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Abstract

In the present paper an attempt is made to develop an advanced transverse
feedback theory capable to clarify the conditions, at which the resistive
feedback can cure the TMC instability. The hollow beam model is used for
analysis because of its simplicity. As it appeared an important role can play
chromaticity. Negative chromaticity combined with resistive feedback as from
theory follows can increase the TMC instability threshold by several times. In
any case, the basic results obtained with the hollow beam model may be then

corrected using more complicated one.
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1. Introduction

Transverse Mode Coupling Instability (TMCI) is the main limiting factor for
bunch intensity in large storage rings. Its basic features are well familiar due to many
theoretical works (see, for example, [1[5]).

One has proposed to cure this instability with the reactive feedback that would
prevent the zero mode frequency from changing with increasing the beam intensity
[6]. In [7,8] a theory of reactive feedback has been developed in two particle
approach and with Vlasov equation. Theory shows that the reactive feedback should
appreciably increase the threshold of TMCI. Such conclusion has been confirmed by
simulation [9,10]. On the contrary, the resistive feedback was found to be
«completely ineffective as a cure for the transverse mode coupling instability» [8].

An action of a feedback on the threshold of TMCI was later on examined
experimentally at PEP [11]. It was confirmed that a reactive feedback really is
capable to increase the TMCI threshold noticeably.

But it turned out unexpectedly that resistive one can increase this threshold
also and even more effectively [11]. An analogous result was obtained in
experiments at VEPP4 (BINP, Novosibirsk) [12].

For a long time the efforts were ineffective at LEP (CERN) to increase the
beam current, TMCI limited, by application of a feedback. V.Danilov and
E.Perevedentsev [13] explaining such failure have postulated that transverse
feedback could not work correctly when the bunch is passing some amount of the
transverse impedance between a pick up and a kicker as it was at LEP. To
overcome this circumstance they have proposed to introduce in the feedback chain
an artificial oscillator that should model the beam behavior between the pick up and
a kicker and thus give a correct kick. After extensive simulation [14] and some
improvements the feedback was tested at LEP [15]. Certain increase of the
threshold beam current (near 5% instead of 10 % calculated) was accompanied by
more stable behavior of the beam [15].

From what was said it is evident that not all is clear up to now with a feedback
acting against TMC instability. However the knowledge of its properties is important
because now are discovered new mechanisms of its origin (not only wake fields), in
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particular, interaction with electron clouds [16] and coherent beam [ beam
interaction.

In the present paper an attempt is made to develop an advanced transverse
feedback theory capable to clarify the conditions, at which the resistive feedback can
cure TMC instability. The hollow beam model was used for analysis because of its
simplicity. In this approach «radial modes» could not be taken into account. In any
case, the basic results obtained with the hollow beam model may be then corrected
using more complicated one.

In Section 2 the mode equations are derived with the account of chromaticity.
These equations allow one to analyze the simplest reactive feedback.

But for the more detailed analysis equations describing the feedback are
derived in Section 3. It is shown that the feedback signal should be so delayed that
the bunch and the signal arrive to the kicker simultaneously.

In Section 4 an analysis of stability with the feedback is accomplished. As it
turned out the combined application of resistive feedback and negative chromaticity
permits one to provide stability in wide limits of the feedback phases.

2. Mode equations

Our goal in this section is to obtain differential mode equations that describe
time evolution of coupled modes. With the help of these equations the problem of
stability can be reduced to the eigenvalue problem.

We start from equations of transverse motion of single particle, more precisely,
of macroparticle, under the action of the Lorentz force. Then we consider several
macroparticles in one separatrix, uniformly distributed over synchrotron oscillation
phases. The motion of these macroparticles can be represented in the form of
symmetrical modes.

The equations for particle transverse oscillations in action[@ngle variables were
derived in [17]:

= g —bv-0=-eXE -
J_ean(Ex VB,), =y -Q= eaJ(EX vB, ). (1)

Here J, ¢ are actionfangle variables of particle transverse oscillations, ¢ is
slowly varying phase, x is transverse particle coordinate, Q is an angular frequency
of oscillations. The Lorentz force e(Ex — vBy) should be written in the
accompanying system of coordinates, passage to which is performed by formal
transformation /=z+wg R, where [ is longitudinal coordinate in laboratory

system, z is longitudinal coordinate in accompanying system, wo is an angular
revolution frequency of equilibrium particle, R is an average radius of the ring. The
bars over right hand side of equations mean averaging over fast time (over several
periods of betatron oscillations).



If a particle performs longitudinal (synchrotron) oscillations then betatron
frequency can change periodically due to chromaticity. In this case Q = Q(p.), p:
being momentum deviation from equilibrium momentum po: p = po + pz. The
frequency of transverse oscillations depending on p; is in this case

0Q
Q(pz)DQO +a_@z' (2)

z

where Qo is betatron frequency of synchronous particle (p; = 0). As Q = v, o
being instantaneous revolution frequency, then

—=v—+wli—. 3)

.

therefore
p, B2 =, P )
apz Po

Here a is a momentum compaction factor.
Substituting (4) and (5) into (3) and then into (2) we obtain

wna
Q(p,) 00 +20% ODai—vE:bz-
Po a apz

\Y . . .
Let us denote K = Po Eg— This parameter is 1/a time more than commonly
a op

. ov - mg . )
used viprime: V' = p, I:-Ja— Taking into account that p, = ——=[Z, (ms is mass
a
z

of synchronous particle) the expression obtained above can be reduced to
V-

Q(p,) 0Qo+=13, ®)

here z is a longitudinal coordinate read from synchronous particle.
Integrating (6) over time at constant frequency we get
V-—K
R
where ¢ is slowly varying phase; or denoting & =v —«k

W=Qold+ +¢, )

UJ:QOU‘*EG%‘HP- (8)
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Further we use complex amplitude of oscillations
y=ale?, 9)
where a is modulus (amplitude), ¢ is a phase.

