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Abstract

The radiation at collision of high-energy particles is formed over
a rather long distances and therefore is sensitive to an environment.
In particular the smallness of the transverse dimensions of the collid-
ing beams leads to suppression of bremsstrahlung cross section for soft
photons. This beam-size effect was discovered and investigated at INP,
Novosibirsk around 1980. At that time an incomplete expression for
the bremsstrahlung spectrum was calculated and used because a sub-
traction associated with the extraction of pure fluctuation process was
not performed. Here this procedure is done. The complete expres-
sion for the spectral-angular distribution of incoherent bremsstrahlung
probability is obtained. The case of Gaussian colliding beams is in-
vestigated in details. In the case of flat beams the expressions for the
bremsstrahlung spectrum are simplified essentially. Comparison of the-
ory with VEPP4 and HERA data is performed. Possible application
of the effect to linear e+e− collider tuning is discussed.
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1 Introduction
The formation of the bremsstrahlung process of high-energy particles occurs
with extremely small momentum transfers. In the space-time picture this
means that the process takes place at the large (macroscopic) distances. The
longitudinal length (with respect to the direction of the initial momentum) of
formation of the radiation usually is called the coherence (formation) length
lf . For emission of a photon with energy ω the coherence length is lf (ω) ∼
ε(ε−ω)/m2ω, where ε and m is the energy and mass of the emitting particle
( here the system ~ = c = 1 is used). If the particle experiences some action
in this length, the radiation pattern changes (in the case when the action
is the multiple scattering of the emitting particle one observes the famous
Landau-Pomeranchuk effect [1]).

A different situation exists in the bremsstrahlung process at the collision
of electron and electron (positron) in colliding beams experiments. The point
is that the external factors act differently on the radiating particle and on
the recoil particle. For the radiating particle the criterion of influence of
external factors is the same both at an electron scattering from a nucleus
and at a collision of particles. For the recoil particle the effect turns out to
be enhanced by the factor ε2/m2, which is due to the fact that the main
contribution to the bremsstrahlung cross section give emitted by the recoil
particle virtual photons with very low energy

q0 ∼ m2ω

ε(ε− ω)
, (1.1)

so that the formation length of virtual photon is

Lv(ω) = lf (q0) =
4ε3(ε− ω)

m4ω
. (1.2)

This means that the effect for the recoil particles appears much earlier than
for the radiating particles. For example, the Landau-Pomeranchuk effect
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distorted the whole bremsstrahlung spectrum in a TeV range (for heavy ele-
ments) while it turns out that the action on the recoil particle can be impor-
tant for contemporary colliding beam facilities in GeV range [2].

There are a few factors which could act on the recoil electron. One of
them is the presence of an external magnetic field in the region of collision
of particles [2-4] If the formation length of virtual photon Lv turns out to
be larger than the formation length lH(ω) of a photon with energy ω in a
magnetic field H than the magnetic field will limit the region of minimal
momentum transfers, which will lead to a decrease of the bremsstrahlung
cross section and a change of its spectrum. Another effect can appear due to
the smallness of the linear interval l where the collision occurs in comparison
with Lv(ω) (see (1.2)). This was pointed out in [5].

In the experiment [6] devoted to study of the bremsstrahlung spectrum
dσγ(ω) carried out at the electron-positron colliding beam facility VEPP-
4 of Institute of Nuclear Physics at an energy ε = 1.84 GeV, a deviation
of the bremsstrahlung spectrum from the standard QED spectrum was ob-
served. This was attributed to the smallness of the transverse size of the
colliding beams. Theoretically the problem of finite transverse dimensions
was investigated in [7] were the bremsstrahlung spectrum at e+e− collision
was calculated to within the power accuracy (the neglected terms are of the
order 1/γ = m/ε) . Later the problem was analyzed in [8], [9], [10] where
the found bremsstrahlung spectra coincide with obtained in [7].

It should be noted that in [7] (as well as in all other papers mentioned
above) an incomplete expression for the bremsstrahlung spectrum was cal-
culated. One has to perform the subtraction associated with the extraction
of pure fluctuation process. Let us discuss this item in some details. The
momentum transfer q at collision is important for the radiation process (the
cross section contains factor q2 at q2 ¿ m2). At the beam collision the mo-
mentum transfer may arise due to interaction of the emitting particle with
the opposite beam as a whole (due to coherent interaction with averaged
field of the beam) and due to interaction with an individual particle of the
opposite beam. Here we are considering the incoherent process only (con-
nected with the incoherent fluctuation of density) and so we have to subtract
the coherent contribution. The expression for the bremsstrahlung spectrum
found in [7] contains the mean value < q2 >, while the coherent contribution
contains < q >2 and this term has to be subtracted. We encountered with an
analogous problem in analysis of incoherent processes in the oriented crystals
[11] where it was pointed out (see p.407) that the subtraction has to be done
in the spectrum calculated in [7]. Without the subtraction the results for the
incoherent processes in oriented crystals would be qualitatively erroneous.
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In Sec.2 a qualitative analysis of the incoherent radiation process is given.
In Sec.3 the general formulas for the spectral-angular distributions of inco-
herent bremsstrahlung are derived. The incoherent bremsstrahlung spectrum
for the Gaussian beams is calculated in Sec.4 in the form of double integrals.
In specific case of narrow beams (the size of beam is much smaller than
the characteristic impact parameter) the formulas are simplified essentially
(Sec.5). The experimental studies of effect were performed with flat beams
(the beam vertical size is much smaller than horizontal one). This specific
case is analyzed in Sec.6, while comparison with data is given in Sec.7. In
Sec.8 the possible application to the linear e+e− collider tuning is discussed.

2 General analysis of probability of incoherent
radiation

In this section we discuss in detail the conditions under which we consider
the incoherent radiation. One can calculate the photon emission probability
in the target rest frame, since the entering combinations ω/ε and γϑ (γ is
the Lorentz factor γ = ε/m, ϑ is the angle of photon emission) are invariant
(within a relativistic accuracy) and a transfer to any frame is elementary.
We use the operator quasiclassical method [12], [13]. Within this method the
photon formation length (time) is

lf =
ε′

εkv
=

ε′

εω(1− nv)
' lf0

ζ
;

lf0 =
1

qmin
=

2εε′

ωm2
=

4ε′γcεr

ωm2
;

ζ = 1 + γ2ϑ2, ε′ = ε− ω, (2.1)

where pµ = εvµ (vµ = (1,v)) is the 4-momentum of radiating particle,
γc = εc/mc, εc is the energy of target particle in the laboratory frame,
mc is its mass, εr is the energy of radiating particle in the laboratory frame;
kµ = (ω, ωn)) is the photon 4-momentum, ϑ is the angle between vectors n
and v.

In the case when the transverse dimension of beam σ is σ À lf0 the impact
parameters % ≤ %max = lf0 contribute. One can put that the particle density
in the target beam is a constant, so that the standard QED formulas are
valid. Note that the value %max is the relativistic invariant which is defined
by the minimal value of square of the invariant mass of the intermediate
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photon |q2|. In the case when the characteristic size of beams is smaller the
value %max the lower value of |q2| is defined by this size.

