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Abstract

Four new quadratures with local error estimation were proposed and two of
them were numerically tested. Their effectiveness and robustness seem to be higher in
comparison to the well known Gauss-Kronrod one. Also two strategies of step control
were considered. A combination step control algorithm adapted to the proposed
quadratures was implemented and tested. In addition, several other aspects of

numerical integration were discussed.
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1. Introduction

To minimize the expense of definite integral calculation, the length of each
integration step should be chosen so that the local errors are equal. Thus, a non-
expensive and flexible method of local error estimation should be used to make the
procedure effective enough. One known method is the Richardson extrapolation [1],
[2]. According to this method, two consequent equal steps are made and after that they
are covered by a double-length step using the same formula of the degree of exactness
k. Then, if the results are y and y, correspondingly, one can estimate the local error
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and get the degree of exactness k£ +1 result

~ Y= Da
2 ~V+ .
(2) y~y 2k _q
The degree of exactness & means here, that if the integrated function is smooth
enough,
3) limR, /h**" = const,

h—0

where R, is the local error and 4 is the integration step. Thus the global error is
limited by const - h*.

Another way is to construct an embedded pair of quadratures of different order
using the same nodes. Then one can use its difference as a local error estimation.
Probably the most effective known quadrature of this type is Gauss-Kronrod one [3]-
[6] and references there. The Gauss-Kronrod quadrature based on the Gaussian one

having » nodes and k = 2n degree of exactness contains n+ 1 additional nodes. Its
degree of exactness is k = 2[(3n +3)/ 2] .

One more quadrature derived using similar assumptions is the anti-Gaussian one
[7]. Tt is based on the Gaussian quadrature having n nodes, contains n+1 ones, the
degree of exactness 2n and the error constant, equal to Gaussian one, but of the
opposite sign. Then local error estimation is a half of the difference between these

quadratures.



In all the mentioned cases additional evaluations of the integrated function are
necessary to perform local error estimation. Several attempts to construct more
effective embedded quadratures are discussed below.

An algorithm of step control also affects the total effectiveness of an integrating
code. At least two groups of step control strategies can be used in such code:
consequent and binary-tree like ones. In the first case the current integration step is
admitted or rejected depending on whether the estimated local error is satisfactory or
not. Then the length of the next step or of the decreased one is predicted using the
estimated error. According to another strategy the rejected step is divided by two
equal ones and the procedure is repeated for each half and so on. Both strategies and

their combinations are also discussed further.

2. Embedded quadratures based on Gaussian ones

Let's try to construct more effective embedded quadrature formulae. In [3]
A.S.Kronrod proposed a definition of the optimal embedded pair, that provides the
maximum order of the lower order quadrature, and the maximum order of the higher-
order one if the previous value is the same, for a given total number of nodes. He
found these pairs called now Gauss-Kronrod ones for arbitrary odd number of nodes.
He proved also the theorem, that at least n + 1 nodes is necessary to get the order n of
the lower order quadrature in a pair. It should be stressed that the number of nodes is
not a good measure of the effectiveness of a quadrature. It seems to be reasonable to

measure the effectiveness by the number of integrated function evaluations per step,

all factors being equal. For example, the number of function estimations is less by one
than the number of nodes for quadratures having the nodes at the both borders of the
step, as the function values at these nodes are used simultaneously by two adjacent
steps. This takes place, say, for the Lobatto quadratures and the Newton-Cotes ones.
Now let's construct embedded pairs based on the Gaussian quadratures [8],
25.4.29 not only by adding some nodes, but by excluding some nodes and after that
adding the nodes +1. If one takes the Gaussian quadrature having » nodes and the
order 2n, excludes two symmetric nodes or the central one (if any), and adds the two
ones *1, he obtains a new quadrature having » nodes (n+1, if the central node is

excluded) and the order k=2[(n+1)/2]. The question is which nodes should be

excluded. If the border nodes are excluded from the base Gaussin quadrature, the error



constant of the obtained quadrature gets the minimum. I don't know a proof of this
fact, I only checked it for » up to 9. The coefficients of the Gauss based quadratures

are presented in Appendix I. The error constant ¢, means here the coefficient before

the appropriate derivative in the remainder for the interval (-1, 1):
1 n

@) [7Gody = a,f(x)+R, .
-1 i=1

(6)) R, =c, fPE), (-1<&<).