Note that an amplitude for linear or close to linear oscillations can be
expressed through an action

2J
my @

where ms is a mass of synchronous particle.
The derivative of the complex amplitude with respect to (slow) time is

y=(@a+@m)er.
We find from expression for the amplitude
> .
J

a= .
me @ 2,/3

Substituting into y one obtains

—Bf G—+Jm)|:|/2J ”, (10)
mg§)

On the other hand, substituting into (10) expression (1) for J and ¢ we

obtain

2J Ox ;
= E,-VB 0 e XqE. -vB 7%
H/mmzr L V)J\/SEQ aJEﬂxvy)EJ

Derivatives necessary for evaluation of averages are

[20 _ ox_ [ 23 _[ 2 :
= |—— BGiny, —= ——Giny.
X m, [ ny oy \mm osy, aJ m, [Q N‘ ny

Substituting we get

e e — - < ?
p = [CosW{E, —~vB,)-j -VvB 7=
y % WUE, -VB,) . [0 x y)%3

-_ ¢ —-Jv - Jo
= [e™/¥ ME, -vBy) /7.

N

Since ¢ is slowly varying variable, the exponent e can be inserted under
the averaging bar and then we get



)'; = L @—J(llJ—tb) mEx _VBy) )

mS
As was stated above
W-0=00 1 +EE,
S0 substituting one gets
. e - j(Qpt+EX/R
j=—2 _ /Qot*E )(Ex—vBy) . (11)

mg

Up to this point we considered one macroparticle and field acting on it. But in
more general case the number of macroparticles can be more than one, say h.
Each particle is acted upon by electromagnetic field at the point where it is situated.
This electromagnetic field is a sum of fields induced by each macroparticle.
According to what has been said, the last expression can be written in the following
form:

. e —j(QOt+Esz/R)

=—1[¢ E.-VvB , 12
yf m, m ( X y)f ( )
where the subscript fis the ordinal number of the given macroparticle, f = 1,2,...,h.
The field (Ex — vBy): is a sum of the fields created by all macroparticles at the point

where the flih one is situated.

Each macroparticle is characterized besides of a complex amplitude of
transverse oscillations also by amplitude and phase of synchrotron oscillations. In
what follows amplitudes of synchrotron oscillations of all macroparticles are
assumed to be equal. Presupposed is also that macroparticles are uniformly
distributed over the phases of synchrotron oscillations, i.e. a synchrotron phase of
the fth particle is 271 / h.

We will consider cavities with zero transverse electric field at the axis (at the
beam region). This assumption is valid for real cavities and allows us to simplify
Lorentz force to magnetic one only.

According to [17] magnetic field in a cavity with zero transverse electric field
can be written in the form

VB, = _z o JmzI R R'lE;DORDaEkZ’m fk (s = jmuy)
k,m O
in the synchronous particle rest system.

Here L™ is inverse Laplase transformation with complex variable s, Ex,m is the
mih Fourier harmonic (along the orbit) of the longitudinal electric field of the kith
cavity mode at the beam axis, Zk(s) is an impedance of the k{fh cavity mode:

O
g 13
O0x s — jmuy fem (S)E (13)



N

(s —s,f)mq|Ek|2dv’

Z(s)=

I}, (s) is mih induced current harmonic of kith cavity mode. Summation over k is
made over all cavity modes with nonzero O0E,;, ,,/0x and over m within the limits
too .

The current corresponding to one macroparticle (of the number f') can be
represented in a form [17]

_ E—jmz I R aEkz ma
Ikmf,(s)—eE%D,[e I G, E—Ia—% (14)
2J 5

were X g = [$iny is transverse coordinate of macroparticle, which is a

mg

source of electromagnetic field, N is number of particles in a bunch, N/h is number of
particles in a macroparticle. Note that z,(f) and X (t) are time functions. For

f' @h macroparticle

xp = 211 i O+zgzi+¢f, . (15)
mg [0 R

Total magnetic field is determined by summarized current

Liom —eGMVDZ %,

Ox
S
Substituting this current into (13) we obtain

:-edivmoRuz"E’fzm Fen

—jmzp IR

T {e & ).

DZ ejmzf/R @—]mzf'/R %

S

1 Z, (s — jmw
xL 1BMEL{W'(’)}D
0O $s—JjmWg 0

-jmz; IR . .
Here exponent e Jmes is taken out from the symbol of inverse Laplace
transformation because it is varying with (slow) synchrotron frequency and can be
considered as constant with respect to fast betatron time.

In what follows we’ll use symbol Q instead of Q.
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Using last expression in (12) yields

r=e —VEPJOR %o aEkZ DZej(m Dz IR g=jmzp IR
my Q A

Ox

(16)
X om IO 1Dzk(s ) 0o
O s—Jjmuy |

Laplace transform of X, (t) can be calculated as follows
L af, JEZ/ R+ ) B e—i(EE/R+¢f') B
{x¢}=Hay El;m(Qt+ED—+¢f)} 2 p—Ts s jo B

Here amplitude as: is considered as slow variable and therefore is taken out from

the symbol of Laplace transformation.
The average in (16) is

2 HZ (5= jmw,)
D.—
0 S~ Mg

: : &2/ R+¢ 1) —j(EZ, I R+$ 1)
., _— E%Zk (s _.meo +.]Q) Eli J L7 e J&ld, | b/
: g s = jmw, + jQ  2j s s+2jQ

