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Abstract

The polarization tensor is calculated which originates from
interaction of a photon with the electron-positron field. The
effects of multiple scattering of electrons and positrons in a
medium side by side with external fields is included. The corres-
ponding general representation of polarization tensor is found
in the form of two-dimensional integral. The both effects may
be essential for propagation of high-energy photons in oriented
single crystals.
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1 Introduction

As known, the propagation of electromagnetic wave in a medium is
defined by its dielectric tensor &y (w). For relatively low frequency w
(e.g. visible light) the dielectric tensor is defined by atomic phenom-
ena. When the frequency of wave is much higher the atomic frequen-
cies, the dielectric tensor has a form

Anne?

gzk(w) = ikg(w)v 5(&)) =1- w2’ w(% = m (1'1)

where n, is the number density of electrons in a medium, m(e) is the
electron mass (charge), wp is the plasma frequency, in any medium
wp < 100 eV. So that for w > wy an influence of atomic phenomena
on propagation of electromagnetic wave in a medium becomes small.
It should be noted that for radiation of high-energy particles the char-
acteristic frequency is ywyp, v is the Lorentz factor.

At very high energy the nonlinear effects of QED enter into game.
These effects are due to interaction of photon with the electron-
positron field. One of them is the polarization of the vacuum by a
photon. In the presence of an external electromagnetic field the polar-
ization of vacuum was considered first in the pioneer papers [1]. In the
strong field this effect can be essential for propagation of high-energy
photons [2], [3].

To evaluate the polarization tensor one has to consider the
amplitude of photon scattering which included the polarization op-
erator. We use the quasiclassical operator method [4], [3], [5], [6]. In
this method the mentioned amplitude is described by diagram where



ton with 4-momentum k(w, k) and polarization e; and then annihilate
into final photon with 4-momentum k and polarization es. This corre-
sponds to use of the non-covariant perturbation theory where at high
energies (w > m) the contribution of this diagram survives only. For
this energy of photon this process occurs in a rather long time (or at
a rather long distance) known as the lifetime of the virtual state

Iy = — (1.2)

where ¢. > m is the characteristic transverse momentum of the pro-
cess, the system i = ¢ = 1 is used. When the virtual electron (or
positron) is moving in a medium it scatters on atoms and changes the
velocity under influence of external electromagnetic field. The mean
square of momentum transfer to the electron from a medium and an
external field on the distance [y is

0 =q:+db, ¢ =4nZ%a’n,Lly, L= L(g}) = In(q2a®),
qr =€F.ly, F.=E, +vxH (1.3)

where a = e? = 1/137, Z is the charge of nucleus, n, is the number
density of atoms in the medium, a is the screening radius of atom,
E | is the electric field strength transverse to the velocity of particle
v ~n =k/w, H is the magnetic field strength.

In the case of small momentum transfer ¢y = @ < m the influ-
ence of a medium and an external field is weak, in this case g. = m. At
high energy it is possible that ¢. > m. In this case the characteristic
value of the momentum transfer (giving the main contribution into the
spectral probability) is defined by the value of g¢. The self-consistency
condition is

2nwZ%an,L(q mOr? w
q?:q}%: Qa (f> 1 _m27K/:—36F7
qy 4Qf m
F=E-—nnE)+nxH, (1.4)
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process in a homogeneous external field F. With ¢. increase the life-
time of the virtual state (1.2) decreases.

We will use the following normalization condition for the amplitude
under consideration

M =2wAw. (1.5)

The amplitude M is the contraction of the tensor eg-i)*e,(f) (e and
e) are the polarization vectors of the initial and the final photons)
and the polarization tensor M;,. We select the basic vectors as

F

—, ey=nxej. (1.6)
|F|

e =
Since the tensor M}y, is invariant under the space inversion then in the
selected basic vectors it has the diagonal form

1
Mj, = 3 [0k (M1 + Mag) + (e1je1r — egjear) (M1 — M) (1.7)

In absence of external field it is convenient to describe the pro-
cess of photon scattering using the helicity polarization vector
ey (A = £1) connected with momentum transfer A (see Eq.(2.34)
in [9]). In presence of external field and for A = 0 we choose the
polarization vectors in the following way:

1
ey=—(e; +iley), (exey) =1, (ere’,)=0, e\xn=iley.