Thus, taking » nodes, one can construct the embedded pair of the orders 2n — 4
and 2[(n—1)/2]. Note that the proposed pairs are better than the Gauss-Kronrod ones
for arbitrary odd n > 15 according to Kronrod's criterion. If consequent steps are used
for calculation and the criterion mentioned above is applied, the proposed pairs are

better than the Gauss-Kronrod ones for any number of function calculation per step

n=4,6, >8.

3. Embedded quadratures based on Lobatto ones

Now let's consider the Lobatto quadrature as the base [8], 25.4.32. Compared to
the Gaussian one, this quadrature needs one more node to get the same degree of
exactness. Nevertheless, the number of integrated function evaluations for one step is
the same as each border value is used by two subsequent steps. Also the remainder of

the Lobatto quadrature is larger by factor (n+1)/n, where n is the number of nodes of

the Gaussian one. But this factor is almost 1.

3.1. Lobatto-Kronrod quadrature
First of all, consider a quadrature that can be called Lobatto-Kronrod one. It
contains n+1 nodes of the Lobatto quadrature and » additional nodes so that its

degree of exactness is £ = 2([3n/2] +1). One can find these additional nodes using

the same procedure as described in [6]. The difference is the polynomials

corresponding to the Lobatto quadratures are the first derivatives of the Legendre
polynomials P/(x)and the weight function is w(x) = x> — 1. Thus, for the n+1-nodes
Lobatto quadrature one should take the n—1-order polynomial P/(x) and construct

the appropriate Stieltjes polynomial E, (x)using the following set of linear equations:



=0,0<m<n

6) [*-DR™E, (x)x'"dx{

#0, m=n

The roots of £ (x) are the additional nodes of the Lobatto-Kronrod quadrature.

The nodes and coefficients of these quadratures are placed in Appendix II. Note that
even n is preferable due to the integer part of 3n/2 in the formula for the degree of
exactness. The main advantage of the proposed quadrature is that it uses one less
function estimation per step compared to the Gauss-Kronrod one of the same order of
the lower-order quadrature. According to Kronrod's definition this quadrature is worse

than Gauss-Kronrod one.

3.2. Lobatto based quadrature
Another way to construct an embedded quadrature for error estimation is to
remove two symmetric nodes (or the central node, if exists) from the Lobatto one.
Then, if one took the Lobatto quadrature with n+1 nodes and k& = 2n degree of

exactness, the embedded one is of k = 2[n/2] degree of exactness. The key

advantage of the Lobatto quadrature in this case is one more node in comparison to
Gaussian one. It permits to get higher order of the embedded quadrature. Note that one
should use even 7. In this case the degree of exactness of the lower order quadrature
is n, while in the other case n- 1. Another question is which pair of nodes or the
central node should be removed. The quadrature without the border nodes possesses
the best error constant. I don't have proof of this fact for arbitrary », but I checked it
for n up to 10. Coefficients of the Lobatto based embedded quadratures see in
Appendix III. Comparison of necessary numbers of function evaluations and achieved

degrees of exactness are placed in Table 1.



Table 1.