; 0
e m DL{X*'“)}E:

For calculation of the average we’ll use following relation
T

.1 .
—(f =
Tllinw = ! (t) Ceit Slﬁ’TJOS[F(S),

where F(s) = L{f(t)} is Laplace transform of f(t).
As a result we obtain

i1 Z (s = 0 (EZ/R+¢ 4
0 s§—Jjmwyg 2j
o Zi (=jmodg +jQ) _ 5} @JEQIR EZk( Jmwg + jQ)
- jmwg + jQ 2 - jmwy + jQ

and substituting this into equation (16) yields

. 12N (A)OR aEkzm aEkz
e e e




W Lk (Cjmoo +JQ) L jm=8) IR o =j(m=&) 12 ;R
- jmuyg + jQ

As z; and Zz; explicitly depend on time obtained differential equation set for

complex amplitudes ys is a set with timelVarying coefficients.
It is profitable to go to new variables by discrete Fourier transformation
2
=,
ypEYyu, e b (18)
n

un being new variables, h is a number of macroparticles in a separatrix. There exists
an inverse transformation also

u, :%D;yf@

Summation in sums (18) and (19) should be made over all Fourier harmonics or over
all macroparticles.

The sense of this transformation is a transition to description of macroparticles
motion by symmetrical modes instead of complex amplitudes of separate
macroparticles. Such transition is advantageous if one keeps in mind that important
role will play only a few lower modes. Furthermore, as we’'ll see later, transition to
symmetrical modes allows one to get rid of time¥arying coefficients in the equation
set.

21
_j
h (19)

It is convenient to enumerate the modes symmetrically with respect to zero:
h-1 h-1
n=———,..., 0,...—.
2
Then zero mode n = 0 corresponds to oscillation of the center of gravity of a

bunch.
Differentiating (19) with respect to slow time we obtain

2mn
T
u, = z vrle . (20)
S
Now let us multiply left and right side of each equation (18) by

1

21T
—[exp(-j— f
» P(Jh )
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and then add all equations. Change simultaneously . in right hand side by

u , with Fourier transform. As a result we obtain

WnR 0E 0E,_ _ 7, (-imwn + iQ
lezﬁvgo Dzun'z kz,m kz,—m k(] o™ J )X

u. =
"2 h mQ & o Ox —-mwg + jmQ
(21)
Oj(m=8&)z ;O D j(m= E)z O 21’
<3 ol L Gl 2 S e LI )
B R
S
he set of differential equations for variables u,.
Next let us transform the last two sums in (21). As
z=0,(J,)Biny,,
then
expli(m-8)z/R=3 Ay _¢ S(3,)EXp(sY ), (22)
S
where
m
_1 U Om-§ .
s 1) 5, oo R sy, s [, @3)

Here JZ,I.|JZ are variables action[angle for a longitudinal motion.

The last integral is nothing but Bessel function

A EQJZ):JSB'"—_EESZH: e 1 H.

m=E,s 0 R O SDR MmE

As longitudinal oscillations are distributed uniformly over phase then

N

and, analogously

., 2
exp[—j(m _E)Zf’ /Rl = Z A—(m—i),s' mJz) @Xp%is @'I"z + ]Z{
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Here

’ _, Hm-¢ B_m H E
A—(m—E),s sz)_JsE_ R B H R Mm E

Substituting these expressions into (21) we obtain
0j(m — E)Zf D j2mn

Z Xpg————— H—J‘E—
= ZAm_Z’S ) /SV:= Dgexp% 21is = 1) fE.

N

It is easy to see that the sum over f in right hand side is nonzero only for
s=n+/[h,where | =0,2£1,%2,... Increasing the number of macroparticles h to

an infinity we can make terms with /# 0 arbitrarily small because of decreasing of

Ams‘ Note that final equations do not depend on h as itll be shown below.
Therefore it is possible to go to the limit h - co. This limit means a transition from
discrete macroparticles to a continuous (hollow) beam. Coming from such

considerations we’ll remain in the sum over s only term with S=n:

Jjm=-8)z,0_ 0O 2m .0 '
Ze pljif [eXx pH_T[nfE_hm En(JZ)l}]nLIJZ
Analogously
0 jim=¢&)z D —
expl+ f E—f E—hDAI_(m_E),,,r ) /Y

7 H

Substituting these relations into the equations (21) and carrying over the
. . _JnLIJZ . . .
multiplier e into the left hand side we obtain

. —jn 1 WoR
une J LIJZ :—Eez DVWBmO—QDZ un'zAm—E,n mJZ)D‘I—(m—E)yn' |]JZ)><
s n k,m

OEzm OFiz - 7y (—jmodg + jQ
(OEem Ok -m Z(=jmoyo +/Q) 24)
Ox Ox —-mwg + jQ
And, finally, let’s introduce new variables
—jng

Vn:unl}
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Differentiating with respect to the time yields

—jn - jn - jn dyg
V,,=%(un@ / llJZ)=L't,,e e —u, L& i, Oin—=.

dt
dy
As Z-q ,
dt z
— .n
then u, (& as =v, +jnQ.v,.