V2
(1.8)

In terms of helicity amplitudes M, and M, _ the tensor M;; and
the corresponding dielectric tensor £ has a form

2 2
M1, = 0k 4 + (erjeir — ezjean) ki,

1
Ejk = Ojk — —aMjk, k2, =My, ki_=M;_ (1L9)

The polarization tensor k?k is diagonal in the basic vectors e; and e
(1.6). The corresponding mass squared are

=k =ki, +K_, k=k,=k_ —k_ (1.10)
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1 1
Wy'(e) = —Im [(ee1)?k? + (ees)?k3 | = ~—Im (K3, + &kt ],

(1.11)
where &3 is the Stokes’ parameter. For unpolarized photon one has
1
Wl = ~—Im k3. (1.12)

2 Polarization tensor

The polarization of a medium by a high-energy photon in the presence
of an external field is described by the amplitudes of photon forward
scattering. The general representation of photon scattering ampli-
tudes without change of helicity M, = M__ and with helicity flip
My = M_, was obtained in [9] (see Eq.(3.14)). In the mentioned
paper [9] the helicity amplitudes were normalized by the condition
ImM, , = wop(w), where op(w) is the total cross section of a pro-
duction of electron-positron pair by a photon with energy w. In the
case under consideration we are interested in corrections to the energy
(mass) of photon and it is convenient to use the normalization (1.11)
and (1.12)

wde
ge’’

w
k‘?\)\/ = 72am2/T>\,\/— (21)
0
where
Ty =T, Th_=T_4,
T,y = <0|81 (G_l — Gal) + s9p (G_l — Gal) p|0> ,
et 4e?

T, =-2 <0|53 (e’ p) (G_l — Gal) (erp) |0>, s1=1, s9 = R

2 /
33:%,G:H+1, H=p>+V,(0), Go=p>+1,¢& =w—ec.(22)

These expressions are similar to the expressions for probabilities of
bremsstrahlung [7] and pair creation by photon [8] when the involved



The developed approach is given in these papers in detail. The same
method was used in [9] for analysis of coherent scattering of a photon
in a medium. In absence of an external field one can use the results of
this paper putting the momentum transfer A = 0. A modification of
radiative correction under simultaneous influence of multiple scatter-
ing and homogeneous electromagnetic field was considered recently by
authors in [10], where the anomalous magnetic moment of an electron
was considered. The potential V,(g) can be obtained from Eqgs.(2.7)-
(2.11) of [10] with the help of standard substitutions w — —w,e — —&:

ge’

V;’(Q) = _ZV(Q) + 2’{193 K’, = EK/’ (23)

where k and F are defined in Eq.(1.4). The potential V(o) has the
form [7], [8]:

4 2 72alee'n a?
_ 2 _ a _ 52
V(e) = Qe (Ll—Hn—Q2 20), Q=———7—"7, Llfln—)\g,
as2 - 71/3 —f - - 2 1
52 1837 = f(Za)=(Za)? Y ————5-, (24
)\c e ’, f f( Oé) ( Oé) = k(k’Q (Za)g)v ( )

here C' = 0.577216... is Euler’s constant, n, is defined in (1.3), g is
the coordinate in the two-dimensional space measured in the Comp-
ton wavelength A., which is conjugate to the space of the transverse
momentum transfers measured in the electron mass m.

We split the potential V(@) in the same way as in Eqs.(2.9)-(2.11)
of [10]:

Vy(@) = Vpr(e) — iv(e), Vor(e) = —iVi(e) + 20, V(o) = a0,

2 2 2
— _ Qg2 _ qo o
q=QL., L.=L(o.) =In g2 v(g) = — I (ln 102 + 20) .(2.5)

Here the parameter g, is defined by the set of equations (compare with
Eq.(2.20) of [10]):

o.=1 for 4(1{'2 +QLy) <1
4o; (n’QQZ + QLC) =1 for 4(k"*+QL)>1, (2.6)

7
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potential (2.3) we present the propagators in Eq.(2.2) as
G =G ' =G -G+ G -Gy, (2.7)
where
Gpr = Hpr +1, G=0Gpr —itv, Hyr = p2 +Vpr. (2.8)

The representation of the propagator G~! permits to carry out its
decomposition over the ”perturbation” v

G ' =G =G piwGa+GrivG G at... (2.9)

The procedure of matrix elements calculation in this decomposition
was formulated in [7], see Eqs.(2.30), (2.31). Here the basic matrix
element is

< |G, +|oy >. This matrix element can be obtained from Eq.(2.15)
in [10] making the substitutionsiw — —w,e — —¢, x/u — K’

o0
< 016, tler >=i [ dtexp(=it)Kye(er, @3:1),
0

KPF(Qla QQvt) = Kc(glv QQvt)Kn(Qla QQvt)v (2-10)
where
v W, oo 2
Kc(01:05,1) Trishor P { 1 {(91 + @3) coth vt
e
sinh 1/1591'92 ’
4ik"*t 2 vt
K. (01,05,t) = exp [ 7 <1 s tanh 3>
21 vt
_;K”(Ql 4 92) tanh E} . (2.11)

where v = 2,/iq, q is defined in (2.5).