Function Degree of exactness of result Degree of exactness
eval. per | Gauss- Gauss Lobatto- Lobatto | of error estimation
step Kronrod based Kronrod based
3n+3 2n-2 3n+4 n
dNEES 2] | 23]
(odd only) (even only)

2 - 2 4 4 2

3 6 4 - 6 2

4 - 6 8 8 4

5 8 8 - 10 4

6 - 10 10 12 6

7 12 12 - 14 6

8 - 14 14 16 8

9 14 16 - 18 8

10 - 18 16 20 10

11 18 20 - 22 10

Note that the Lobatto based quadrature ever uses less function evaluations or
provides better degree of exactness or both simultaneously in each case except of
n = 3. Another advantage of the Lobatto based quadrature is the simple and obvious
way to construct it. Its nodes are the same as for the Lobatto one. It should be stressed,
that even according Kronrod's criterion, the Lobatto based quadrature is better than the
Gauss-Kronrod one for any number of nodes n>5 (the degree of exactness of the
higher order quadrature is greater or equal and the error constant of the lower order

one is less). The error constants of mentioned quadratures are presented in Table 2.

Table 2.
Degree Error constants ¢, (absolute values)
of Gaussian| Gauss- Gauss | Lobatto | Lobatto- | Lobatto
exactness Kronrod | based Kronrod | based
2 0.333 - 0.667 | 0.667 - 0.333
4 0.00741 - 0.0111 | 0.0111 | 0.0111 | 0.00476
6 6.35-10°6.35-10°(5.13-10° | 8.47-10° - 3.21-107°
8 2.88-10719.00-10%[1.48-107(3.60-107 |3.60-107 [ 1.23-10”7
10 [8.0810 - [2.93-10"9.70-10"°/1.70-10°}3.05-10""°
12 |1.54-10"%5.86-10"° 1.80-10"% -
14 [2.13-10°[1.15-107° 2.43-10l6.16-107¢
16 [2.22-107® - 2.50-107"%2.03-10"
18 [1.82-107%"1.38-10% 2.03-10°% -
20 (12010 - 1.32-10%




3.3. Error estimation using nodes of the previous step

One can also estimate the local error using nodes from the previous step. In this
case one more node in the Lobatto quadrature is the key advantage. The total number
of nodes in two steps of the Gaussian quadrature of order 2n is 2n, so it is
impossible to construct a higher order quadrature using them. In the case of the
Lobatto quadrature the number of nodes is 2n+1, so one can construct a 2n+1-order
quadrature using the same nodes. Its coefficients see in Appendix IV. One can use any
of the mentioned embedded quadratures as the integral evaluation and their difference
as the local error estimation. The error constant of the proposed quadrature is the same
of the Lobatto one, but has the opposite sign. The main advantage of this pair is that it
has maximum possible degree of exactness for a given number of function evaluations
per step. It also evaluates the local error well as the orders of the quadratures in the
pair differ by one. The main its drawback is that the higher order quadrature is not

local, so & in (5) can vary in limits (-3, 1), error estimation looks not so reliable, and

some starting procedure is necessary as there is no previous step for the first step of
integration. Also step control in an integrator using this pair can't be so flexible as in
the case of a pure one-step quadrature. It is necessary to make at least two equal steps
to evaluate the local error. Of course, one can calculate dynamically such quadrature
for unequal steps, but overhead expenses in this case increase dramatically.

It is possible to bring this idea ad absurdum. An arbitrary order quadrature can
be constructed using an appropriate number of previous nodes and only one new
function evaluation. Unfortunately the error constant of such formula is much larger
than one of the Gaussian quadrature normalized to one node and the same interval. So
one can't decrease the number of function evaluations this way, but only get fantastic
overhead expenses. On the contrary, the proposed pair uses the pure one-step Lobatto
quadrature for integral evaluation and the non-local two-step quadrature for local error

estimation.

4. Two strategies of step control
It should be stressed that the maximum integration step 4,,,, together with the

maximum value of local error usually called 7o/ are to be specified before
integrating. If the first value is omitted, that is taken equal to the whole integration

interval, and one would like to calculate something like this
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Fig. 1. sin'® x .

the result probably will be =0 instead of = 0.750123. It takes place if the nodes of
the quadrature lay in the area where the function is = 0, so the estimated local error is
satisfactory. One should specify the maximum distance between the nodes =~ 0.5 in
this case to ensure the valid result.