Substituting this into (24) and carrying over the second term into
right hand side we obtain the set of differential equations, this time without timell
varying coefficients

V”__Ee ENDJ/E-I—DZV vam &§,n(J2) A-m-g),-n [ ;) %

0E 0E,, _ —imwp + jQ
W bem Pk mm L (jmO + )‘j”Qan- (25)
Ox Ox - jmwg + jQ

Note that from definition of Amn follows that
A mg),-n (I2) = Angn (J2) -

Taking also into account that

where Up is a rest energy of particles (in volts), lo is an average circulating current
in a storage ring, v is vertical betatron tune, y is relativistic factor, the set of
equations can be rewritten as follows:

= 0ok orpy2 mzz ZJ B’”—o HJ B"’—o Hx

"4
nTAnY YU,

0E OE,, _ —j j
< kz,m E kz,—m Dzk( Jjmwg + jQ)
Ox Ox - jmwg + jQ

-jnQ,v,,. (26)

Here o;is the bunch length

— 2‘JZ

0, = o)
M 4

The set of equations (26) can be written briefly in the form
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v, = Z Ve M, = jnQ, v, 27)
n
where coefficients M, are determined as

= R0HoR o2 DrDZJ B’”—o H]/ B’”—o @

M
nnt Ay YU,

y aEkz,m DaEkz,—m DZk (_jm(*)o +jQ)
Ox Ox = jmgq + jQ

(28)

Coefficients M n can be expressed via transverse impedance Zr
wo T B
' = 2070 Pav. ZJ Bm—c H:J/ ELG HDZT( —jmwq + jQ),
My yWo m

(29)
where

Zr(=jmwqg + jQ) = ¢ z (2mR)

2% | Zk( Jjmwg + jQ)
k

‘ —m(.O0+Q

R . .
and Bav :V is an average Bunction.

The expression (29) is valid for narrow and wide band transverse impedances,
i.e. for multidand singlel@urn effects.

If only single turn effects remain valid the sum in matrix elements may be
replaced by an integral over m:

cOODO[[Bav J— B”’_o ij Bm—o B< 30)

' T Ay W,
x Zy[=j(m=V)wg] Lm.

At zero chromaticity (k = 0) this reduces to

wOIOBav OIO J, B”’_o H/ Bm—c BZT[—j(m—V)(Do]dm

mn T Ay U

— 00

and going to new variables (M-V) - m one gets

__@oUoB,, DIJ P, Hy B’io HfZT[—jmmo]Dll'm- (31)

nn 4nyW,
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Note that real part of a transverse impedance is an odd function of frequency and its
imaginary part is an even one. In addition, real part of a transverse impedance is
positive only for positive frequency in contrast to a longitudinal impedance.

If n+n' is even the product of Bessel function in (31) is even function with
respect to m also. Therefore only integral of imaginary part Z is nonzero and the
corresponding matrix element is pure imaginary. On the contrary, if n+n' is odd
then M nn’ is pure real.

At nonzero chromaticity (K # 0) elements of matrix are

o woloBavJ— B’f H], B’”_c HIT[—jmu)O]Ijlm.(SZ)

hn 4yl

As the product of Bessels in the integrand of (32) is nonsymmetric with respect
to zero frequency then M ' [$ are complex in this case.

With the set of equations (27) the problem of stability can be reduced to the
eigen value problem for the matrix Bnn

Bnnl = M nn' - Jannr I]]mz
i.e. to solving characteristic equation with respect to coherent frequency shift Aw:
Det[Mnnr - jénnr anz‘FAw)] =0. (33)

Matrix B is twice infinite and for real solving of (33) must be truncated. Note
that truncation should be symmetric with respect to zero mode to give correct result.
As the simplest case we’'ll consider the case of only three modes: zero and
+1 (3t with zero chromaticity.
Interaction matrix M _ _,is symmetricc M _, =M , Change of sign of
nn nn nan.

numbers nor n'changes or does not change the sign of matrix element M nn

depending on whether this number is odd or even.
Taking these properties into account characteristic equation (33) for three
modes can be written as follows

My +jQ, - jAw =My, -My,
—Myg My, — jAW My =0 (34)
-Myy My My = jQ, = ji

or, after calculation of determinant,
(B0)® + j(2M 13 + M g0) (Aw)? =(Q5 +2My; M5 =2M ) Aw= jM oo Q5 =0 .
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All coefficients of this equation are real because My, and M;; at zero

chromaticity are pure imaginary and M is real.

For analysis it is convenient to normalize this equation dividing it by Qg, thus
going to dimensionless variables:
NM+kA?-@1-d?)A-k=0 , (35)
where
A=AW/Q,, k=(My/Q, d?=(2M3Z-2M;My)/Q,.
Note that we have neglected the term 2M, in a coefficient at A2 assuming it

to be little as compared to M.

We have obtained cubic equation with real coefficients. If all three roots of this
equation are real then frequency shift is real and transverse motion is stable. In
another case two roots are complex conjugated and one of modes is unstable. From
algebra it is known that there exist a discriminant, i.e. an expression that allows to
judge what is the case. For equation obtained, discriminant is

D(k,d):Eg—de—;_l—gEZ +E";23_1—%§.

If D(k,d)<0 then we have the case of three real roots and motion is stable.
In opposite case two roots are complex conjugated and one of the modes is
unstable.

Application of the discriminant is illustrated by Fig.1. Here a curve D(k,d) =0

is represented in coordinates Kk,d. This curve is a boundary between stable and

unstable regions of variables k,d. Regions 1 and 3 are stable and region 2 is a
region of instability. Note that discriminant is even function of k. In Fig.1 a curve is
represented for positive k only.

1.2

1

0.a
oot Dk ) am)

Ak 0.6 Fig. 1. Stability regions. Straight line:
T 0.4 a(k)=bk,b=03.

0.2
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As k and d are both proportional to beam current Ip their ratio remains
constant with current increasing. This relation is represented in Fig.1 by straight line
coming from the origin of coordinates. Its intersection point with the curve

D(k,d) =0 gives the threshold values of k and d. There can exist one or two

intersection points depending on a slope of the straight line, i.e. on the ratio of d/k.
But second point is unattainable really because of instability that occurs during beam
accumulation.

