlung are derived. The incoherent bremsstrahlung spectrum
for the Gaussian beams is calculated in Sec.4 in the form of double integrals.
In specific case of narrow beams (the size of beam is much smaller than
the characteristic impact parameter) the formulas are simplified essentially
(Sec.5). The experimental studies of effect were performed with flat beams
(the beam vertical size is much smaller than horizontal one). This specific
case is analyzed in Sec.6, while comparison with data is given in Sec.7. In
Sec.8 the possible application to the linear eTe™ collider tuning is discussed.

2 General analysis of probability of incoherent
radiation

In this section we discuss in detail the conditions under which we consider
the incoherent radiation. One can calculate the photon emission probability
in the target rest frame, since the entering combinations w/e and ¢ (7 is
the Lorentz factor v = ¢/m, ¥ is the angle of photon emission) are invariant
(within a relativistic accuracy) and a transfer to any frame is elementary.
We use the operator quasiclassical method [12], [13]. Within this method the
photon formation length (time) is

e e Lo

= = ¢
I~ ek ew(l —nv) ¢’
1 2ee’  Ade'yeer

l = = = )

107 min wm? wm?

C=14++9% & =¢c—w, (2.1)
where p, = ev, (v, = (1,v)) is the 4-momentum of radiating particle,
Ye = €c/Me, €c is the energy of target particle in the laboratory frame,

m, is its mass, €, is the energy of radiating particle in the laboratory frame;
k, = (w, wn)) is the photon 4-momentum, ¥ is the angle between vectors n
and v.

In the case when the transverse dimension of beam o is o >> I 7o the impact
parameters ¢ < 9maz = Lo contribute. One can put that the particle density
in the target beam is a constant, so that the standard QED formulas are
valid. Note that the value 0,4, is the relativistic invariant which is defined
by the minimal value of square of the invariant mass of the intermediate



photon |¢?|. In the case when the characteristic size of beams is smaller the
value 0;qz the lower value of |¢?| is defined by this size.

In the target rest frame the scattering length of emitting particle is of
order of the impact parameter p. This length is much smaller than the
longitudinal dimension of the target .l (I is the length of target beam in the
laboratory frame). So one can neglect a variation of configuration of the beam
during the scattering time. A possible variation of particle configuration in
the beam during a long time one can take into account in the adiabatic
approximation.

Another limitation is connected with the influence of value of transverse
momentum arising from the electromagnetic field E = |E| of colliding (target)
beam on the photon formation length. This value should be smaller than the
characteristic transverse momentum transfer m+/¢ in the photon emission
process:

eEly aN, 1 4é'v.e,
my/C¢ (05 4 oy)lve my/C wlm?
2aN, 1 2e, 4Ny, \2e!

~ (0. + 0,)l m\/C wim? = (02 1 o) %0 <1, (2.2)

here o = 1/137, N, is the number of particles in the target beam, o, and o,
are the vertical and horizontal transverse dimensions of target beam. Note
that the ratio /I is the relativistic invariant. This condition can be presented

in invariant form
2x
uC?’ /2

<1, (2.3)

v w m® 16 ;
where x = EIEl +vxH|, u= o Ey = - = 1.32-10"°°V/cm.  Since
the main contribution to the spectral probability of radiation gives angles
¥ ~ 1/ (¢ ~ 1) this condition takes the form y/u < 1. For the case
Xx/u > 1 the condition (2.3) can be satisfied for the large photon emission
angles ¢ ~ v29% > (x/u)?/? > 1. Under these conditions the formation
length I; = l70/¢ decreases as (y/u)?/3. The same inhibition factor acquires
the bremsstrahlung probability [14].

We consider now the spectral distribution of radiation probability in the
case x < 1 (this condition is fulfilled in all existing installations), so
)\2

X~ v(gz+0y)l<< (2.4)



Ounly the soft photons (w < yxe < ¢€) contribute to the coherent radiation
("beamstrahlung") while the hard photon region w > xe is suppressed ex-
ponentially as it is known from the classical radiation theory. As it was
mentioned in the soft photon region (w < ye < ¢€), the spectral probability
of bremsstrahlung is suppressed by the factor (w /5)()2/ 3 only. On the con-
trary, the spectral probability of the bremsstrahlung is negligible comparing
with the beamstrahlung taking into consideration that the mean square of
multiple scattering angle during all time of beam collisions is small comparing
with the value 1/~

<q?> 8a?N,\?
ds 2 o 20 el <1, (2.5)

P2 <92 >=

m 0.0y

where L is the characteristic logarithm of scattering problem (in the typical
experimental condition L ~ 10).

It was supposed in the above estimations of beamstrahlung probability
that the radiation formation length is shorter than the target beam length

ly 1 X\ 23 YA
7~E<1+E> <t (2.6)

Besides it was supposed that one can neglect a variation of the impact para-
meter @ and therefore of the transverse electric field E; (@) during the beam
collision. This is true when disruption parameter is enough small

D, = 20N Al

e A T 2.7
wai(gz+ay)<<, (i=zvy) (2.7)

So, we consider the incoherent bremsstrahlung under following conditions:

X <1, % <1, Di<Ll (2.8)

3 Spectral-angular distribution of the
incoherent bremsstrahlung probability

In this section we derive the basic expression for the incoherent
bremsstrahlung probability at collision of two beams with bounded trans-
verse dimensions.