As mentioned above, at least two strategies of step control are possible. Note
that only ones optimizing local error are discussed. According to the first strategy, that
can be called "subsequent", the current step is admitted if the estimated local error
R, <Tol. In the other case the current step is rejected and should be decreased. The
length of the next step (if admitted) or of the decreased one (if rejected) is usually

estimated as

1/(k+1)
®) h,=A-h-(B-Tol/R,)

b

where 4 is the current step length, k& is the degree of exactness of the error estimator,
A and Bare warranty factors, both < 1. The ratio 4, /4 should be limited to avoid
too great step increase if the estimated error — 0.

Another strategy, that can be called "tree-like", assumes that the whole
integration interval is divided into the minimum number of equal steps <#4__ . In each
primary current step, if R, > 7ol the step is rejected, divided by two equal ones and

the integrating procedure is repeated for each half recursively. In other case it is

admitted.



The first strategy looks more flexible as the step length ratio is arbitrary, but not
an integer power of 2. Really the result depends on the used quadrature and
integrated function. One can only expect the first strategy should be more effective in
the case of very smooth and homogeneous integrated function while the second one
should be more effective in the case like (7), Fig. 1 or if the function contains several
breaks of its values or derivatives. Of course, many modifications and combinations

of these strategies are possible.

5. Optimal order of quadrature

The problem is which order of a quadrature should be used to integrate a given
function in specified limits with a fixed accuracy. Consider the problem using the
Gaussian quadrature and different integrated functions. Of course, the result can differ

for another kind of quadrature, but not qualitatively. Let's estimate the local error by

its main term, that is taking £ *’(0) instead of £ (&) in (5).

® R, ~c, /(0.

If the whole integration interval (-1, 1) is divided into elementary intervals of

the length 2o each, their number is 1/ o, the local error is
10) R, ~ c,0 ! f19(0)
as a consequence of

an  fP@=atr O,
(12) [ Goodx = o [ £ (o).

The global error in this case is
(13) G <le,a* 90y

Limiting the global error as 7ol one gets

1/k

Tol
¢/ ®(0)

and the number of necessary function evaluations

(14) o~




1/k

Jes
Tol

9

15)

where » is the number of function evaluation per step (k/2 for the Gaussian

quadrature). Let's consider three types of functions: (i) something like cos, exp

(16) FP0) ~1,
(i1) something like In, 1/(1+ x)

17) £ ~ k!,
and (ii1) something irregular (its Taylor series diverges everywhere)
(18) FR0)~ k.
The error constant of the Gaussian quadrature is [8], 25.4.29
o 29k 12!
) o= (kil)k,)
After the substitutions one obtains the necessary number of function evaluations

in the three cases, that depends on the using order and the desired accuracy Fig. 2.
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Fig. 2. Effectiveness of quadratures of various orders.
One can see, in the first case the higher the order, the greater the effectiveness.
In other cases there are optimal order depending on the desired accuracy. It ranges
between 4 and 40 in Fig. 2. Note that the effectiveness insufficiently depends on the
order if the latter is >10. In real calculation, a higher order quadrature looks less
flexible due to greater step length and nodes per step, so loss caused by a rejected step
is larger. Thus, one can conclude, there is almost no sense to use quadratures of the

order higher than 10 for any reasonable accuracy.

6. Design of integrating codes

Three codes were designed to test performance of the proposed quadratures. The
first two using the Gauss-Kronrod quadrature and the Lobatto based one are very
similar. In the first step and after admitted one the subsequent strategy is used. The
tree-like strategy is applied if the current step (not first one) is rejected. Then the error
estimation from the right border interval of the tree-like pattern is used to predict the
next step length. The Lobatto-Kronrod quadrature and the Gauss based one were not
tested as they have the same properties as the Lobatto based one except of lower order

of the result quadrature. Additional advantage of the Lobatto quadrature (also



Lobatto-Kronrod and Lobatto based ones) containing an odd number of nodes in the
case of the tree-like strategy is that they uses the central node in both halves of the
divided interval, so that the necessary number of function evaluations is decreased by

one for one step. This advantage is particularly dramatic in the case of the Newton-

Cotes quadrature containing 2' +1 (positive integer i ) nodes. In the last case the
necessary number of function evaluations is decreased twice. The drawbacks of these
quadratures are that their error constants are significantly greater and all the reused
nodes are to be stored.