In previous papers on the theory of a feedback [7[9] it was assumed that
feedback acts only on the center of gravity of a bunch. Such feedback changes only
the value of k (in our notation). If a feedback is reactive a change of k is real. The

best case is if the k is reduced by the feedback to zero. Then discriminant D(k, d)
gives the condition of stability

d?-1<0 or M7 < Q2.

Thus, reactive feedback allows one to increase beam current but only to some
threshold. Really an increase is not more than 2 — 2.5 times.

Another case was called by R.Ruth [7,8] «an abnormal» regime of the
feedback when the value of k is increased by reactive feedback much more than
unity. In three mode approach «abnormal» feedback permits one to increase beam
current with no limit; really it can be limited by instability of higher modes. But
entering the «abnormal» regime is difficult because of necessity to cross unstable
region (see Fig.1) during beam accumulation.

It is necessary, however, to emphasize that a reactive feedback acting only on
the center of gravity must be pure reactive. The very small resistive component
makes some modes unstable with a threshold determined only by radiation
damping. So the phase of reactive feedback should be stable with high accuracy.
This was found, in particular, by G.Sabbi [14] in his numerical simulations of
feedback.

If chromaticity is nonzero the coefficients in characteristic equation become
complex, and its roots are complex also. This leads to an instability of one mode. It is
nothing but usual headail effect with threshold determined by radiation damping.

But a combined application of chromaticity and feedback gives good results in
suppression of instability and permits one to increase the threshold of TMCI
significantly.

3. Mode equations with feedback

Here we'll derive equations of mode evolution in the presence of feedback. In a
storage ring a feedback kicker is assumed to be placed at azimuth

0 =0,, electromagnetic field of which is acting on a bunch in transverse direction.
The field in a kicker is determined by a voltage from the output of a feedback
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amplifier. At the input of amplifier a signal acts obtained from the strip line picklip.
Pickip is located at the azimuth 8 = 0. The beam rotates in counterclockwise
direction.

The motion of the flth particle obeys the same equation (12), which was

derived in Section 2:
- j(Qpt+EL IR
= e @j(olﬁf/)

mg Q

but the electromagnetic force e(E, —vBy) should include the field created by the

feedback kicker.
This force appears due to electromagnetic field in the kicker strip line:

g = Jkick YU~ Lo) __WoEy _ Vo Whick v~ Lo).

x a y Zk aDZk

(E,.-vB

< 7VBy) (36

where Vkick is the voltage at the input of a kicker, / is a coordinate along a ring,
y=s/c, a is the gap between deflecting plates of a kicker, L, is the distance
between pickmip and kicker (kicker is assumed to be the match loaded and
connected in the direction opposite to the beam revolution), Z, =./l/€ (=120

Ohm for vacuum).
After summing up one gets

V,.
F(l,s)=e{E_-VB ):egﬂﬁxp[y(l—Lo)] +Vmo E
s ¢ 7y £
v
Here v is the particle velocity, &:K:B .
Zk C p

In equation (36) the Lorentz force should be expressed in coordinates of the
accompanying system of an equilibrium particles. For this, first, let's expand F(l,s),

which is periodic in /, into Fourier series:

F5)=Y Fpy(s) @xp@j’%@,

LO
1 ml
where F_(s)=— F(l,s)ex B— '—H]il.
MORE =3 (DL e s
Lo=L,
Here L, is the length of the kicker. Substituting F'(/,s) yields
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Lo
F (s)_ea\/’"—ckmus)a— [ expivi- LO)]IEexpB- 175111-
LO L

v exp(—Ji)
kick 1 R g ,
E—l— 1+B) 3 —-ex -

PR y=JjmlR % pg@ /

and Fourier series takes the form:

|
34

mLO
Vklck XN~/
F, )——@G—EQ1+B)DZeXpEJ R jm/R x
. m O
x{1- EXDD'B/ RD E

For transition to accompanying coordinate system one must change variables
| =z+ wyRt (z being longitudinal coordinate in this system), beforehand passing to
the time domain by the reverse Laplace transformation

0 m(l - LO)D _1D 1-exp[-(y-Jj )Lzlg
F(l,1) _—E}—Dz exp %/kwk (s) AN
R 5

ow let's change / by z+wyR

F(z, z)_—E}—DZepoJ—H]a % %

0 0
1-exp[(y,, —Jj )Lzlg
x1 1 ktck (s — jmwq) 3 p” E
§ Ym™ IR
Here
_ S— jmowy
Ym —BE‘t :

Note that direct and reverse Laplace transformation are fulfilled over fast time,
i.e. over betatron oscillation time. Slowly changing coordinate =z at this
transformation is considered as a constant.

The force F(z,t) is calculated above for arbitrary point z. But we are
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interested of this force at the point Zf where the particle with number [ is
situated:

O mz O
Fzy.1)= LGHa—BDZ eng m;f g}xpﬁjmTff’Er

2TR

g .m
. 1-expl[=(Y,, —J E)Lzl
xL . ik (8 = jmog) 3

(37

(0 O O

Vo =
H m =g
The voltage at the input of a kicker can be expressed as

Viiek () = K(s) 25T V4 (s),

where V, is a voltage at the output of picklip, K(S) is the gain factor of a feedO
back amplifier, 1 is the signal time delay in a cable between pickip and a kicker.