We consider first the photon emission at collision of an electron with one
particle with the transverse coordinate x. We select the impact parameter
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00 = |0p| which is small comparing with the typical transverse beam dimen-
sion ¢ but which is large comparing with the electron Compton length A.
(Ae € 9o < 0). In the interval of impact parameters o = |r; — x| > oo,
where r| is the transverse coordinate of emitting electron, the probability of
radiation summed over the momenta of final particle can be calculated using
the classical trajectory of particle. Indeed,one can neglect by the value of
commutators |[p, 0;]| = d;; comparing with the value p; ¢ in this interval
(pLo > mpo > 1). In this case the expression for the probability has the
form (see (13|, Eqs.(7.3) and (7.4))

dw = |M(@)|*w, (r)d*r L d°F, (3.1)

where

e > ) €
Mie)= 3= [ R expliFa ()t k= Sk (3.2)
Here w,.(r))d?r, is the probability to find the emitting particle with the
impact parameter ¢ = r; — x in the interval d?9 = d*r;, R(t) =
R(p(t)), kz(t) = wt — kr(¢) (for details see [13], Sec. 7.1). Integrating by
parts in the last equation and taking into account that |q ()| < 1/00 < m
we find

ie R(t) ie o R(p.)

[oS) , d
M) =575 /,OO xR o o ™ = 2™ @ 5pT e

(3.3)
where

pL =p —n(np) ~e(v—n),

m(g) = /OO exp(ik'vt)q(o,t)dt = —% /00 exp (;;) V (Ve + t2)dt

2000 0 0
= T*Kl(l*) = 2QQmin<K1(QQminC)7u (34)
fo f Y

for the Coulomb potential, K7(z) is the modified Bessel function (the Mac-
donald function), R(p_ ) has a form of matrix element for the free particles:

m(e+¢e)

_ At . . ~
R(pL) = ¢ (A+ioB)ps; A~ 5

(¢*x(n—u)); u= %, C=1+u? kv=qninl, (3.5)

(e*u),

mw
B~ ;
2ee

where the vector e describes the photon polarization and the spinors ¢, and
s describe the polarization of the initial and final electrons correspondingly.
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In the interval of impact parameters o < A, the expectation value of op-
erator < g|M ™ M| > cannot be written in the form (3.1) since the entering
operators become noncommutative inside the expectation value. However
because of the condition A\, < ¢ in this interval w,(r) ~ w,(x)+ O( <) one
can neglect effect of the inhomogeneous distribution. For the same reason in
the calculation of correction to the probability of photon emission, which is
defined as the difference of dw(o) and the probability of photon emission in a
inhomogeneous medium, one can extend the integration interval into region
0 < 0o-

In this paper we consider the incoherent bremsstrahlung which can be
considered as the photon emission due to fluctuations of the potential V'
connected with uncertainty of a particle position in the transverse to its
momentum plane. Because of this we have to calculate the dispersion of the
vector m(g) with respect to the transverse coordinate g:

<mymj > — <m; ><mj > /mz ym;(ry — x)we(x)d*z
f/mi(rL - x)wc(x)dzx/mj(rL — x)we(x)d?x, (3.6)

where w.(x) is the distribution function of target particles normalized to the
unity.

As a result we obtain the following expression for the correction to the
probability of photon emission connected with the restricted transverse di-
mensions of colliding beams of charged particles:

0 R*(p1) 0 R*(pi)
OpLi kv Ipr; kv ’

a d3k
@t w —Tij(e,pL,s, s )L, T;j = [

Lij = / ma(@)m;(@) (wy (x + @) — wy (%)) we(x)Pad?e

(/m Jwe(x — @)d? ) (/mj Jwe(x — @)d? )wr(x)d%. (3.7)

Averaging over the polarization of initial electrons and summing over the
polarization of final electrons we find

dw1 =

Ly 2eu 4(eu)? w?
Tij = ? |:€Z'€j — T(eiuj + uiej) + 7<2 Ui Uj + 7466' 6“} . (38)
Note, that one can choose the real vector e since only the linear polarization
could arise in the case of unpolarized electrons.
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After summation in (3.8) over the polarization of emitted photon we have

7= 2 (s, — S v= S 1S (o1 (3.9)
ij = o V05 — 5 Uit |, =T = . .
2ee’ Tzt e e 7
Finally, averaging the last expression over the azimuth angle of emitted
photon we obtain

AC-1)
¢
Substituting the expression obtained into (3.7) we find the correction to

the probability of photon emission connected with the restricted transverse
dimensions of colliding beams of charged particles:

T, = U5, UQ) =v-

=55 (3.10)

o & dw

——U(QF(w,¢)dc, (3.11)

™2 e w

dw, =
where
F(w,¢) = FY(w,) = FP(w,(),
O = 2 [ Kine) (wnx+.0) — ) wel) e

FO () = 22722 / ( / Kl(ng)iwc(x—g)d29>2wr(x)d2x, (3.12)

here n= qman
Using the integral

2
/Kf(ng)gdg = % [K(no) — Ko(no)K2(n0)] (3.13)

and integrating by parts we obtain

Fw.6) = 5[ [ [Kotwo) Katne) ~ K3ne)] 0™ 2 a0
2
—2/ (/ Kl(ng)gwc(x— Q)dQQ) wr(x)de}, (3.14)
where
d(g) = /wr(x + 0)we(x)d?x. (3.15)
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In the general case the axes of colliding beams are displaced with respect
each other in the transverse plane by the vector xg with coordinates zg, yo.
In this case we have to consider

wy(x) — wp(x +%0), FOP(w,¢) = FO2(w, ¢, x0), ®(0) — ®(0+ %0)
(3.16)
The first term in the expression for F(w,() in (3.14) coincides with the
function F(w,() defined in [7], Eq.(13). The second (subtraction) term in
(3.14) which naturally arises in this derivation was missed in Eq.(13), [7]
as it was said above. The expression (3.11) is consistent with Eq.(21.6) in
the book [13] (see also Eq.(2.2) in [11]) where another physical problem was
analyzed. It is the incoherent bremsstrahlung in the oriented crystals.
Below we restrict ourselves to the case of unpolarized electrons and pho-
tons. Influence of bounded transverse size on the probability of process with
polarized particles will be considered elsewhere.