In the target rest frame the scattering length of emitting particle is of
order of the impact parameter %. This length is much smaller than the
longitudinal dimension of the target γcl (l is the length of target beam in the
laboratory frame). So one can neglect a variation of configuration of the beam
during the scattering time. A possible variation of particle configuration in
the beam during a long time one can take into account in the adiabatic
approximation.

Another limitation is connected with the influence of value of transverse
momentum arising from the electromagnetic field E = |E| of colliding (target)
beam on the photon formation length. This value should be smaller than the
characteristic transverse momentum transfer m

√
ζ in the photon emission

process:

eElf

m
√

ζ
∼ αNc

(σz + σy)lγc

1
m
√

ζ

4ε′γcεr

ωζm2

∼ 2αNc

(σz + σy)l
1

m
√

ζ

2ε′εr

ωζm2
=

4αNcγrλ
2
cε
′

(σz + σy)lζ3/2ω
¿ 1, (2.2)

here α = 1/137, Nc is the number of particles in the target beam, σz and σy

are the vertical and horizontal transverse dimensions of target beam. Note
that the ratio γ/l is the relativistic invariant. This condition can be presented
in invariant form

2χ

uζ3/2
¿ 1, (2.3)

where χ =
γ

E0
|E⊥ + v ×H|, u =

ω

ε′
, E0 =

m2

e
= 1.32 · 1016V/cm. Since

the main contribution to the spectral probability of radiation gives angles
ϑ ∼ 1/γ (ζ ∼ 1) this condition takes the form χ/u ¿ 1. For the case
χ/u À 1 the condition (2.3) can be satisfied for the large photon emission
angles ζ ' γ2ϑ2 > (χ/u)2/3 À 1. Under these conditions the formation
length lf = lf0/ζ decreases as (χ/u)2/3. The same inhibition factor acquires
the bremsstrahlung probability [14].

We consider now the spectral distribution of radiation probability in the
case χ ¿ 1 (this condition is fulfilled in all existing installations), so

χ ∼ αNcγ
λ2

c

(σz + σy)l
¿ 1. (2.4)
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Only the soft photons (ω ≤ χε ¿ ε) contribute to the coherent radiation
("beamstrahlung") while the hard photon region ω À χε is suppressed ex-
ponentially as it is known from the classical radiation theory. As it was
mentioned in the soft photon region (ω ≤ χε ¿ ε), the spectral probability
of bremsstrahlung is suppressed by the factor (ω/εχ)2/3 only. On the con-
trary, the spectral probability of the bremsstrahlung is negligible comparing
with the beamstrahlung taking into consideration that the mean square of
multiple scattering angle during all time of beam collisions is small comparing
with the value 1/γ2:

γ2 < ϑ2
s >=

< q2
s >

m2
' 8α2Ncλ

2
c

σzσy
L ¿ 1, (2.5)

where L is the characteristic logarithm of scattering problem (in the typical
experimental condition L ∼ 10).

It was supposed in the above estimations of beamstrahlung probability
that the radiation formation length is shorter than the target beam length

lf
l
∼ 1

u

(
1 +

χ

u

)−2/3 γλc

l
< 1. (2.6)

Besides it was supposed that one can neglect a variation of the impact para-
meter % and therefore of the transverse electric field E⊥(%) during the beam
collision. This is true when disruption parameter is enough small

Di =
2αNcλcl

γrσi(σz + σy)
¿ 1, (i = z, y) (2.7)

So, we consider the incoherent bremsstrahlung under following conditions:

χ ¿ 1,
χ

u
¿ 1, Di ¿ 1. (2.8)

3 Spectral-angular distribution of the
incoherent bremsstrahlung probability

In this section we derive the basic expression for the incoherent
bremsstrahlung probability at collision of two beams with bounded trans-
verse dimensions.

We consider first the photon emission at collision of an electron with one
particle with the transverse coordinate x. We select the impact parameter

7



%0 = |%0| which is small comparing with the typical transverse beam dimen-
sion σ but which is large comparing with the electron Compton length λc

(λc ¿ %0 ¿ σ). In the interval of impact parameters % = |r⊥ − x| ≥ %0,
where r⊥ is the transverse coordinate of emitting electron, the probability of
radiation summed over the momenta of final particle can be calculated using
the classical trajectory of particle. Indeed,one can neglect by the value of
commutators |[p̂⊥i, %j ]| = δij comparing with the value p⊥% in this interval
(p⊥% ≥ m%0 À 1). In this case the expression for the probability has the
form (see [13], Eqs.(7.3) and (7.4))

dw = |M(%)|2wr(r⊥)d2r⊥d3k, (3.1)

where
M(%) =

e

2π
√

ω

∫ ∞

−∞
R(t) exp(ik′x(t))dt, k′ =

ε

ε′
k. (3.2)

Here wr(r⊥)d2r⊥ is the probability to find the emitting particle with the
impact parameter % = r⊥ − x in the interval d2% = d2r⊥, R(t) =
R(p(t)), kx(t) = ωt − kr(t) (for details see [13], Sec. 7.1). Integrating by
parts in the last equation and taking into account that |q⊥(%)| ≤ 1/%0 ¿ m
we find

M(%) ' ie

2π
√

ω

∫ ∞

−∞
exp(ik′vt)

d

dt

R(t)
k′v(t)

dt ' ie

2π
√

ω
m(%)

∂

∂p⊥

R(p⊥)
k′v

,

(3.3)
where

p⊥ = p− n(np) ' ε(v − n),

m(%) =
∫ ∞

−∞
exp(ik′vt)q̇(%, t)dt = − ∂

∂%

∫ ∞

−∞
exp

(
it

lf

)
V (

√
%2 + t2)dt

=
2α

lf

%

%
K1(

%

lf
) = 2αqminζK1(%qminζ)

%

%
, (3.4)

for the Coulomb potential, K1(z) is the modified Bessel function (the Mac-
donald function), R(p⊥) has a form of matrix element for the free particles:

R(p⊥) = ϕ+
s′(A + iσB)ϕs; A ' m(ε + ε′)

2εε′
(e∗u),

B ' mω

2εε′
(e∗ × (n− u)); u =

p⊥
m

, ζ = 1 + u2, k′v = qminζ , (3.5)

where the vector e describes the photon polarization and the spinors ϕs and
ϕs′ describe the polarization of the initial and final electrons correspondingly.
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In the interval of impact parameters % ≤ λc the expectation value of op-
erator < %|M+M |% > cannot be written in the form (3.1) since the entering
operators become noncommutative inside the expectation value. However
because of the condition λc ¿ σ in this interval wr(r⊥) ' wr(x)+O(λc

σ ) one
can neglect effect of the inhomogeneous distribution. For the same reason in
the calculation of correction to the probability of photon emission, which is
defined as the difference of dw(σ) and the probability of photon emission in a
inhomogeneous medium, one can extend the integration interval into region
% ≤ %0.

In this paper we consider the incoherent bremsstrahlung which can be
considered as the photon emission due to fluctuations of the potential V
connected with uncertainty of a particle position in the transverse to its
momentum plane. Because of this we have to calculate the dispersion of the
vector m(%) with respect to the transverse coordinate %:

< mimj > − < mi >< mj >=
∫

mi(r⊥ − x)mj(r⊥ − x)wc(x)d2x

−
∫

mi(r⊥ − x)wc(x)d2x

∫
mj(r⊥ − x)wc(x)d2x, (3.6)

where wc(x) is the distribution function of target particles normalized to the
unity.