Next we’ll calculate the pickip output voltage V;(S). For matched strip line
pickip this voltage is

VA _
Vi() =201y +e Vi1 7,,), (38)

where Z, is characteristic impedance of strip line, L; is the length of pickip line
and induced currents are

Iy (s) = J'](x,y,l;S) L&y (x, y, 1) Litx Lly Lell
Al
I(s) = I](x,y,l;s) () (x, v, 1) Caix iy Ll
A,
Here € and &, are the end field of strip line, I is the beam current density,
Aj and A4, are the end regions of the strip line.
In time domain induced current [, (¢) is
Iy (1) = J’](x,y,z; t) @ﬂx,y,l)ﬂix&ly v/ (39)
Al
where z=1-wyRO.

The current density (X, Y, Zt) is periodic in z and can be expanded into
Fourier series
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Jrpzn= Y Tyl e s ,,,Zj’” (x, i) %

m=—co
X epoj m—l H}xp(— jmugt) . (40
O RO

Here
1 " FB‘
- = mz
i (x,y,t) =—— i(x,v,z,t) [&X j — .
Jm(y)ZT[R_LJ(y ) - j 5 B
Substituting this into (40) and then into (39) gives

_ 1 = . , mz .m
w0O=3 o J’J(x,y,z,r) oxpL 2 L (e, el 2
1

xexp(-jwqt) Cilx ety 4l Lz
Note that

TR
- .mll
J’ é1(x,»,1) @Xij —H]il =21R (&1 _, (x, ).
O RO
-TR
In this way

(0= 3 [T expl S

@él_m (x, ) BXp(— jmot) dx Ty Tk . (41)

For the pointlike bunch
J (. zi0) = e IN 0 B(x - x0) BB(») Bz - o),
where Xg(t), Zzo(t) are coordinates of the particle.

Assuming that particle velocity possesses only longitudinal (zfh) component
and substituting current density into (41) we get
m &0

I ()= eV WD er. y (x0) @XPEj— ) XD~ jmegt) (42)
m
Analogously
m(Z
T25(t) = eIN WV Ty €., (v0) [BXPEj — ) XD jmodoy) (43)
m

The expression (38) for the voltage V;(S) at the output of pickip contains the
Laplace transforms of induced currents. The last as it follows from (42) and (43) are
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U mlz U
]].b (S) = equ Ll:elz,—m (xo) @X%’j 0 E}Xp(—jm mol)lj,
Lo 0

0 m , 0
I35 (s) =elN ¥ Dz L Sazz,—m (x0) @XP@ 0 EEXD(—/M El*)of)g-
m

These induced currents are written for one particle with coordinates Xg, Zg, which is
a source of the field. But in our case we consider several macroparticles in a

separatrix (e.g., h macroparticles). The full current is then equal to the sum of the
currents of all macropatrticles in one separatrix (e.g., h macropatrticles)

h
OV ¥ mlip[1 _
I (s) = Z ZL%k,-m(xf')ﬁxpEj Rf E} f’”‘*’o’g. (44)

mlz o _
—m(xf')&XpE‘j 4 EE Jmol % (45)
#2 R g

The next issue to be considered are functions ey, _, (x 1) and ep; _, (x ).

For further calculations it is convenient to locate the origin of longitudinal coordinate

in laboratory system (/) at the beginning of the pickip strip line. The simplest case

is to assume these functions in the form of ddunctions

ey, (x,1) = E(x) [8(0); eg, (x,1) = —E(x) 8/~ Ly) -

Normalization should be such that €, and ey, were the field values at the unity

potential difference between the plates of strip line. Then

Z;e) | Sz =7 2£nxq) expt %)'

In some vicinity of x =0 the function E(x) can be presented approximately as
E(x) OE'(0) k.

Substituting this into (44) and (45) one gets

B
11b<>-eENW; > G o ety ey ) o

elz,m =

%
)= -2 Z > R e

X expB— j— E 47)
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Output signal voltage then will be

h '
Vi) = =22y + eV 1) = - 22080 oy 5 2O

— mlz o
X L{x (& meOt}@xpE»j Rf E@—exp j%—y@llﬁ.

As a result we obtain

Viiek ) =K() 27 T Vg () =-K ()2~ BZ?OBeﬂD Z

l’lZf' _ 'ﬁ_ EE
png

Here index of summation m is changed by n to distinguish from that in sum for
F(zf,1) (see (37)).
Now the expression (48) for V.. (s) should be substituted into F(zf,s)

X L{x f @—jnwol} @Xp%j

(see (37)) and then into equation of motion (36). After averaging by method
described in Section 2 we’ll get the set of equation for time evolution of complex
amplitudes of transverse oscillations of the macroparticles in the presence of a
feedback
z + ' h
Vs :—Z—QL?sz E eQ ot Bz FOq S v 3 K(=jmeg + jQ)x
J mgas (2mR) a =1 m

. . . 0 U
x o(JmWo = JQ)T = jmLo | R %—exp%’%%@xp(—ym UJl/R)%[>< (49)

Xl—exp(ym _Jm/R)uz |}‘](}'n—a)zf IR @—j(m—E)Zf' /R
Y, —Jml R

Written above equation set (49) does not contain yet the terms corresponding to the
wake field forces. Its transformation with going to the mode variables as it was done
in Section 2 and adding the wake field terms yields

vy :_Zvn'dMnn' ) TNV, (50)

n
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where
woloB B@
nn' = 4115/[6(;‘;,[ mB]/ B’W—@HIT[ —j(m=v)wg]m (51)

and

00

_woloByy EZOE (0)(R Z s B’"—EbHII Bm_m,EL

' T Ay W,
x K[~ j(m =)o) @J(’”“’)‘*’OT /Mo / R (52)
><g;l‘exl)[‘(\/m = jm! R)L1]} §1-exp[~(y,, —jm/R)L,]}
Y
2

Here Y, —jm/R=j(v-2m)/R, B, =1.
Let's analyze expression (52) for  F,, . There are rapidly oscillating factors
under the sum symbol, namely, exponents with m index in their power:
o /MWoT = jmLg IR _ ejm(oooT -Lo/R) .
But these exponents vanish if the relation is satisfied
weT-Ly /R=0. (53)
This relation determines the relevant delay time in a feedback cable
Ly _L
w R ¢’
This delay is the duration of the particle travel from pickip to kicker. Under this

condition a bunch and a feedback signal arrive to the kicker simultaneously.
Character of the feedback (reactive or resistive) is determined by the exponent

remaining in F

nn'
o~ VWOT _ e—JVLO/R’

in other words, by the distance between pickip and a kicker. But this distance
cannot be adjusted operatively. The way to control a character of a feedback is, as it
is known, to use two pick[lips separated by a quarter of a betatron wavelength.