4 Gaussian beams

For calculation of explicit expression for the bremsstrahlung cross section we
have to specify the distributions of particles in the colliding beams. Here we
consider the actual case of Gaussian beams. Using the Fourier transform we
have

w(x) = ﬁ / &g exp(—iqx)u(Q);

1 1
wnla) = exp |- 5202 + 28] wela) = exp |50 + i3] ()
where as above the index r relates to the radiating beam and the index ¢
relates to the target beam, A, and A, (0. and oy) are the vertical and
horizontal transverse dimensions of radiating (target) beam. Substituting
(4.1) into Eq.(3.15) we find

@()—L/d%x(—i ) ex I
¥.%
= —exp[-ol¥I - oy %yl;
1 1
2 = o, Y= (4.2)
2(02 + A2) Y202 +A2)
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Below we consider the general situation when the axes of colliding beams
are displaced with respect each other in the transverse plane by the vector xq
with the coordinates zg, yo. This displacement has essential influence on the
luminosity. For the processes for which the short distances are essential only
(e.g. double bremsstrahlung [2]) the probability of process is the product of
the cross section and luminosity. The geometrical luminosity per bunch, not
taking into account the disruption effects, is given by

L = N.N,®(xo), (4.3)

where as above N, and N, are the number of particles in the radiating and
target beams correspondingly. We will use the same definition for our case.
Then we have
dw, = ®(x¢)do., doy =& ! (xg)dws, (4.4)
where dw, is defined in Eq.(3.11).
We calculate first the function F(!)(w, ¢) in Eq.(3.12) for the case of coax-

ial beams when xy = 0. Passing on to the momentum representation with
the help of formula (4.1) we find

FO0 =50z [wl@u@Fs (1) adade, (45)

where 7 = ¢pin( is introduced in (3.12),

2
£y (;ﬁ) = %/Kf(ng)(l — exp(—iqe))d’o,
222 +1
V1 + 22
here value ¢, is defined in c.m.s. of colliding particles. The function
Fy(x) encounters in the radiation theory. To calculate the corresponding

contribution into the radiation spectrum we have to substitute (4.5) into
Eq.(3.11) and take the integrals. After substitution of variable in (4.5)

Fy(z) = In(z+V14+22) =1, Guin = mw/4e’e’, (4.6)

q
w = , 4.7

we obtain the integral over ¢ in Eq.(3.11):

[ (b

- g(v — 852)Erfc(s) + 4e~* + 2Ei(—s?), (4.8)
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where
S = Wrgmin, T° = E;Q cos® p + E;Q sin® %) (4.9)

Making use of Eq.(4.4) we find for the spectrum

1 203 &' dw
R A ]
1 27 d oo
W) = - / 1 / F5(z)f(s)sds
f ( ) ﬂ'zzzy o 222 C082 © + Z;? Sil’l2 o Jo 2( )f( ) )
9 52 1
z¢ = (4.10)

@Pin 272 cos2 p + By 2sin? ¢
This formula is quite convenient for the numerical calculations.

In the case x¢ # 0 we will use straightforwardly Egs.(3.12) and (4.4).
Taking into account (4.2) we have for the difference

1
AW (xq) = %(‘I’fl(xo)F(l)(Xo) -7 H(0)F1(0)) (4.11)
2
n
= rcg/Kf(ng) exp [—02%2 — 02%2] {exp [20:2052 — 20,405 — 1}d0,

where the function F(!)(x) is defined in Eqs.(3.12), (3.16).
Using the Macdonald’s formula (see e.g.[15], p.53)

o] 2 2 dt
2K%(no) = / exp [—9215 — Zt] K, (Z) " (4.12)
0

and taking the Gaussian integrals over g, and g, we get

2 2
3= L [ e ()0 () T s ) e
X0) = — exp | — + —=5| — —_—.
e, NS> /t+§]§ P t+X2 432 2t
(4.13)

For the correction to the cross section (see Egs.(4.4) and (4.10)) we have
correspondingly

2% ¢ dw

doll) = D) + I (@, x0), (414)

m?2 e w
where

Jm@mwlwWONWmMC (4.15)
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Now we pass over to the calculation of the second (subtraction) term
F®)(w,¢) in Eq.(3.12). Using Eq.(4.1) we get

1= [ Kitno) 2unlx =)o = sz [ S0 exp(—iax)ucaa,

(4.16)
where
qo .
S@ = [ Kuro) 2 expliag)ao
. g 1
= 2m | K J do = 2mi ——5——. 4.17
/ 1(ne)J1(qo)edo DB (4.17)
Using the exponential parametrization
1 1 [ S, 9
S i d 4.1
i 4/0 eXP[ ny +77)} s (4.18)
and taking the Gaussian integrals over ¢, and g, we obtain
I = /Ooexp —@— & — v
0 4 s+202 s+202
z d
x { s+ 2} ® , (4.19)
§+207 s+ 20 Vs + 202, /s + 202

where e, and e, are the unit vectors along axes z and y. Substituting (4.19)
into Eq.(3.12), taking the Gaussian integrals over z and y and using Eq.(4.4)
we get the correction to the cross section
(2) 20(3 e dw (2)
doy” = ————J")(w,xy), (4.20)

m?2 e w

where

Vab o o minV S
J(Q)(w,xo) =3y exp(ngZ +y32§)/ dsl/ dsag <q 2\[> G(s1, 82, X0),
22y 0 0

aiasb1b 1/2 aia 1 22a? b1b 1 2p2
G(81782,X0): (1231 2) [ 142 (2+ (14 >+1BQ<2+yOB >:|