As a result we obtain the following expression for the correction to the
probability of photon emission connected with the restricted transverse di-
mensions of colliding beams of charged particles:

dw1 =
α

(2π)2
d3k

ω
Tij(e,p⊥, s, s′)Lij , Tij =

[
∂

∂p⊥i

R∗(p⊥)
k′v

] [
∂

∂p⊥j

R∗(p⊥)
k′v

]
,

Lij =
∫

mi(%)mj(%) (wr(x + %)− wr(x))wc(x)d2xd2%

−
(∫

mi(%)wc(x− %)d2%

) (∫
mj(%)wc(x− %)d2%

)
wr(x)d2x. (3.7)

Averaging over the polarization of initial electrons and summing over the
polarization of final electrons we find

Tij =
lf
εε′

[
eiej − 2eu

ζ
(eiuj + uiej) +

4(eu)2

ζ2
uiuj +

ω2

4εε′
δij

]
. (3.8)

Note, that one can choose the real vector e since only the linear polarization
could arise in the case of unpolarized electrons.
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After summation in (3.8) over the polarization of emitted photon we have

Tij =
lf

2εε′

(
vδij − 8

ζ2
uiuj

)
, v =

ε

ε′
+

ε′

ε
, ζ = 1 + γ2ϑ2. (3.9)

Finally, averaging the last expression over the azimuth angle of emitted
photon we obtain

Tij =
lf

2εε′
U(ζ)δij , U(ζ) = v − 4(ζ − 1)

ζ2
. (3.10)

Substituting the expression obtained into (3.7) we find the correction to
the probability of photon emission connected with the restricted transverse
dimensions of colliding beams of charged particles:

dw1 =
α3

πm2

ε′

ε

dω

ω
U(ζ)F (ω, ζ)dζ, (3.11)

where

F (ω, ζ) = F (1)(ω, ζ)− F (2)(ω, ζ),

F (1)(ω, ζ) =
2η2

ζ2

∫
K2

1 (η%) (wr(x + %)− wr(x))wc(x)d2xd2%,

F (2)(ω, ζ) =
2η2

ζ2

∫ (∫
K1(η%)

%

%
wc(x− %)d2%

)2

wr(x)d2x, (3.12)

here η = qminζ.
Using the integral

∫
K2

1 (η%)%d% =
%2

2
[
K2

1 (η%)−K0(η%)K2(η%)
]

(3.13)

and integrating by parts we obtain

F (ω, ζ) =
η2

ζ2

[ ∫ [
K0(η%)K2(η%)−K2

1 (η%)
]
%
dΦ(%)

d%
d2%

−2
∫ (∫

K1(η%)
%

%
wc(x− %)d2%

)2

wr(x)d2x
]
, (3.14)

where
Φ(%) =

∫
wr(x + %)wc(x)d2x. (3.15)
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In the general case the axes of colliding beams are displaced with respect
each other in the transverse plane by the vector x0 with coordinates z0, y0.
In this case we have to consider

wr(x) → wr(x + x0), F (1,2)(ω, ζ) → F (1,2)(ω, ζ,x0), Φ(%) → Φ(% + x0)
(3.16)

The first term in the expression for F (ω, ζ) in (3.14) coincides with the
function F (ω, ζ) defined in [7], Eq.(13). The second (subtraction) term in
(3.14) which naturally arises in this derivation was missed in Eq.(13), [7]
as it was said above. The expression (3.11) is consistent with Eq.(21.6) in
the book [13] (see also Eq.(2.2) in [11]) where another physical problem was
analyzed. It is the incoherent bremsstrahlung in the oriented crystals.

Below we restrict ourselves to the case of unpolarized electrons and pho-
tons. Influence of bounded transverse size on the probability of process with
polarized particles will be considered elsewhere.

4 Gaussian beams
For calculation of explicit expression for the bremsstrahlung cross section we
have to specify the distributions of particles in the colliding beams. Here we
consider the actual case of Gaussian beams. Using the Fourier transform we
have

w(x) =
1

(2π)2

∫
d2q exp(−iqx)w(q);

wr(q) = exp
[
−1

2
(q2

z∆2
z + q2

y∆2
y)

]
, wc(q) = exp

[
−1

2
(q2

zσ2
z + q2

yσ2
y)

]
, (4.1)

where as above the index r relates to the radiating beam and the index c
relates to the target beam, ∆z and ∆y (σz and σy) are the vertical and
horizontal transverse dimensions of radiating (target) beam. Substituting
(4.1) into Eq.(3.15) we find

Φ(%) =
1

(2π)2

∫
d2q exp(−iq%) exp

[
− q2

z

4Σ2
z

− q2
y

4Σ2
y

]

=
ΣzΣy

π
exp[−%2

zΣ
2
z − %2

yΣ2
y];

Σ2
z =

1
2(σ2

z + ∆2
z)

, Σ2
y =

1
2(σ2

y + ∆2
y)

, (4.2)
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Below we consider the general situation when the axes of colliding beams
are displaced with respect each other in the transverse plane by the vector x0

with the coordinates z0, y0. This displacement has essential influence on the
luminosity. For the processes for which the short distances are essential only
(e.g. double bremsstrahlung [2]) the probability of process is the product of
the cross section and luminosity. The geometrical luminosity per bunch, not
taking into account the disruption effects, is given by

L = NcNrΦ(x0), (4.3)

where as above Nr and Nc are the number of particles in the radiating and
target beams correspondingly. We will use the same definition for our case.
Then we have

dwγ = Φ(x0)dσγ , dσ1 = Φ−1(x0)dw1, (4.4)

where dw1 is defined in Eq.(3.11).
We calculate first the function F (1)(ω, ζ) in Eq.(3.12) for the case of coax-

ial beams when x0 = 0. Passing on to the momentum representation with
the help of formula (4.1) we find

F (1)(ω, ζ) = − 1
2πζ2

∫
wr(q)wc(q)F2

(
q

2η

)
qdqdϕ, (4.5)

where η = qminζ is introduced in (3.12),

F2

(
q

2η

)
=

η2

π

∫
K2

1 (η%)(1− exp(−iq%))d2%,

F2(x) =
2x2 + 1

x
√

1 + x2
ln(x +

√
1 + x2)− 1, qmin = m3ω/4ε2ε′, (4.6)

here value qmin is defined in c.m.s. of colliding particles. The function
F2(x) encounters in the radiation theory. To calculate the corresponding
contribution into the radiation spectrum we have to substitute (4.5) into
Eq.(3.11) and take the integrals. After substitution of variable in (4.5)

w =
q

2qminζ
, (4.7)

we obtain the integral over ζ in Eq.(3.11):
∫ ∞

1

(
v − 4

ζ
+

4
ζ2

)
exp(−s2ζ2)dζ ≡ f(s)

=
√

π

2s
(v − 8s2)Erfc(s) + 4e−s2

+ 2Ei(−s2), (4.8)
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where
s = wrqmin, r2 = Σ−2

z cos2 ϕ + Σ−2
y sin2 ϕ (4.9)

Making use of Eq.(4.4) we find for the spectrum

dσ
(1)
1 =

2α3

m2

ε′

ε

dω

ω
f (1)(ω),

f (1)(ω) = − 1
πΣzΣy

∫ 2π

0

dϕ

Σ−2
z cos2 ϕ + Σ−2

y sin2 ϕ

∫ ∞

0

F2(z)f(s)sds,

z2 =
s2

q2
min

1
Σ−2

z cos2 ϕ + Σ−2
y sin2 ϕ

. (4.10)

This formula is quite convenient for the numerical calculations.
In the case x0 6= 0 we will use straightforwardly Eqs.(3.12) and (4.4).