decomposition (2.7). This means that result will have the logarithmic
accuracy over the scattering (but not over an external field). The
matrix elements entering into the mass correction have in the used
approximation the following form

_ _ 1 7 . v 1
b~ 036 o i)
0

sinh vt

My = (0lp(Gyp — Gg)plo)

o
1 ) vep 4x/? o vt iv i
- it tanh? 22 ~ X a
A7 / exp(—it) sinh Vt< 2 an 2 + sinh vt 2|
0

My = (0l(eZp)(Gyf — Gg')(e+p)[0)

oo

2
t
= " /exp(—it) PP tanh? %dt,

2w sinh vt
0
4ik*t 2 t
op = @K' v,1) = exp [—% <1 — — tanh V—)} . (2.12)
v vt 2

Integrating by parts the term containing 1/ sinh? vt together with
the subtraction term in expression for My we find

v T , vt (4K
My = i /exp(—zt)goP tanh; < 2 + 1) dt — M, (2.13)
0

Substituting the found expressions for M; and My into formula (2.2)
and then into Eq.(2.1) we obtain the general expressions for photon
masses squared under simultaneous influence of multiple scattering in
a medium and an external electromagnetic field

2 w oo
B2 am* wde /67“
T or ge!
0 0
vt [ 4k'? v 1
X tanh — 1] — —p, — — || dt (2.14
S2vipp a5 ( V2 + ) 53 (sinhut(pp t)] (2.14)

9



2am wda _ © vt
kK2 = / TP tanh? —dt 2.15
- 66’ vsinh vt A 2 ( )

In the absence of external field (k' =0, ¢, = 1) we have

T wde vt s3 v 1
k2, = / [ t h——< —)}dt
=+ savtall 2 2t \sinhvt ¢

— o fors 1) o o0 3]

k3 =0, (2.16)

where p = i/2v, ¥ (p) is the logarithmic derivative of the gamma func-

tion. Subsisting the result obtained into formula (1.12) we have the

probability of pair creation which agrees with formula (2.10) in [8].
In the absence of multiple scattering (v — 0) we get

am? [wde T S3
k:_QHL:—/—,/e t|:82/{,2tg0F——(g0F—1):|d
0 0

T €€ 2t
y W 00
kL = —% u;—j,gS;),ﬁ'?/e“gpptdt, (2.17)
0
where ) s
YF = exp (2 I{/?)t ) (2.18)

For this case the expressions for k:i2 (1.10) after substitution results of
(2.17) agree with masses squared of photon calculated in an external
electromagnetic field (see [3] and references therein).

We will analyse now the results obtained in different limiting
cases. In the case when the both characteristic parameters are small
(v} = 4QL; < 1, k < 1), the main terms of decomposition of the

10
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mass squared both on account of the multiple scattering and an exter-
nal field
2 7 1 59 2
k3_+:ﬂ —i—i<1— >+_(i>
T 9w, 2114 225 \ we
331 w . ( 8wF> 11 <w>2
3 Loexp [ ) = (2
1612 wr p 3w 90 \wp ’

9 am?| V31 w ( 8wF> 1 (w)2
kY =—1i —exp|l—— |+ | — ;
T | 16v2wr 3w 30 \wp

WL We, WK wWp. (2.19)

Here the notations are introduced:

m H m?
= m, wp = m|f0, Hy=— =4.41-10"0e.
(2.20)
For used notations see Eqs.(1.4), (2.4). The correction x 1/L; follows
from the first term of decomposition in Eq.(2.9). In gold the value w,
is we = 10.5 TeV, this is the typical value for the heavy elements.

In Fig. the functions Re k2 , (curve 2) and Im k3, (curve 1) are
given for the case when the influence of a medium is taken into account
only (Eq. (2.16)). The both curves are normalized to the asymptotics
given by Eq. (2.19) in the limit wp — oo.

In the case when the influence of an external field is small compar-
ing with effect of a medium w/wr < (1 +w/w.)** we can present the
expression for k? as

We
€

E? = K} (w.) + AR (wp). (2.21)

Here k?(w,) is the photon mass squared under influence of a medium
only (in absence of an external field ' = 0) is given by Eq.(2.16),
where the function L. is defined in Egs.(2.5) and (2.6)

dee’ w L 1 w

2 . . 1

= 4iq = _ =w,—, L.~Li|1+—mIn(1+—|].
v 1q 7 o2 wc’ We We Lca c 1 |: + 2L1 n ( + %%)2}2)

11
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Figure 1: The functions Re k2 , (curve 2) and Im k2, (curve 1) ver-
sus the photon energy taken in units w. (because of this the curves
are universal) for the case when the influence of a medium is taken
into account only (Eq.(2.16)). The both curves are normalized to the
asymptotics given by Eq.(2.19) in the limit wp — oo.