2

2b
X exp {—ZOAG(CH +az) — %(51 + bz)] : (4.21)
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Here the function g appears as a result of integration over (:

[t e
(v - ;) exp(—q¢*) — 2(]2/1 (v — % + 3442) exp(—¢*¢?)d¢
(v — ;) exp(—¢*) — 2¢° {\2/;? (v - 2(12) Erfc(q)

+ %67‘12 + Ei(qQ)] . (4.22)

9(q)

In (4.21) we introduced the following notations

1 b 1 1 b 1
a = —— = — a e —— e —
2A2’ 227 T 5042027 T s+ 202
A=a1+ax+a, B=b+b+b s=351+8o. (4.23)

5 Narrow beams

This is the case when the ratio ¢mi /(X + 3,) < 1, so that the main
contribution to the integral (4.10) gives the region ¢ ~ { ~ 1, z > 1. Using
the asymptotics of function Fy(z) at z > 1

Fy(z) ~In(22)® — 1 (5.1)

and the following integrals

1 /271' dg@ B 1
28,5, Jo  E7%cos? o+ Z;Q sin? o 7

1 /277 d(p
2185y Jo B7%cos? o+ By %sin?
4
X In =In(Z. +%,)%,
Y2 cos? o+ Ny 2sin? ( 2

> 2 _ 2 > _é i 2,2
/1dq (cx ﬁhﬂq)/1 (v <+C2>eXp(qC)dC

= (v - §> [a+B(2+C)]+ gfh (5.2)
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where C is Euler’s constant C' = 0.577..., we get for the function f()(w)
(4.14) the following expression

2 Qi 2
D)y~ (v=2)(2In =" +34+C |+= ; Y.4+3y). (5.3
f (w) (U 3)( nzz Ey 97 qmzn<<( z y) ( )

This expression agrees with Eq.(24) of [7].

Under the assumption used in (5.3) and the additional condition
Gmin(20 + Yo) < 1 the main contribution to the integral in (4.13) gives
the region ¢ > n2. In this case one can use the asymptotic expansion
K1(2) ~1/2(z < 1). Then we have for the function JM (w,x) in Eq.(4.14)
the following expression

2
JM (w,xq) ~ <v - 3) J,
> vt 0%y dt
J:/ exp %0 Z2—|—y0 y2 -1 .
0 t+X2 3 NES:NESS
The expression (5.4) is consistent with Eq.(26) of [7].
In the case (x3 + 02 +0o )qmm < 1 the main contribution to the integral

in (4.21) gives the interval sqmm ~ (x§ + 02 4+ 02)qk;, < 1. Keeping the
main term of expansion over ¢? in Eq.(4.22) we get

g (%2x/5> 1 (5.5)

(5.4)

w

The same result can be obtained if one neglects the term containing 7>
the exponent of integrand in Eq.(4.19).

Summing the cross section do = dagl) + dof) with the standard QED
bremsstrahlung cross section

e dw 2 m?
dUO—Wsw (U—3> (ln2—1), (56)

qmzn

we get the cross section for the case of interaction of narrow beams

203 & d
doy = dog + doy = &i—w _z 21HL+C+2
m2 2.+ 2y
i
E

+2 —E+
9 (’ o

16

+J—J_ g€ =ec—-w, (5.7)




where J is given in (5.4),

J_

b oo o0
- Ve exp(2532 + ygX7) dsi dsoG(s1, 52, X0), (5.8)
Ezzy 0 0
where entering functions defined in Egs.(4.21) and (4.23).
In the case of coaxial beams x¢g = 0, J = 0 one can take the integral in
(5.8) over one of variables (for definiteness over s3) using the formula

> dx 2
P . 5-9
/0 (ar +b.2)3/2(ay + byx)V/2 a,\/b.b, +b, /a,a, (5:9)

After this we have the simple integral over s = s;

J_(0) = 1+ 0./T+06,(J. + J),

Joy = /0 D.,(s)ds, D.,= - \/W-IF =" (5.10)

where
sy = 5(1+6.y) +202 (24 0.,), by = ﬁ F 146y, 0.,= Z%y ,
! (5.11)

The cross section (5.7) differs from Eq.(24) of [7] because the subtrac-
tion term J_ is included. Without this term, generally speaking, the
bremsstrahlung cross section would be qualitatively erroneous. In particular
an appearance of the term J_ violates, generally speaking, the symmetry of
radiation cross section in opposite directions in e~e™ (e~e™) collisions.

To elucidate the qualitative features of narrow beams bremsstrahlung
process we consider the case of round beams where the calculation becomes
more simple:

1
2 2 2
O'Z:Uy:O', AZ:Ay:A, EZ:Ey:Z::m,
o2
b= a, b1’2 = a2, B = A, o= F (512)
We consider first the case of coaxial beams (xg =0, J = 0),
e ds
J. = (1496
(1+ )/0 [s(1+6) +240][s6 + 1+ ]
(14 9)?
= (14+0)ln —%. .1
o S5 (5:13)
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In the limiting cases the function J_ has the form

4 1
, J_(0=1)=2ln-, J_(d<1)~In—. (5.14)

J_(0>1)~ 3 55

| =

In the first case the subtraction term J_ is small. For the beams of the same
size the subtraction term J_ contributes to the constant entering into the
expression for the cross section. The subtraction term J_ modifies essentially
the cross section in the case when the radius of target beam is much smaller
than the radius of radiating beam. In this case the cross section (5.7) contains
the combination

m? m2A? A?