The signals from pickips should be summed with arbitrarily regulated scale
coefficients ky and ka:

e Mol Ry + i),

Adjusting of coefficients ki and k. allows one to have reactive or resistive or

some intermediate feedback.
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The expression
, (Y, —JmIR)Ly) (Y, —JmIR)L,
ZoE'(0)[R . —e M l-e '/
Oz—aD([‘J(m‘V)wo] )(v ) c

m—-—
2

ontained in an, have a dimension of transverse impedance (Ohm/m). We denote

it as the transverse feedback impedance Zg[-j(m-Vv)w,]. Then

=@ HoByy - VEo/R
hn 4T[D/EUO

L= g -t o
mZ_lJnngm-z %-—‘Vn ngo-z %IF[ J(m E)(’*)O] (54)

This expression is valid only if the time delay of feedback signal is equal to
particles travel time (see (53)). Determined by equation (53) delay may be too large
for large accelerators, of the order of tens to hundred microseconds. In real cable
with so long delay there would be very large attenuation of the feedback signal.
Digital device can create such delay but this device can reproduce only signal
proportional to the coordinate of center of gravity of a bunch but not to higher

moments of a bunch. Therefore in this case only Fgywould be nonzero.

(kg + j [&p) %

Frequency response of a feedback impedance is determined by that of the
amplifier and the length of pick@mip and kicker lines. If the bandvidth of the feedback
includes many harmonics (m(3) only the singleurn effects are significant and the
sum by m can be changed by an integral over m :

oM, -jviy/R o - ;
Fag= 0 P Mol Ry 4y _IJC%@'"T%Z@ZF[—/(m—vmdm.

Thus, by variation of k; and %, a feedback can be made with arbitrary phase. Its

gain can be regulated by value of Zy (e.g. by the gain of amplifier). But only Fgq is
nonzero.

4. Stability analysis with feedback
Stability analysis is brought now to eigenvalue problem for the set of differential

equation (50). But we'll reduce, at first, this set to dimensionless form to facilitate its
analysis. A solution of the set can be written in the form:

v, :Vn [exp(jAw() |,
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where V, is an amplitude, Awis a frequency shift of the oscillation mode. Imaginary
part of the frequency shift gives decrement or increment of corresponding oscillation
mode. Positive imaginary part corresponds to damping of the oscillation mode and
negative one corresponds to antidamping, i.e., to instability of oscillation.

Substitution the solution into equation set yields

jhwv, = —Z VM, +F, )= jnQ_ IV, . (55)
n

Further, let us divide this equation set by synchrotron frequency Q , denoting
Aw/Q, =N, M /Q,=my;; Fn/Q,=f:

JA |]/n = Z Vn' |lmrm' +fnn')_jn |]/n
n
or
Zvn, Wm,,y + frp) + J(n+ NV, =0, (56)
n

Equation set (56) can be rewritten in a form

ZVH. Wm, + £y +Jn0,,0) + AV, =0. (57)
n

It is now the set of a uniform linear algebraic equations that has nontrivial
solution for values of jA that are minus eigenvalues of matrix B, which elements
are

Bun' =My + g *Jn 0,0 (58)

Now, values mnn’ are

o DoToBay R o o€ 0 mm-g O,
_J;”IZIR *O"oRrR ‘O

m =
ANy W, @,

X Z [~ j(m—v)wo] i .

Let us change variables in integral (keeping in mind that & =v —K))

o
(m-v) - m, m:xlﬂﬁ; y=kE=%
a, R

then m,, are

(.OouolzBavm « Rm)o
m. = J (x+ V)W o (x+V) X j X . (59
iy, [ T e T%J : E]/X (59)

z
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Further, for Z; we take the form of that for broad band resonator impedance
with resonant frequency . and quality factor Q-
Rr

2.2 '
mwy w§ H
- 20 _y

R R
or, substituting m=x43—; and p:—EIw—O, we get
O-Z 0-Z wC

Ry
- p&+j0Up?x?-1)

Zr(=jmwy) =

Zr (= jmwy) =

= RT &T (—px). (60)

For m,, we write now

= W0 Ho Bay [RRr
Ay Wy @, [@,

Sn (4 y) Uy (x+ )G (-px)lix. (61)

We'll represent average current | for convenience of analysis in a form
lo=1,0,
where [ is dimensionless current and [/, is certain characteristic current so
determined that coefficient in front of integral in (61) would be the unity
Wo Uy Bay (RIR7 _
MWy o, [Q,
The current |, is determined by this equation
_AnyWo o, Dy
Bav |]T (R .

b (62)

Now element my,, is

[ee]

My =10, =1 DIJ,, (x+ )V, (x+y) Ep (—px) Cix . (63)

Note that y is preseﬁi>o in the integrand due to chromaticity . For zero
chromaticity it is absent and integral is pure real or imaginary depending on whether
the sum n+n' is even or odd.