Taking into account (4.2) we have for the difference

∆(1)(x0) ≡ 1
2π

(Φ−1(x0)F (1)(x0)− Φ−1(0)F (1)(0)) (4.11)

=
η2

πζ2

∫
K2

1 (η%) exp
[−%2

zΣ
2
z − %2

yΣ2
y

] {exp
[−2%zz0Σ2

z − 2%yy0Σ2
y

]− 1}d2%,

where the function F (1)(x0) is defined in Eqs.(3.12), (3.16).
Using the Macdonald’s formula (see e.g.[15], p.53)

2K2
1 (η%) =

∫ ∞

0

exp
[
−%2t− η2

2t

]
K1

(
η2

2t

)
dt

t
(4.12)

and taking the Gaussian integrals over %z and %y we get

∆(1)(x0) =
1
ζ2

∫ ∞

0

exp
(
−η2

2t

)
K1

(
η2

2t

)

√
t + Σ2

z

√
t + Σ2

y

{
exp

[
z2
0Σ4

z

t + Σ2
z

+
y2
0Σ4

y

t + Σ2
y

]
− 1

}
η2dt

2t
.

(4.13)
For the correction to the cross section (see Eqs.(4.4) and (4.10)) we have
correspondingly

dσ
(1)
1 =

2α3

m2

ε′

ε

dω

ω
[f (1)(ω) + J (1)(ω,x0)], (4.14)

where
J (1)(ω,x0) =

∫ ∞

1

U(ζ)∆(1)(x0)dζ. (4.15)
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Now we pass over to the calculation of the second (subtraction) term
F (2)(ω, ζ) in Eq.(3.12). Using Eq.(4.1) we get

I = η

∫
K1(η%)

%

%
wc(x− %)d2% =

η

(2π)2

∫
S(q)

q
q

exp(−iqx)wc(q)d2q,

(4.16)
where

S(q) =
∫

K1(η%)
q%

q%
exp(iq%)d2%

= 2πi

∫
K1(η%)J1(q%)%d% = 2πi

q

η

1
q2 + η2

. (4.17)

Using the exponential parametrization

1
q2 + η2

=
1
4

∫ ∞

0

exp
[
−s

4
(q2 + η2)

]
ds (4.18)

and taking the Gaussian integrals over qz and qy we obtain

I =
∫ ∞

0

exp
[
−η2s

4
− z2

s + 2σ2
z

− y2

s + 2σ2
y

]

×
[

zez

s + 2σ2
z

+
yey

s + 2σ2
y

]
ds

√
s + 2σ2

z

√
s + 2σ2

y

, (4.19)

where ez and ey are the unit vectors along axes z and y. Substituting (4.19)
into Eq.(3.12), taking the Gaussian integrals over z and y and using Eq.(4.4)
we get the correction to the cross section

dσ
(2)
1 = −2α3

m2

ε′

ε

dω

ω
J (2)(ω,x0), (4.20)

where

J (2)(ω,x0) =

√
ab

ΣzΣy
exp(z2

0Σ2
z + y2

0Σ2
y)

∫ ∞

0

ds1

∫ ∞

0

ds2g

(
qmin

√
s

2

)
G(s1, s2,x0),

G(s1, s2,x0) =
(

a1a2b1b2

AB

)1/2 [
a1a2

A

(
1
2

+
z2
0a2

A

)
+

b1b2

B

(
1
2

+
y2
0b2

B

)]

× exp
[
−z2

0a

A
(a1 + a2)− y2

0b

B
(b1 + b2)

]
. (4.21)
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Here the function g appears as a result of integration over ζ:

g(q) =
∫ ∞

1

(
v − 4

ζ
+

4
ζ2

)
exp(−q2ζ2)

dζ

ζ2

=
(

v − 2
3

)
exp(−q2)− 2q2

∫ ∞

1

(
v − 2

ζ
+

4
3ζ2

)
exp(−q2ζ2)dζ

=
(

v − 2
3

)
exp(−q2)− 2q2

[√
π

2q

(
v − 8

3
q2

)
Erfc(q)

+
4
3
e−q2

+ Ei(−q2)
]

. (4.22)

In (4.21) we introduced the following notations

a =
1

2∆2
z

, b =
1

2∆2
y

, a1,2 =
1

s1,2 + 2σ2
z

, b1,2 =
1

s1,2 + 2σ2
y

,

A = a1 + a2 + a, B = b1 + b2 + b, s = s1 + s2. (4.23)

5 Narrow beams
This is the case when the ratio qmin/(Σz + Σy) ¿ 1, so that the main
contribution to the integral (4.10) gives the region q ∼ ζ ∼ 1, z À 1. Using
the asymptotics of function F2(z) at z À 1

F2(z) ' ln(2z)2 − 1 (5.1)

and the following integrals

1
2πΣzΣy

∫ 2π

0

dϕ

Σ−2
z cos2 ϕ + Σ−2

y sin2 ϕ
= 1,

1
2πΣzΣy

∫ 2π

0

dϕ

Σ−2
z cos2 ϕ + Σ−2

y sin2 ϕ

× ln
4

Σ−2
z cos2 ϕ + Σ−2

y sin2 ϕ
= ln(Σz + Σy)2,

∫ ∞

1

dq2
(
α− β ln q2

) ∫ ∞

1

(
v − 4

ζ
+

4
ζ2

)
exp(−q2ζ2)dζ

=
(

v − 2
3

)
[α + β(2 + C)] +

2
9
β, (5.2)
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where C is Euler’s constant C = 0.577..., we get for the function f (1)(ω)
(4.14) the following expression

f (1)(ω) '
(

v − 2
3

)(
2 ln

qmin

Σz + Σy
+ 3 + C

)
+

2
9
, qmin ¿ (Σz+Σy). (5.3)

This expression agrees with Eq.(24) of [7].
Under the assumption used in (5.3) and the additional condition

qmin(z0 + y0) ¿ 1 the main contribution to the integral in (4.13) gives
the region t À η2. In this case one can use the asymptotic expansion
K1(z) ' 1/z(z ¿ 1). Then we have for the function J (1)(ω,x0) in Eq.(4.14)
the following expression

J (1)(ω,x0) '
(

v − 2
3

)
J ,

J =
∫ ∞

0

[
exp

(
z2
0Σ4

z

t + Σ2
z

+
y2
0Σ4

y

t + Σ2
y

)
− 1

]
dt

√
t + Σ2

z

√
t + Σ2

y

. (5.4)

The expression (5.4) is consistent with Eq.(26) of [7].
In the case (x2

0 + σ2
z + σ2

y)q2
min ¿ 1 the main contribution to the integral

in (4.21) gives the interval sq2
min ∼ (x2

0 + σ2
z + σ2

y)q2
min ¿ 1. Keeping the

main term of expansion over q2 in Eq.(4.22) we get

g

(
qmin

√
s

2

)
' v − 2

3
. (5.5)

The same result can be obtained if one neglects the term containing η2 in
the exponent of integrand in Eq.(4.19).