D g~ 2 2
In =7 J_~In 5 In 557 In(mo)=. (5.15)

So in the all cases considered above the cross section defines the transverse
dimension of target beam.

When the axes of round beams are displaced with respect each other in
the transverse plane the integral in (5.4) is

e d dx ,
J—/O [exp(aH_I)—l}x+1—E1(d)—C’—1nd,

2 2
_w2v2 . Tot U
4=X02" = 5aT 5 o7y

(5.16)

It is convenient in this case to calculate the function J_ using straightfor-
wardly Eq.(4.19) where we omit the term with 72 in the exponent of integrand

o 2 2

[ ds 4 4
I, = — =—[1-— e 5.17
Q/O exp( 5+202) (s + 202)2 02 [ exp( 202>:| ( )

Substituting this expression (I is defined in Eq.(4.16)) into the subtraction
term Eq.(3.12) and using the exponential parametrization

1
02

= / exp(—0%s)ds
0
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we obtain

PG d2pexp(—g®s) |1 — e @ exp(—a(o + %0)?)
- =z, s oexp(—0°s xXp { —5 xp(—a(@ + X
aed—d /°° 1 o dia
= X
2 Jy |s+a P s+a

2 ! d -
9= ex L S
s+a+a*2/26p 15+a+0*2/2
1 a
—_— d——— ) |d
+s+a+o—2€Xp< 1s+a+a_2)] y

aed_dl ) ) 0.2 ) 0.2
:722 [El(d1)—2E1 (d102+A2> + Ei <d102—|—2A2>],

% + Y3
2A2
In the limit d; — 0 the last expression goes over to Eq.(5.13).
When the displacement of the axes of colliding beams is large enough

(x2 > 0% + A?) one use the asymptotic expansion of the function Ei(z) in
(5.18):

2
dy =axpy =

(5.18)

# 1
Ei(z) ~ & (1 + ) , 2> 1 (5.19)
z z
In this case the main terms in the difference J — J_ in Eq.(5.7) are canceled:
ed (11 2¢? o2
J—J >x—|=—— ) =—F—. 5.20
d (d d1> d x2 (5:20)

The compensation of the main terms in (5.19) is due to the fact that the
incoherent scattering originates on the fluctuations of the potential of the
target (scattering) beam. Correspondingly we have for the mean square of
the momentum transfer dispersion at the large distance from the target beam

1 1
<q*(o) > — < q(0) > <(X0+Q)2X2>
0
~<4(X09)2~‘-’2><92>2“2 (5.21)
o x8 xt/ T xt x4 ’
0 0 0 0

Substituting (5.20) into Eq.(5.7) and multiplying the result by the luminosity

(4.3):
x? 252
L = N.N,— exp(—x3X) (5.22)
T
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we have for the probability of bremsstrahlung of round beams moving apart
at large distance

3 " d 2
dw., ~ AN, N, =252 & (v - )
™ € w 3
2572
YDA (1) o°X
X |exp(—xg% )lni + 37

_ 1 232 — 25+ u3
(A2 +02) 0 T AT 2

_ 0<exp<—xaz2>>} ,

2 > 1, G20 +ug) < 1. (5.23)
According to (5.23) when x2 increases so that one can neglect the first
term in square brackets, the probability of bremsstrahlung of the round
beams diminishes as a power of distance between beams (ox 0?/x3). The
cross section Eq.(5.7) in this case grows exponentially as e?/d?. Let us
note that without the subtraction term one has erroneous qualitative be-
haviour of probability (o< 1/x3). These circumstances explain also Eq.(5.15)
for the coaxial beams: at integration over d?¢ the region contributes where
< q*(g) > — < q(p) >%x 1/0?, so that p < 0.

Let us consider now the general case X, # 3, for enough large displace-
ment of beams x3 > X72. In this case the main contribution into the integral
I(x) (for n? = 0) in Eqgs.(4.16),(4.19) at large |x| ~ |xq| (see Eq.(3.12)) are
given by large values s ~ x2 > O’iy. Expanding the integrand over the
powers O'z’y /s and keeping after integration the two main terms of the de-
composition over 1/x? we get

X

I%(x) ~ % {1 + ﬁ(y2 - 22)(05 - 03)} . (5.24)

Expanding the function 1/(xq + £€)? over the powers &/ at the integration
over £ =x — % in Eq.(3.12)) we find

1
/12(X0 + &)w, (§)d*¢ ~ 2 1+ 2)° (2 A2 + ySAz)
0 0
A’ 2 2 2y .2 2 2
e _ _ A2 =A% 4 A2 2
X(2) (X%)2 (yO ZO)(Uy UZ) ) V4 + Yy (5 5)

In this case the region t ~ 1/x3 < ij contributes into the integral J
Eq.(5.4)). Expanding the integrand over the powers tX;2 and keeping the
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two main terms of decomposition over 1/x3 we have

2.2, X( 2

1 24+ A°
J o~ ————exp(2022 + ygEf/){l - %
0

4
(x5)?