Analogously, for only nonzero fyy we get

foo=1Tigg=1 Bﬁ—F 10 Y+ Thg) O S35+ ) B (o) Bl (69
T —00
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It is assumed that value jyg can be made with arbitrary phase and module

proportional to current /.
Thus, the elements of matrix B are

B,y =10, +10,, +jnld,,. (65)

The symmetry properties of i, are analogous to that of A/, , Namely,

Iyn =iy change of sign of n or n' changes or does not change the sign of
depending on whether this number is odd or even.
We'll limit our consideration of the stability with feedback to the approach of

three modes: -1, 0 +1. Corresponding matrix with the account of symmetry of i, is

Inn'

Ulhy—-j  —1hpo —Ilh; C
0 . . L

B=pg-Ilh [IWigg+joo) Ilho - (66)
H-10 ITho Iy +jE

The frequency shift A =Aw/Q, can be found through the eigenvalues by of
this matrix
Ay =— = jbg.
k Q. JOk
The £ [h mode is stable if the imaginary part of A is positive.

Further analysis shows that stability of all three modes can be ensured at
negative chromaticity. In this case, as it is well known, the zero mode is unstable and
+1 modes are damped. Introducing the resistive feedback we can damp the zero
mode also, the £1 modes remaining stable.

This statement can be verified by given above formulae. We take for

illustration data of the former LEP storage ring. These data relate to 90/60 optics,
which was used in 1994[96. For this optics there are following relevant data (at

injection) [18]: E =22 GeV, R=4245 m, fp=11.245 kHz, Q, =0.014817,
0, =1.834cm, o =1855.10"

Unfortunately, the accurate date concerning broadband transverse impedance
was not found. For definiteness we take O, = 1.5, f, = 1.5 GHz that is not so far
from reality. Calculation gives for these data

p=R % _1735
o, W,

z
Below we present plots of real and imaginary parts of Ax vs. dimensionless
current [ atp=1.735 O =1.5and various values of y and jyq.
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Fig.2 represents Re Ax and Im A« vs. [ at zero chromaticity y and zero

feedback jgg. It is a picture of well known TMC instability with the threshold 7
approximately 1.083.

12 T T L. T---
Ee(MTy) 05 —
hi(mjﬂ 04— -
R cDy)
- o
B (XDy)
m(}‘(l)z —0.4 ‘ —
- S
(M) s Rt
- 1 | 1 | | l 1 I 1 I
1'20 0.5 1 1.5 2 2.5 3 _1'20 0.5 1 1.5 2 2.5 ]
I I
omrerd OITeht
Fig. 2. Plots of Re A and Im A vs.l. Fig.3. ReX and Im A vs.l. p=1.735;
p=1735;, Q=15; y=0; joo=0. Q=15; y=0; joo=0.8.

In Fig.3 there are depicted the same plots but with resistive feedback. From
Fig.3 one can see that at positive joo resistive feedback +1 modes are unstable, the
zero mode being stable.

In Fig.4 Re Acand Im A¢ vs. [ are presented at negative chromaticity but
without feedback. As can be seen from this Figure at negative chromaticity zero
mode is unstable and +1 modes are stable. It is well known headail instability at
negative chromaticity.

12 T T T

?*_(m)n) 0.8
hi(}ﬂ)'ﬂ 04
Rx(m)lj

hi(}mﬂ Fig. 4. ReX and Im A vs.l. p=1.735;
Re(M(Dg) 4 0. 7 Q=15 y=-03; joo=0.
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And, finally, Fig.5 and Fig.6 represent Re Ac,and Im Ax vs. [ at negative
chromaticity and with resistive feedback. The difference between Fig.5 and Fig.6
consist in frequency range of a broad band resonator transverse impedance. In Fig.6
frequency range is higher than in Fig.5 (p is less because £, is higher).

As it follows from Fig.5 and Fig.6 combined application of negative chromaticity
and resistive feedback makes possible one to keep stable all three modes.

12
Re(WIy) s
hi(h(nu) 0.4
=)
oo 1]
o (W1
- -0
Re(img) T . .
m{iDy) s T ’ .
- [T N N N _ Lo
12 05 L 15 2 a3 3 s 1 15 2 23 3
I 1
OIrerit [afinciif
Fig. 5. ReA and Im A vs.l. p=1.735; Fig. 6. ReA and Im A vs.l. p=0.7;
Q=15 y=-03 joo=12. Q=15; y=M0.7; joo=18.

Now let us estimate a chromaticity necessary for stabilization. In plots Fig.5 the
value y is assumed to be —0.3. From definition of y follows that

vVizalk=a [—Ii
O-Z
Using data of LEP yields v' 1-12.9. It is not so large chromaticity if one takes
into account that natural (uncorrected) chromaticity of LEP was near —200 [19].
These results were obtained in the three mode approach. In this approach a
threshold of instability is not seen: the beam is stable at any current. For checking
the five mode approach was used. As the five mode approach have shown the
threshold appears again but at current 3 — 5 times more than without feedback.
An advantage of described method of stabilization of TMC instability consists in
large enough tolerances that takes place for all values involved. It is admissible for a
resistive feedback (in combination with negative chromaticity) to acquire some and
not small reactive component in contrast to reactive feedback that demands highly
tight phase tolerances.
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5. Conclusion

In this paper the mathematical formalism have been developed that allows one
to analyze Transverse Mode Coupling Instability with feedback in rather simple way.
The result is that combined application of negative chromaticity and resistive
feedback can increase the threshold of instability by factor of 3 — 5. The large
tolerances for parameters of feedback are admissible.

Acknowledgements. | thank my former student (1996) A.A.Krasil’'nikov for his
contribution to Section 3 of this paper [20].
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