Summing the cross section dσ = dσ
(1)
1 + dσ

(2)
1 with the standard QED

bremsstrahlung cross section

dσ0 =
2α3

m2

ε′

ε

dω

ω

(
v − 2

3

)(
ln

m2

q2
min

− 1
)

, (5.6)

we get the cross section for the case of interaction of narrow beams

dσγ = dσ0 + dσ1 =
2α3

m2

ε′

ε

dω

ω

{ (
v − 2

3

) [
2 ln

m

Σz + Σy
+ C + 2

+J − J−

]
+

2
9

}
, v =

ε

ε′
+

ε′

ε
, ε′ = ε− ω, (5.7)
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where J is given in (5.4),

J− =

√
ab

ΣzΣy
exp(z2

0Σ2
z + y2

0Σ2
y)

∫ ∞

0

ds1

∫ ∞

0

ds2G(s1, s2,x0), (5.8)

where entering functions defined in Eqs.(4.21) and (4.23).
In the case of coaxial beams x0 = 0, J = 0 one can take the integral in

(5.8) over one of variables (for definiteness over s2) using the formula
∫ ∞

0

dx

(az + bzx)3/2(ay + byx)1/2
=

2
az

√
bzby + bz

√
azay

. (5.9)

After this we have the simple integral over s ≡ s1

J−(0) =
√

1 + δz

√
1 + δy(Jz + Jy),

Jz,y =
∫ ∞

0

Dz,y(s)ds, Dz,y =
1

az,y

√
bzby + bz,y

√
azay

, (5.10)

where

az,y = s(1 + δz,y) + 2σ2
z,y(2 + δz,y), bz,y =

s

2∆2
z,y

+ 1 + δz,y, δz,y =
σ2

z,y

∆2
z,y

,

(5.11)
The cross section (5.7) differs from Eq.(24) of [7] because the subtrac-

tion term J− is included. Without this term, generally speaking, the
bremsstrahlung cross section would be qualitatively erroneous. In particular
an appearance of the term J− violates, generally speaking, the symmetry of
radiation cross section in opposite directions in e−e− (e−e+) collisions.

To elucidate the qualitative features of narrow beams bremsstrahlung
process we consider the case of round beams where the calculation becomes
more simple:

σz = σy = σ, ∆z = ∆y = ∆, Σ2
z = Σ2

y = Σ2 =
1

2(σ2 + ∆2)
,

b = a, b1,2 = a1,2, B = A, δ =
σ2

∆2
. (5.12)

We consider first the case of coaxial beams (x0 = 0, J = 0),

J− = (1 + δ)
∫ ∞

0

ds

[s(1 + δ) + 2 + δ][sδ + 1 + δ]

= (1 + δ) ln
(1 + δ)2

δ(2 + δ)
. (5.13)

17



In the limiting cases the function J− has the form

J−(δ À 1) ' 1
δ
, J−(δ = 1) = 2 ln

4
3
, J−(δ ¿ 1) ' ln

1
2δ

. (5.14)

In the first case the subtraction term J− is small. For the beams of the same
size the subtraction term J− contributes to the constant entering into the
expression for the cross section. The subtraction term J− modifies essentially
the cross section in the case when the radius of target beam is much smaller
than the radius of radiating beam. In this case the cross section (5.7) contains
the combination

ln
m2

4Σ2
− J− ' ln

m2∆2

2
− ln

∆2

2σ2
= ln(mσ)2. (5.15)

So in the all cases considered above the cross section defines the transverse
dimension of target beam.

When the axes of round beams are displaced with respect each other in
the transverse plane the integral in (5.4) is

J =
∫ ∞

0

[
exp

(
d

x + 1

)
− 1

]
dx

x + 1
= Ei(d)− C − ln d,

d = x2
0Σ

2 =
x2

0 + y2
0

2(∆2 + σ2)
. (5.16)

It is convenient in this case to calculate the function J− using straightfor-
wardly Eq.(4.19) where we omit the term with η2 in the exponent of integrand

Icr = %

∫ ∞

0

exp
(
− %2

s + 2σ2

)
ds

(s + 2σ2)2
=

%

%2

[
1− exp

(
− %2

2σ2

)]
(5.17)

Substituting this expression (I is defined in Eq.(4.16)) into the subtraction
term Eq.(3.12) and using the exponential parametrization

1
%2

=
∫ ∞

0

exp(−%2s)ds

18



we obtain

J− =
aed

πΣ2

∫ ∞

0

ds

∫
d2% exp(−%2s)

[
1− exp

(
− %2

2σ2

)]
exp(−a(% + x0)2)

=
aed−d1

Σ2

∫ ∞

0

[
1

s + a
exp

(
d1a

s + a

)

−2
1

s + a + σ−2/2
exp

(
d1

a

s + a + σ−2/2

)

+
1

s + a + σ−2
exp

(
d1

a

s + a + σ−2

) ]
ds

=
aed−d1

Σ2

[
Ei(d1)− 2Ei

(
d1

σ2

σ2 + ∆2

)
+ Ei

(
d1

σ2

σ2 + 2∆2

) ]
,

d1 = ax2
0 =

z2
0 + y2

0

2∆2
. (5.18)

In the limit d1 → 0 the last expression goes over to Eq.(5.13).
When the displacement of the axes of colliding beams is large enough

(x2
0 À σ2 + ∆2) one use the asymptotic expansion of the function Ei(z) in

(5.18):

Ei(z) ' ez

z

(
1 +

1
z

)
, z À 1. (5.19)

In this case the main terms in the difference J −J− in Eq.(5.7) are canceled:

J − J− ' ed

d

(
1
d
− 1

d1

)
=

2ed

d

σ2

x2
0

. (5.20)

The compensation of the main terms in (5.19) is due to the fact that the
incoherent scattering originates on the fluctuations of the potential of the
target (scattering) beam. Correspondingly we have for the mean square of
the momentum transfer dispersion at the large distance from the target beam

< q2(%) > − < q(%) >2∝
〈

1
(x0 + %)2

− 1
x2

0

〉

'
〈

4(x0%)2

x6
0

− %2

x4
0

〉
=

< %2 >

x4
0

=
2σ2

x4
0

. (5.21)

Substituting (5.20) into Eq.(5.7) and multiplying the result by the luminosity
(4.3):

L = NcNr
Σ2

π
exp(−x2

0Σ
2) (5.22)
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we have for the probability of bremsstrahlung of round beams moving apart
at large distance

dwγ ' 4NcNr
α3

π
λ2

cΣ
2 ε′

ε

dω

ω

(
v − 2

3

)

×
[
exp(−x2

0Σ
2) ln

m

Σ
+

σ2Σ2

(x2
0Σ2)2

+ O(exp(−x2
0Σ

2))
]

,

Σ2 =
1

2(∆2 + σ2)
, x2

0Σ
2 =

z2
0 + y2

0

2(∆2 + σ2)
À 1, q2

min(z2
0 + y2

0) ¿ 1. (5.23)

According to (5.23) when x2
0 increases so that one can neglect the first

term in square brackets, the probability of bremsstrahlung of the round
beams diminishes as a power of distance between beams (∝ σ2/x4

0). The
cross section Eq.(5.7) in this case grows exponentially as ed/d2. Let us
note that without the subtraction term one has erroneous qualitative be-
haviour of probability (∝ 1/x2

0). These circumstances explain also Eq.(5.15)
for the coaxial beams: at integration over d2% the region contributes where
< q2(%) > − < q(%) >2∝ 1/%2, so that % ≤ σ.