For the difference J — J_ we obtain finally

+

[25(02 + A2) + y5(0p + A)] }, o’ =0 +o0,. (5.26)

1 o?
J—J_ = exp(2032 + yg¥2) .
2.2y 0 0y (X(%)Q

(5.27)

6 Narrow flat beams (0, < 0, A, < A,)

Let us begin with the coaxial beams. We consider first the case where the
size of radiating beam is much larger than size of target beam (0., < 1). In
this case one can neglect the terms o 4,07, A;? in the functions a. , and
b,y in the integral in Eq.(5.10). Within this accuracy

N S
= oAz

a, >S, Gy~ 5—1—405, b, +1, by~ (6.1)

After substitution in the integral J, in Eq.(5.10) s — 4055 one gets

<N

e ds o
Jrl - s = —.
() /0 Vs +1(y/s + Vs + 11+ 2ks) " A2

After substitution in the integral J, in Eq.(5.10) s — 2A2/s one gets J, = J,
so that

(6.2)

J_(K) =2/140.\/1+ 6y Jy (k) ~ 2Jy(k),
T (k< 1) ~ 1n% T (k> 1) ~ W\/z. (6.3)

It is seen from the last equation that at A, < o, the contribution of the
term J_ into the cross section Eq.(5.7) is relatively small. In the opposite
case A, > o, this contribution leads to change of the logarithm argument
in Eq.(5.7)
m

2ln ——————1n 8 ~ 2(1n(\/§mAz) — ln(Q\@&)) =2Iln
Oy

moy
(2. +%y) K

(6.4)
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This is a new qualitative result.

In the opposite case when the size of radiating beam is smaller or is of
the order of size of target beam (6., 2 1) the contribution into the integral
J, in Eq (5.10) gives the region s ~ o2 and into the integral Jy the region
S~ ay Performing in the integral J, the substitution s — 202s and in the
integral J, the substitution s — 205 /s one gets

ds

J, ~ 6.5
\/2+5 cry (s+1)d, +1)y/s(1+6,) +2+0, (65)
1
— arctan ———;
\/2+5 Oy V0.(2+9,)

A, d
Jy =~ — i

Uy/o ((8+1)(5 +1)+8) (s+1)dy +s

arctan ———

may m
= V1+6./1+08,(J. +Jy)
QWWA (actan 71 )

In the case §,, < 1, A, < o, this formula is consistent with Eq.(6.3).

Now we go over to the case of the displaced beams. For enough large
displacement of the beams the formulas (5.7) and (5.27) are valid. So the
mtermedlate case 1s of interest. As an example we consider the case a >
2> o2+ A2 Yl < 02 In this case the contribution to the 1ntegra1 in
(5.4) gives the interval Ei <t~ 25?2 < ¥2. Keeping the main terms of
decomposition over t¥;? < 1 and t%,? > 1 we have

—i— arctan

1 [ dt 7
J~ — 2?2 - 22t —& = Y- 2v?). 6.6
5 | ewGm-d) T endE. 66)

Under these conditions (x3 < 05) the contribution into the integral for J_ in
(5.8)of the term in the function G(s1, $2,%0) Eq.(4.21) in the square brackets
containing b1 by /B is defined by the function Jy, in Eq.(6.5) to within the terms
~ zy/oy. In the term containing aia2/A (which we denote by J(_Z)) the main

contribution gives the summand z2a?/A? in the interval 05 > 810~ 28> o2

where ) 1 ) L
~— biog~— A~ B~— 4 —. 6.7
1,2 s12 e 205’ @ Ug + QAZ (6.7)
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As a result we obtain

Do) o D[t [T [T (g (L L)) B2
el 222‘7 / 3/2/0 exp( 0 (51+52>> 32/2
A VI+d/146, i
Uy V24 6y

J—J_ ~ 1/al—edzh(zo), d, = 25%2,

o vrddd) o 2 L
h(z) = 1 e <1+7T t 5y(2+5y)>' (6.8)

It should be noted that for the flat beams the probability of radiation as a
function of distance between beams (for the considered interval) decreases
more slowly o 1/+/d, than for the round beams given in Eq.(5.23)

s 2 idﬁ A A N
dw;, 4NN )\E 2y " (v 3) [e ln22+2 dzh(zo) .

Compensation in the difference J — J_ begins in the region zy ~ o, + Ay
were Eq.(6.8) is not valid and one have to use more accurate Eq.(5.8). In the
region zp > o, + A, the probability of radiation decreases as 1/ 2 according
to Eqgs.(4.4), (5.7), (5.27) provided that one can neglect the exponential term
in the square brackets in Eq.(6.9) (compare with Eq.(5.23))

fl )\2 2 d(.L)
dw}, (z0)~2NN zé - v—g o 20 > Yo- (6.10)

7 Observation of beam-size effect

Above we calculated the incoherent bremsstrahlung spectrum at collision of
electron and positron beams with finite transverse dimensions. This spec-
trum differs from spectrum found previously in [7], [8], [9] because here (in
contrast to previous papers) we subtract the coherent contribution. In gen-
eral expression for correction to the probability of photon emission (3.11)
the subtraction term is F(®)(w,¢). For the coaxial beams for numerical cal-
culation it is convenient to use Eqgs.(4.10), (4.20) and (4.21). In the last
equation one have to put yg = z9g = 0. In the case of collision of narrow
beams the subtraction term in the bremsstrahlung spectrum (5.7) is J_.
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The dimensions of beams in the experiment [6] were o, = A, = 24 um,
oy = Ay = 450 pm, so this is the case of flat beams. The estimate for this
case (6.5) gives J_ ~ (4/3v/3)70, /0, < 1. This term is much smaller than
other terms in (5.7). This means that for this case the correction to the
spectrum calculated in [7] is very small.

70

60

50

40

intensity specrum wdo/dw

30

20 - 1 1 IIIIII|- 1 1 IIIIII|_ 1 1 IIIIII|- 1 1 111111
10" 107 107 107 1
photon energy x=w/e

Figure 1: The bremsstrahlung intensity spectrum wdo /dw in units 2arg ver-
sus the photon energy in units of initial electron energy (z = w/e) for VEPP4
experiment. The upper curve is the standard QED spectrum, the three close
curves below are calculated for the different vertical dimensions of colliding
beams (equal for two colliding beams 0 = 0, = A,): ¢ = 20 um (bottom),
o = 24 pum (middle), o = 27 pm (top). The data measured in [6] are pre-
sented as circles (the experiment in 1980) and as triangles (the experiment
in 1981) with 6% systematic error as obtained in [6].