Retaining the main terms of decomposition over &% in Eqgs.(2.14) and
(2.15) we find the corrections Ak?(wr):

AR () = i T / i / exp (i) (2.23)

27 wF

z ) 21 9 % 183 z
X {32 {tanhg (1 — 2;) + - tanh 5] + sinh 2 (z — 2tanh §> } dz,

. tanh? Z
AR _(wp) = am e /—s;;/exp( 1/) il 58

27T wF sinh 2

In the limit w > w, one can use the asymptotics found in Appendix
A in [8] for calculation of the photon mass squared ki 4 (we):

12



2am W
w0 = - 20, =i, (221)
3 1 3
M(a) ~ —2 + <2ln2 - 5) In—+A— 7;8‘1,
A=In2(2In2-1)+ 1—|—C —22 lnn—0736629

It should be mentioned that in the limit wgp — oo this formulas gives
k2 . at w/w. = 10 within accuracy better than 7% and at w/w. = 100
within accuracy better than 0.3%.

The corrections Ak?(wr) due to action of external field in the same
limit w > w, are

2am? ww, .am? ww,

E(1—-In2), Ak _(wp) i

2 ~Y
Ak (wp) ~ —i 27 o

(2.25)

In the case when the principal effect is due to an external field, the

main contribution into the photon mass squared is given by Eq.(2.17)
and corrections connected with influence of multiple scattering are

k? = k% (wp) + AkQ(wc)

d 1
AR (we) = %i/ j{ /exp {it (1 + gm/Qtzﬂ
0

0

3 wF

2 1
<8zt+3+—) + s3 (Sit—i—m)} dt + — (252+33)}

T 1
/exp [—it (1 + §/€'2t2>}
0

20m? w [ d
AR (w) = -T2 [ 2,

151 we w
0
1 7

x (2t =3+ 5 b+ 5o ). (2.26)

Here the function L. is determined in Eqgs.(2.5) and (2.6) at @ =0

w

L.~L1|1+—1In(14+—|]. 2.2

‘ 1{+ 3L, n( +WF>} (2.27)

13



mulas (2.14) and (2.15) and integrated by parts the terms with high
powers of ¢ in integrals over ¢. Note, that using Eq.(1.12) we can obtain
from Eq.(2.26) the correction to the probability of pair photoproduc-
tion due to effect of weak multiple scattering. The result agrees with
Fq.(7.136) in [6].

In the limiting case w > wp we have from Eq.(2.17)

S5am? ;= T3(2/3) (3w\?3
¢ S TA/3) <E> - Fi-lor)

1
k3, (wr) ~ = —5ki+(wF).

(2.28)

For corrections originating from the multiple scattering we have from
Eq.(2.26) the main term of decomposition

dam® 2 T3(1/3) (3w\'/? (wp\*/?
2 ~ "6 — W
Ak++(wc) = 75w e F(2/3) (wc> (wc> ’

1
AR _(we) = §Aki +(we)- (2.29)

3 Conclusion

It is curious that in the scope of the used method (see e.g.[9]) it is
possible to find many of obtained in previous section results (up to
numerical coefficients) basing on very simple form of the amplitude of
photon scattering

ol
M ~ —¢* 3.1
—a (3.1)
where ¢? is defined by the equation
orwZ2a2n. L(g? 4+ m2 6,.2
@ = i m e (q2 m) _ r (3.2)
g +m 4(¢* + m?)

In the case qj% < m? (|q]* ~ q]%), see Egs.(1.3) and (1.4), the
imaginary part of the photon scattering amplitude in forward direction
(Egs.(3.1) and (3.2))is defined by the value ¢ while the real part of
this amplitude is a sum of the correction ~ ¢%/m? and the momentum

14
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Mo @2 | em) | am) &

m? m4 4

(3.3)

At strong multiple scattering (¢2 > m?) and in the case ¢% <
g3 (K*mS < ¢f) the value g3 ~ qj% is defined by Eqgs.(1.3) and (1.4)

qﬁ(qs) = 27TwZ2a2naL(q§), (3.4)

and the photon scattering amplitude (3.1) is (compare with Eqs.(2.24)
and (2.25))

- mSk2

f—— .