Let us consider now the general case Σz 6= Σy for enough large displace-
ment of beams x2

0 À Σ−2
z,y. In this case the main contribution into the integral

I(x) (for η2 = 0) in Eqs.(4.16),(4.19) at large |x| ' |x0| (see Eq.(3.12)) are
given by large values s ∼ x2

0 À σ2
z,y. Expanding the integrand over the

powers σ2
z,y/s and keeping after integration the two main terms of the de-

composition over 1/x2 we get

I2(x) ' 1
x2

[
1 +

2
(x2)2

(y2 − z2)(σ2
y − σ2

z)
]

. (5.24)

Expanding the function 1/(x0 + ξ)2 over the powers ξ/x0 at the integration
over ξ = x− x0 in Eq.(3.12)) we find

∫
I2(x0 + ξ)wr(ξ)d2ξ ' 1

x2
0

[
1 +

4
(x2

0)2
(z2

0∆2
z + y2

0∆2
y)

−∆2

x2
0

+
2

(x2
0)2

(y2
0 − z2

0)(σ2
y − σ2

z)

]
, ∆2 = ∆2

z + ∆2
y. (5.25)

In this case the region t ∼ 1/x2
0 ¿ Σ2

z,y contributes into the integral J
Eq.(5.4)). Expanding the integrand over the powers tΣ−2

z,y and keeping the
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two main terms of decomposition over 1/x2
0 we have

J ' 1
ΣzΣyx2

0

exp(z2
0Σ2

z + y2
0Σ2

y)

{
1− σ2 + ∆2

x2
0

+
4

(x2
0)2

[
z2
0(σ2

z + ∆2
z) + y2

0(σ2
y + ∆2

y)
]
}

, σ2 = σ2
z + σ2

y. (5.26)

For the difference J − J− we obtain finally

J − J− =
1

ΣzΣy
exp(z2

0Σ2
z + y2

0Σ2
y)

σ2

(x2
0)2

. (5.27)

6 Narrow flat beams (σz ¿ σy, ∆z ¿ ∆y)

Let us begin with the coaxial beams. We consider first the case where the
size of radiating beam is much larger than size of target beam (δz,y ¿ 1). In
this case one can neglect the terms ∝ δz,y, σ2

z , ∆−2
y in the functions az,y and

bz,y in the integral in Eq.(5.10). Within this accuracy

az ' s, ay ' s + 4σ2
y, bz ' s

2∆2
z

+ 1, by ' 1. (6.1)

After substitution in the integral Jy in Eq.(5.10) s → 4σ2
ys one gets

Jy(κ) =
∫ ∞

0

ds√
s + 1(

√
s +

√
s + 1

√
1 + 2κs)

, κ =
σ2

y

∆2
z

. (6.2)

After substitution in the integral Jz in Eq.(5.10) s → 2∆2
z/s one gets Jz = Jy

so that

J−(κ) = 2
√

1 + δz

√
1 + δyJy(κ) ' 2Jy(κ),

J−(κ ¿ 1) ' ln
8
κ

, J−(κ À 1) ' π

√
2
κ

. (6.3)

It is seen from the last equation that at ∆z ¿ σy the contribution of the
term J− into the cross section Eq.(5.7) is relatively small. In the opposite
case ∆z À σy this contribution leads to change of the logarithm argument
in Eq.(5.7)

2 ln
m

(Σz + Σy)
− ln

8
κ
' 2(ln(

√
2m∆z)− ln(2

√
2
∆z

σy
)) = 2 ln

mσy

2
. (6.4)
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This is a new qualitative result.
In the opposite case when the size of radiating beam is smaller or is of

the order of size of target beam (δz,y ≥ 1) the contribution into the integral
Jz in Eq.(5.10) gives the region s ∼ σ2

z and into the integral Jy the region
s ∼ σ2

y. Performing in the integral Jz the substitution s → 2σ2
zs and in the

integral Jy the substitution s → 2σ2
y/s one gets

Jz ' σz√
2 + δyσy

∫ ∞

0

ds

((s + 1)δz + 1)
√

s(1 + δz) + 2 + δz

(6.5)

=
2√

2 + δy

∆z

σy
arctan

1√
δz(2 + δz)

;

Jy ' ∆z

σy

∫ ∞

0

ds

((s + 1)(δy + 1) + s)
√

(s + 1)δy + s

=
2√

2 + δy

∆z

σy
arctan

1√
δy(2 + δy)

;

J− =
√

1 + δz

√
1 + δy(Jz + Jy)

=
2
√

1 + δz

√
1 + δy√

2 + δy

∆z

σy

(
arctan

1√
δz(2 + δz)

+ arctan
1√

δy(2 + δy)

)
.

In the case δz,y ¿ 1, ∆z ¿ σy this formula is consistent with Eq.(6.3).
Now we go over to the case of the displaced beams. For enough large

displacement of the beams the formulas (5.7) and (5.27) are valid. So the
intermediate case is of interest. As an example we consider the case σ2

y À
z2
0 À σ2

z + ∆2
z, y2

0 ¿ σ2
y. In this case the contribution to the integral in

(5.4) gives the interval Σ2
y ¿ t ∼ z−2

0 ¿ Σ2
z. Keeping the main terms of

decomposition over tΣ−2
z ¿ 1 and tΣ−2

y À 1 we have

J ' 1
Σz

∫ ∞

0

exp
(
z2
0Σ2

z − z2
0t

) dt√
t

=
√

π

z0Σz
exp(z2

0Σ2
z). (6.6)

Under these conditions (x2
0 ¿ σ2

y) the contribution into the integral for J− in
(5.8)of the term in the function G(s1, s2,x0) Eq.(4.21) in the square brackets
containing b1b2/B is defined by the function Jy in Eq.(6.5) to within the terms
∼ z0/σy. In the term containing a1a2/A (which we denote by J

(z)
− ) the main

contribution gives the summand z2
0a2/A2 in the interval σ2

y À s1,2 ∼ z2
0 À σ2

z

where
a1,2 ' 1

s1,2
, b1,2 ' 1

2σ2
y

, A ' a, B ' 1
σ2

y

+
1

2∆2
y

. (6.7)
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As a result we obtain

J
(z)
− (x0) ' z2

0

2ΣzΣyσ2
y

√
b

B
edz

∫ ∞

0

ds1

s
3/2
1

∫ ∞

0

exp
(
−z2

0

(
1
s1

+
1
s2

))
ds2

s
3/2
2

= π
∆z

σy

√
1 + δz

√
1 + δy√

2 + δy

edz ,

J − J− '
√

π

dz
edzh(z0), dz = z2

0Σ2
z,

h(z0) = 1−
√

π(1 + δy)√
2(2 + δy)

z0

σy

(
1 +

2
π

arctan
1√

δy(2 + δy)

)
. (6.8)

It should be noted that for the flat beams the probability of radiation as a
function of distance between beams (for the considered interval) decreases
more slowly ∝ 1/

√
dz than for the round beams given in Eq.(5.23)

dwfl
γ ' 4NcNr

α3

π
λ2

cΣzΣy
ε′

ε

dω

ω

(
v − 2

3

)[
e−dz ln

m

Σz
+

1
2

√
π

dz
h(z0)

]
.