The result of calculation and VEPP4 (INP, Novosibirsk) data are pre-
sented in Fig.1 where the bremsstrahlung intensity spectrum wdo /dw is given
in units 2ar3 versus the photon energy in units of initial electron energy
(r = w/e). The upper curve is the standard QED spectrum, the three
close curves below are calculated using Egs.(4.10) and (4.20) for the dif-
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ferent vertical dimensions of colliding beams (equal for two colliding beams
oc=0,=A,): 0 =20 pm (bottom), 0 = 24 pum (middle), o = 27 pm (top)
(this is just the 1-sigma dispersion for the beams used in the experiment).
We want to emphasize that all the theoretical curves are calculated to within
the relativistic accuracy (the discarded terms are of the order m/e). It is
seen that the effect of the small transverse dimensions is very essential in
soft part of spectrum (at w/e = 10~* the spectral curve diminishes in 25%),
while for w/e > 107! the effect becomes negligible. The data measured in [6]
are presented as circles (experiment in 1980) and as triangles (experiment in
1981) with 6% systematic error as obtained in [6] (while the statistical errors
are negligible). This presentation is somewhat different from [6]. It is seen
that the data points are situated systematically below the theory curves but
the difference is not exceed the 2-sigma level [6]. It should be noted that this
is true also in the hard part of spectrum where the beam-size effect is very
small.

The last remark is connected with the radiative corrections (RC). The RC
to the spectrum of double bremsstrahlung [16] (this was the normalization
process) are essential (of the order 10%) and were taken into account. The
RC to the bremsstrahlung spectrum [17] are very small (less than 0.4%) and
may be neglected. It should be noted that the RC to the bremsstrahlung
spectrum are insensitive to the effect of small transverse dimensions.

The dependence of bremsstrahlung spectrum on beams characteristics was
measures specifically in [6]. The first is the dependence of bremsstrahlung
spectrum on vertical sizes of beams o,. It is calculated using Egs.(4.10) and
(4.20) for w/e = 1073. The result is shown in units 2ar3 in Fig.2. The data
is taken from Fig.7 in [6]. The second is the measurement of dependence
of bremsstrahlung spectrum on the vertical displacement of beams zy. It is
calculated using Eqgs.(5.4) and (5.8) for w/e = 1073. Because of displacement
it is necessary to normalize the spectrum on the luminosity

L = N.N, E;Ey exp(—23%2),
see Eq.(4.3). This means that when we compare the bremsstrahlung process
(where the beam-size effect is essential) with some other process like double
bremsstrahlung used in [6] (which is insensitive to the effect) we have to mul-
tiply the cross section of the last process by the luminosity £. This is seen
in estimate Eq.(6.9): after taking out the exponent e~%: we have the lumi-
nosity as the external factor and in expression for ratio N, /N2, (which was
observed in [6]) the cross section of double bremsstrahlung will be multiplied
by the luminosity. After this operation the second term in square brackets
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Figure 2: The bremsstrahlung intensity spectrum wdo/dw in units 2ar ver-
sus the vertical sizes of beams o, (in pum). The data taken from [6].

will contain the combination e h(zy)/v/d, which grows exponentially with
the displacement zy increase. The normalized bremsstrahlung spectrum is
shown in units 2ar in Fig.3. So, the very fast (exponential) increase with
zo is due to fast decrease with zg of the double bremsstrahlung probability
for the displaced beams. The data is taken from Fig.8 in [6]. It should be
noted that in soft part of spectrum the dependence on photon energy w is
very weak. It is seen in these figures that there is quite reasonable agreement
between theory and data just as in [6]. This means that contribution of J_
term which is calculated only in the present paper is relatively small.

One more measurement of beam-size effect was performed at HERA
electron-proton collider (DESY, Germany) [18]. The electron beam energy
was € = 27.5 GeV, the proton beam energy was ¢, = 820 GeV. The standard
bremsstrahlung spectrum for this case is given by Eq.(5.6) where ¢, should
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Intensity spectrum wdao/dw
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Figure 3: The normalized to luminosity £ the bremsstrahlung intensity spec-
trum wdo /dw in units 2arg versus the vertical displacement of beams zq (in
wm). The data taken from [6].

be substituted:

2
wm=my

Amin — qﬁm = Wv (7.1)
here m,, is the proton mass. In this situation the characteristic length
is lj’?o = 1/q£m and at the photon energy w = 1 GeV one has ljl?o ~ 2 mm.
Since the beam sizes at HERA are much smaller than this characteristic
length, the beam-size effect can be observed at HERA. The parameters of
beam in this experiment were (in our notation): o, = A, = (50 + 58)um,
oy = Ay = (250 + 290)pm. In part of runs the displaced beams were used
with zg = 20 um and yo = 100 um. The bremsstrahlung intensity spec-
trum wdo /dw in units 2ar3 versus the photon energy in the units of initial
electron energy (r = w/e) for the HERA experiment is given in Fig.4. The
upper curve is the standard QED spectrum. We calculated the spectrum
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Figure 4: The bremsstrahlung intensity spectrum wdo/dw in units 2ar ver-
sus the photon energy in units of initial electron energy (z = w/e) for the
HERA experiment. The upper curve is the standard QED spectrum, the
two close curves below are calculated with the beam-size effect taken into
account: the bottom curve is actually two merged curves for sets 1 and 2
(the set 1 is 0, = A, = 50pm, o, = A, = 250um, 2o = yo = 0, set 2 is
0, = A, =50pum, oy, = Ay = 250 um, zo = 20 um, yo = 0); while the top
curve is for set 3 (0, = A, = 54 um, oy = A, =250 um, zy = yo = 0). The
data taken from Fig.5¢ in [18].