4Q§ (QS)
When the main effect is the action of the field k > m and in the

case ¢2(¢%) < ¢% (k?mS > q¢iq}) the value ¢ ~ qj% we have (see

(1.4))

M~ = e g (g,) ~ (3.5)

mS k2

4 ?
and the photon scattering amplitude (3.1) is (compare with Eqs.(2.28)
and (2.29))

a5 (qr) = (3.6)

ar =« —iE
M~ = [e ™S qh(ar) + ¢ g2 (gr)] - (37)

It should be noted that beginning with some photon energy w = wy,
the radiative correction to the value Re &j; in the absence of a field
(k = 0) becomes larger than w3/w? (see (1.1)). Let us estimate wy.
According to formulas (3.1) and (3.2) this effect originate at values
q®> < m?. Because of this for estimate Re M (3.1) it is necessary to
take into account the next term in decomposition over ¢2 in (3.2) at
x = 0. We find

4 2
aqgz(m 1 « 1
ReMsN_qs(Q), TR VUL -,
T m w T W Lo
Re M, 7ww? )\(2: a Lyga
~N ——— Wp 7 — wq. 3.8
w% aw%L%ad’ b T Ae 0 (3.8)

For gold one obtains wy ~ 40 GeV.

15
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one of interesting applications of the result obtained above. In this case
we have both the dense matter with strong effect of multiple scattering
and high fields of crystal axes or planes. As known, the Landau-
Pomeranchuk-Migdal (LPM) effect (influence of multiple scattering
on processes of bremsstrahlung and pair creation by a photon) is most
pronounced in the heavy elements. The same is valid for the process
under consideration. Let the high-energy photon incident on crystal.
The angle of incidence is small and such that the distance from axis
o (or the distance from plane z) can be considered as a constant on
the formation length of process (the constant field approximation is
applicable, see Sections 12,15 in [6]).

For orientation of a crystal along an axis the ratio of density of
atoms in the vicinity of axis n(g) to the mean density n, is

<« v

fax(g) — n(g) _ eXp(fQQ/Qu%)’ (39)

Mg 27ru%dna

where uq is the amplitude of thermal vibrations of atoms, d is the mean
distance between atoms which form the axis. This ratio is maximal at
o = 0. For numerical estimates we use for definiteness the tungsten
single crystal. For the axis < 111 > in W the ratio £,,(0)=370 at the
room temperature (7' = 293 K) and £,,(0)=1020 at ' = 77 K. The
effect of multiple scattering becomes strong at characteristic photon
energy we(ny) ~ 11 TeV and this value is inversely proportional to
the density. So we have that w.(0 = 0) ~ 30 GeV at T' = 293 K and
we(o =0) ~ 11 GeV at T = 77 K. It should be noted that within
logarithmic accuracy we neglect by relatively small variation of .1 due
to substitution the screening radius a2 by the value 2u?.

It is useful to compare these estimates with known threshold en-
ergies w; at which the probability of pair creation in the field of axis
is equal to the probability of the Bethe-Heitler mechanism, see Table
12.1 in [6]. For photon energy w > w; the process of pair creation in
the field of axis dominates. In W crystal for < 111 > axis wy = 22 GeV
at T=293 K and wy = 13 GeV at T=77 K. It is seen that for these
energies the ratio w/w, which characterize the strength the LPM effect

16



k(@) which determines the probability of pair creation by a photon in a
field is also of the order of unity (at ¢ ~ uq, see the mentioned Table).
So we reach the conclusion that at some energy (for axial orientation
of crystal) all the discussed effects are essential simultaneously. The
analysis in this situation will be published elsewhere. For example, to
calculate the influence of the field of axis on the polarization tensor
one have to average the general formula (2.14) over all values of g
(this is integration over d?p with the weight n, where n; = n.d is
the density of axis in the perpendicular to them plane).

At planar orientation of crystal the ratio of the density of atoms
in the vicinity of plane n(z) to the mean density n, is

2 /9,2
Ea(z) — n(x) _ exp(—z /2u1)dpl’ (3.10)
Ng \/% U1
where d,,; is the distance between planes. For the plane (110) in W
crystal at T = 293 K one has &,(0) ~ 18 and effective value w, =~
600 GeV. This value is ~ 2.5 higher than the threshold energy w; for
this plane (see Table 15.1 in [6]). Let us note that in both axial and
planar cases we made estimations for the maximal value of £(0).
In the crystals where the atomic number Z is not very high (Ge,
Si, C) the ratio wi/w(0) is smaller than unity. So for w > w; one
can use Eqs.(2.17) and (2.26) while for w < w; the formula (2.19) is
applicable in which along with known results (see e.g. [6]) there is the
new term in Re k2, which is proportional to (w/w,)?.
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