(6.9)
Compensation in the difference J − J− begins in the region z0 ∼ σy + ∆y

were Eq.(6.8) is not valid and one have to use more accurate Eq.(5.8). In the
region z0 À σy +∆y the probability of radiation decreases as 1/z4

0 according
to Eqs.(4.4), (5.7), (5.27) provided that one can neglect the exponential term
in the square brackets in Eq.(6.9) (compare with Eq.(5.23))

dwfl
γ (z0) ' 2NcNr

α3

π

λ2
cσ

2
y

z4
0

ε′

ε

(
v − 2

3

)
dω

ω
, z0 À y0. (6.10)

7 Observation of beam-size effect
Above we calculated the incoherent bremsstrahlung spectrum at collision of
electron and positron beams with finite transverse dimensions. This spec-
trum differs from spectrum found previously in [7], [8], [9] because here (in
contrast to previous papers) we subtract the coherent contribution. In gen-
eral expression for correction to the probability of photon emission (3.11)
the subtraction term is F (2)(ω, ζ). For the coaxial beams for numerical cal-
culation it is convenient to use Eqs.(4.10), (4.20) and (4.21). In the last
equation one have to put y0 = z0 = 0. In the case of collision of narrow
beams the subtraction term in the bremsstrahlung spectrum (5.7) is J−.
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The dimensions of beams in the experiment [6] were σz = ∆z = 24 µm,
σy = ∆y = 450 µm, so this is the case of flat beams. The estimate for this
case (6.5) gives J− ' (4/3

√
3)πσz/σy ¿ 1. This term is much smaller than

other terms in (5.7). This means that for this case the correction to the
spectrum calculated in [7] is very small.
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Figure 1: The bremsstrahlung intensity spectrum ωdσ/dω in units 2αr2
0 ver-

sus the photon energy in units of initial electron energy (x = ω/ε) for VEPP4
experiment. The upper curve is the standard QED spectrum, the three close
curves below are calculated for the different vertical dimensions of colliding
beams (equal for two colliding beams σ = σz = ∆z): σ = 20 µm (bottom),
σ = 24 µm (middle), σ = 27 µm (top). The data measured in [6] are pre-
sented as circles (the experiment in 1980) and as triangles (the experiment
in 1981) with 6% systematic error as obtained in [6].

The result of calculation and VEPP4 (INP, Novosibirsk) data are pre-
sented in Fig.1 where the bremsstrahlung intensity spectrum ωdσ/dω is given
in units 2αr2

0 versus the photon energy in units of initial electron energy
(x = ω/ε). The upper curve is the standard QED spectrum, the three
close curves below are calculated using Eqs.(4.10) and (4.20) for the dif-
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ferent vertical dimensions of colliding beams (equal for two colliding beams
σ = σz = ∆z): σ = 20 µm (bottom), σ = 24 µm (middle), σ = 27 µm (top)
(this is just the 1-sigma dispersion for the beams used in the experiment).
We want to emphasize that all the theoretical curves are calculated to within
the relativistic accuracy (the discarded terms are of the order m/ε). It is
seen that the effect of the small transverse dimensions is very essential in
soft part of spectrum (at ω/ε = 10−4 the spectral curve diminishes in 25%),
while for ω/ε > 10−1 the effect becomes negligible. The data measured in [6]
are presented as circles (experiment in 1980) and as triangles (experiment in
1981) with 6% systematic error as obtained in [6] (while the statistical errors
are negligible). This presentation is somewhat different from [6]. It is seen
that the data points are situated systematically below the theory curves but
the difference is not exceed the 2-sigma level [6]. It should be noted that this
is true also in the hard part of spectrum where the beam-size effect is very
small.

The last remark is connected with the radiative corrections (RC). The RC
to the spectrum of double bremsstrahlung [16] (this was the normalization
process) are essential (of the order 10%) and were taken into account. The
RC to the bremsstrahlung spectrum [17] are very small (less than 0.4%) and
may be neglected. It should be noted that the RC to the bremsstrahlung
spectrum are insensitive to the effect of small transverse dimensions.

The dependence of bremsstrahlung spectrum on beams characteristics was
measures specifically in [6]. The first is the dependence of bremsstrahlung
spectrum on vertical sizes of beams σz. It is calculated using Eqs.(4.10) and
(4.20) for ω/ε = 10−3. The result is shown in units 2αr2

0 in Fig.2. The data
is taken from Fig.7 in [6]. The second is the measurement of dependence
of bremsstrahlung spectrum on the vertical displacement of beams z0. It is
calculated using Eqs.(5.4) and (5.8) for ω/ε = 10−3. Because of displacement
it is necessary to normalize the spectrum on the luminosity

L = NcNr
ΣzΣy

π
exp(−z2

0Σ2
z),

see Eq.(4.3). This means that when we compare the bremsstrahlung process
(where the beam-size effect is essential) with some other process like double
bremsstrahlung used in [6] (which is insensitive to the effect) we have to mul-
tiply the cross section of the last process by the luminosity L. This is seen
in estimate Eq.(6.9): after taking out the exponent e−dz we have the lumi-
nosity as the external factor and in expression for ratio Nγ/N2γ (which was
observed in [6]) the cross section of double bremsstrahlung will be multiplied
by the luminosity. After this operation the second term in square brackets
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Figure 2: The bremsstrahlung intensity spectrum ωdσ/dω in units 2αr2
0 ver-

sus the vertical sizes of beams σz (in µm). The data taken from [6].

will contain the combination edzh(z0)/
√

dz which grows exponentially with
the displacement z0 increase. The normalized bremsstrahlung spectrum is
shown in units 2αr2

0 in Fig.3. So, the very fast (exponential) increase with
z0 is due to fast decrease with z0 of the double bremsstrahlung probability
for the displaced beams. The data is taken from Fig.8 in [6]. It should be
noted that in soft part of spectrum the dependence on photon energy ω is
very weak. It is seen in these figures that there is quite reasonable agreement
between theory and data just as in [6]. This means that contribution of J−
term which is calculated only in the present paper is relatively small.