with beam-size effect taken into account for three sets of beams parameters;
the set 1: 0, = A, = 50um, oy = Ay = 250pum, 2o = yo = 0, the set
2 0, = A, =50pum, o, = Ay = 250um, zop = 20um, yo = 0, the set
3 0, =A;, =b54pum, oy, = Ay = 250um, 290 = yo = 0. The result of
calculation is seen as two close curves below, the top curve is for the set
3, while the bottom curve is actually two merged curves for the sets 1 and
2. Since the ratio of the vertical and the horizontal dimensions is not very
small, the general formulas were us ed in calculation: for coaxial beams Egs.
(4.11) and (4.20),and for displaced beams Eqs. (4.14) and (4.20). It should
be noted that the contribution of subtraction term (Eq.(4.20)) is quite essen-
tial (more than 10%) for the beam parameters used at HERA. The data are
taken from Fig.5¢ in [18]. The errors are the recalculated overall systematic
error given in [18]. It is seen that there is a quite satisfactory agreement
of theory and data. The final data are given in [18] also as the averaged
relative difference 6 = (dogrp — dows)/dogrp (where doggrp is the stan-
dard QED spectrum, oy is the result of calculation with the beam-size effect
taken into account) over the whole interval of photon energies (2 — 8 GeV),
e.g. for the set 16., = (3.28 £ 0.7)%, for the set 2 6., = (3.57 £ 0.7)%,
for the set 3 e, = (3.06 £ 0.7)%, [18]. The averaged < § > over the interval
0.07 <z <0.28 (or 1.95 < w < 7.7 GeV) in our calculation are for the set 1 is
< 6 >=2.69%, for the set 2 is < § >= 2.65%, for the set 3 is < § >= 2.54%.
So, for these data there is also a satisfactory agreement of data and theory
(at the 1-sigma level, except set 2 where the difference is slightly larger).
So, the beam-size effect discovered at BINP (Novosibirsk) was confirmed
at DESY (Germany). Of course, more accurate measurement is desirable to

verify that we entirely understand this mechanism of deviation from standard
QED.

29



8 Conclusion

Above the influence of the finite transverse size of the colliding beams on the
incoherent bremsstrahlung process is investigated. Previously (see papers
[7], [8], [9], [10]) for analysis of this effect an incomplete expression for the
bremsstrahlung intensity spectrum was used because in it the subtraction was
not fulfilled. It is necessary to carry out this subtraction for the extraction
of pure fluctuation process which is just the incoherent bremsstrahlung. We
implement this procedure in the present paper. We indicated the cases where
the results without the subtraction term are qualitatively erroneous. The first
this is the case when the transverse sizes of scattering beam are much smaller
than the corresponding sizes of radiating beam. For coaxial round beams see
e.g. Eq.(5.15) and for flat beams Eq.(6.4). In contrast to previous papers here
we draw a conclusion that the bremsstrahlung cross section is determined by
the transverse sizes of scattering beam.

The new qualitative result is deduced for the case when the displacement
of beams is enough large. Then the square of momentum transfer dispersion,
which determines the bremsstrahlung cross section, decreases with displace-
ment increase faster than mean value the momentum transfer squared (see
Egs.(5.21), (5.27)). As it was noted in Sec.7, it is necessary to normalize the
spectrum on the luminosity for displaced beams. Then the bremsstrahlung
cross section grows exponentially with displacement increase. This very fast
(exponential) increase with zq is due to fast decrease with zg normalization
process probability for displaced beams.

For Gaussian beams the expression for the bremsstrahlung spectrum is
obtained in the form of double integrals convenient for numerical calculations
(see Eqs.(4.10), (4.20) and (4.21)).For soft part of spectrum we deduced the
general expression for spectrum which is independent of minimal momentum
transfer ¢, and is defined only by transverse size of beams (see Egs.(5.3),
(5.4) and (5.7)-(5.11)).

The important feature of the considered beam-size effect is smooth de-
crease of radiation probability with growth of displacement of beams. For
the flat beams we see in Egs. (6.9), (6.10) that the main (logarithmic) term
in expression for the probability decreases exponentially (ox exp(—23%2) as
luminosity), but there is the specific long-range term o< 1/z9 which results
in quite appreciable radiation probability even in the case when beam the
displacement is large. This phenomenon may be helpful for tuning of high-
energy electron-positron colliders. As an example we consider the "typical"
collider were the beam energy is ¢ = 500 GeV and the beam dimensions are
equal and o, = 5nm and o, = 100nm. The beam-size effect in this collider is
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Figure 5: The spectral intensity probability wdw.,/dw normalized to one
particle in the beam in units 2ar%, %, /7 versus the vertical displacement
of beams zp (in nm).

very strong and for = 1072 the intensity spectrum is only ~ 0.3 part of the
standard wdoggp(w)/dw. The dependence of bremsstrahlung probability on
the displacement distance zg (in nm) is shown in Fig.5. It is calculated using
Egs. (5.6)-5.8) for soft photons with = 10~3 (the asymptotic formulas (6.9)
are (6.10) are not enough accurate in this case). Actually the dependence on
photon energy is contained in the external factor (1 — z)(v(z) — 2/3). The
curve in Fig.5 reflects the main features mentioned above. One can see that
even for zp=100 (zp = 20 o) the cross section is ~ 0.002 part of very large
bremsstrahlung probability at head-on collision of beams. So, measuring the
radiation for displaced beams one can estimate magnitude of displacement of
beams. This information may be useful for beam tuning.
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