One more measurement of beam-size effect was performed at HERA
electron-proton collider (DESY, Germany) [18]. The electron beam energy
was ε = 27.5 GeV, the proton beam energy was εp = 820 GeV. The standard
bremsstrahlung spectrum for this case is given by Eq.(5.6) where qmin should
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0 versus the vertical displacement of beams z0 (in
µm). The data taken from [6].

be substituted:

qmin → qD
min =

ωm2mp

4εpεε′
, (7.1)

here mp is the proton mass. In this situation the characteristic length
is lDf0 = 1/qD

min and at the photon energy ω = 1 GeV one has lDf0 ∼ 2 mm.
Since the beam sizes at HERA are much smaller than this characteristic
length, the beam-size effect can be observed at HERA. The parameters of
beam in this experiment were (in our notation): σz = ∆z = (50 ÷ 58)µm,
σy = ∆y = (250 ÷ 290)µm. In part of runs the displaced beams were used
with z0 = 20 µm and y0 = 100 µm. The bremsstrahlung intensity spec-
trum ωdσ/dω in units 2αr2

0 versus the photon energy in the units of initial
electron energy (x = ω/ε) for the HERA experiment is given in Fig.4. The
upper curve is the standard QED spectrum. We calculated the spectrum
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Figure 4: The bremsstrahlung intensity spectrum ωdσ/dω in units 2αr2
0 ver-

sus the photon energy in units of initial electron energy (x = ω/ε) for the
HERA experiment. The upper curve is the standard QED spectrum, the
two close curves below are calculated with the beam-size effect taken into
account: the bottom curve is actually two merged curves for sets 1 and 2
(the set 1 is σz = ∆z = 50 µm, σy = ∆y = 250 µm, z0 = y0 = 0, set 2 is
σz = ∆z = 50 µm, σy = ∆y = 250µm, z0 = 20µm, y0 = 0); while the top
curve is for set 3 (σz = ∆z = 54 µm, σy = ∆y = 250 µm, z0 = y0 = 0). The
data taken from Fig.5c in [18].

with beam-size effect taken into account for three sets of beams parameters;
the set 1: σz = ∆z = 50 µm, σy = ∆y = 250 µm, z0 = y0 = 0, the set
2: σz = ∆z = 50 µm, σy = ∆y = 250 µm, z0 = 20 µm, y0 = 0, the set
3: σz = ∆z = 54 µm, σy = ∆y = 250 µm, z0 = y0 = 0. The result of
calculation is seen as two close curves below, the top curve is for the set
3, while the bottom curve is actually two merged curves for the sets 1 and
2. Since the ratio of the vertical and the horizontal dimensions is not very
small, the general formulas were us ed in calculation: for coaxial beams Eqs.
(4.11) and (4.20),and for displaced beams Eqs. (4.14) and (4.20). It should
be noted that the contribution of subtraction term (Eq.(4.20)) is quite essen-
tial (more than 10%) for the beam parameters used at HERA. The data are
taken from Fig.5c in [18]. The errors are the recalculated overall systematic
error given in [18]. It is seen that there is a quite satisfactory agreement
of theory and data. The final data are given in [18] also as the averaged
relative difference δ = (dσQED − dσbs)/dσQED (where dσQED is the stan-
dard QED spectrum, σbs is the result of calculation with the beam-size effect
taken into account) over the whole interval of photon energies (2 − 8 GeV),
e.g. for the set 1 δex = (3.28 ± 0.7)%, for the set 2 δex = (3.57 ± 0.7)%,
for the set 3 δex = (3.06± 0.7)%, [18]. The averaged < δ > over the interval
0.07 ≤ x ≤ 0.28 (or 1.95 ≤ ω ≤ 7.7 GeV) in our calculation are for the set 1 is
< δ >=2.69%, for the set 2 is < δ >= 2.65%, for the set 3 is < δ >= 2.54%.
So, for these data there is also a satisfactory agreement of data and theory
(at the 1-sigma level, except set 2 where the difference is slightly larger).

So, the beam-size effect discovered at BINP (Novosibirsk) was confirmed
at DESY (Germany). Of course, more accurate measurement is desirable to
verify that we entirely understand this mechanism of deviation from standard
QED.
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8 Conclusion
Above the influence of the finite transverse size of the colliding beams on the
incoherent bremsstrahlung process is investigated. Previously (see papers
[7], [8], [9], [10]) for analysis of this effect an incomplete expression for the
bremsstrahlung intensity spectrum was used because in it the subtraction was
not fulfilled. It is necessary to carry out this subtraction for the extraction
of pure fluctuation process which is just the incoherent bremsstrahlung. We
implement this procedure in the present paper. We indicated the cases where
the results without the subtraction term are qualitatively erroneous. The first
this is the case when the transverse sizes of scattering beam are much smaller
than the corresponding sizes of radiating beam. For coaxial round beams see
e.g. Eq.(5.15) and for flat beams Eq.(6.4). In contrast to previous papers here
we draw a conclusion that the bremsstrahlung cross section is determined by
the transverse sizes of scattering beam.

The new qualitative result is deduced for the case when the displacement
of beams is enough large. Then the square of momentum transfer dispersion,
which determines the bremsstrahlung cross section, decreases with displace-
ment increase faster than mean value the momentum transfer squared (see
Eqs.(5.21), (5.27)). As it was noted in Sec.7, it is necessary to normalize the
spectrum on the luminosity for displaced beams. Then the bremsstrahlung
cross section grows exponentially with displacement increase. This very fast
(exponential) increase with z0 is due to fast decrease with z0 normalization
process probability for displaced beams.

For Gaussian beams the expression for the bremsstrahlung spectrum is
obtained in the form of double integrals convenient for numerical calculations
(see Eqs.(4.10), (4.20) and (4.21)).For soft part of spectrum we deduced the
general expression for spectrum which is independent of minimal momentum
transfer qmin and is defined only by transverse size of beams (see Eqs.(5.3),
(5.4) and (5.7)-(5.11)).

The important feature of the considered beam-size effect is smooth de-
crease of radiation probability with growth of displacement of beams. For
the flat beams we see in Eqs. (6.9), (6.10) that the main (logarithmic) term
in expression for the probability decreases exponentially (∝ exp(−z2

0Σ2
z) as

luminosity), but there is the specific long-range term ∝ 1/z0 which results
in quite appreciable radiation probability even in the case when beam the
displacement is large. This phenomenon may be helpful for tuning of high-
energy electron-positron colliders. As an example we consider the "typical"
collider were the beam energy is ε = 500 GeV and the beam dimensions are
equal and σz = 5nm and σy = 100nm. The beam-size effect in this collider is
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Figure 5: The spectral intensity probability ωdwγ/dω normalized to one
particle in the beam in units 2αr2

0ΣzΣy/π versus the vertical displacement
of beams z0 (in nm).

very strong and for x = 10−3 the intensity spectrum is only ∼ 0.3 part of the
standard ωdσQED(ω)/dω. The dependence of bremsstrahlung probability on
the displacement distance z0 (in nm) is shown in Fig.5. It is calculated using
Eqs. (5.6)-5.8) for soft photons with x = 10−3 (the asymptotic formulas (6.9)
are (6.10) are not enough accurate in this case). Actually the dependence on
photon energy is contained in the external factor (1 − x)(v(x) − 2/3). The
curve in Fig.5 reflects the main features mentioned above. One can see that
even for z0=100 (z0 = 20 σz) the cross section is ∼ 0.002 part of very large
bremsstrahlung probability at head-on collision of beams. So, measuring the
radiation for displaced beams one can estimate magnitude of displacement of
beams. This information may be useful for beam tuning.
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