The last code is based on the pure Lobatto quadrature and two ways of error
estimation depending on the current step control strategy. An estimation using the
nodes of the adjacent step as described in 3.3 and Appendix IV is ever available. The
Richardson extrapolation can be used only in a tree-like procedure. As the quadrature
claims two equal consequent steps to estimate the local error, it looks less flexible in
comparison to the previous ones, so the consequent step control strategy should be
more conservative, hence less effective, and the tree-like one is more preferable. So
the tree-like procedure is applied each time when a step is to be rejected (including the
first step). Unfortunately both the Richardson extrapolation and the adjacent step
quadrature cannot estimate the local error separately for the right step and the left one.
So only both steps can be admitted or rejected simultaneously. Another unpleasant
thing is that the adjacent step quadrature can underestimate the local error if the

integrated functions has a singularity within the current step.
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quadrature and one estimated by the adjacent step quadrature described in
3.3 and Appendix IV.
The Richardson extrapolation experiences the same problem in this case. It uses

a hypothesis R, oc #**', but in this case R, o /. A solution is to estimate the "local

order". As the error estimation using the adjacent step quadrature is available both for

the current step R, and double-length one R, the "local order" can be estimated as
20) F ~ max(min(log, (R, / R.)~1.).0) .

Then & is used instead of k in the Richardson extrapolation and the local error is
estimated well.
Thus, the distinctive features of the last code are:

¢ The step length is changed only if it should be increased 1.8 or more times or
decreased.

¢ The tree-like partitioning is used each time the local step is to be changed and in
the very first step.

¢ The adjacent step quadrature is used by the consequent strategy ever and by the
tree-like one to estimate the "local order".

¢ The Richardson extrapolation with the estimated "local order" is ever used by the

tree-like strategy.



¢ When the consequent strategy is applied the Lobatto quadrature is used for the
result. In the other case the Richardson extrapolation result is stored, so the order of

the method is increased by two.

7. Testing problems
The following problems were used to check the effectiveness of each code (and

quadrature!):

100

1) jsinxdx =0.137681127712316065898057 .
0
100
(22) jsin“’O xdx = 8.00118283137199704273636.
0
10
(23) j sgn(sin x)dx = 2.56637061435917295385057 .
0
1
(24) j In xdx = —0.999874870745350297715799 .
1072
1
25) j sin(1/ x)dx = 0.504067062006864381176123.
107°
1
(26) j xsin(1/ x)dx = 0.75706003424832261976346 .

-1
All the integrated functions have no singularities within the integration interval
except of (24), that has breaks x = /n, integer /. The first one is homogenous enough,
while the various orders derivatives of others vary dramatically on the integration
interval. In (24) and (25) the obtained result depends on the direction of integration,

but not so strongly. The best value is ever chosen.

8. Results of tests and discussion

The degrees of exactness available are: 8(4), 12(6), 14(8), and 18(10) in the
code using the Gauss-Kronrod quadrature; 8(4), 12(6), 16(8), and 20(10) in the one
using the Lobatto based quadrature (LobattoB in the figures below); 4(5), 8(9),

12(13), and 16(17) in the one using the pure Lobatto quadrature and the adjacent step



quadrature and the Richardson extrapolation for error estimation (DLobatto in the

figures).
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Fig. 7. Problem (24).

Fig. 6. Problem (23).
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One can see in Fig. 4 - Fig. 9 that the DLobatto code is ever more effective than
the LobattoB one, the latter is ever more effective than the Gauss-Kronrod one of the
comparable order. Note that the tolerance value, i.e. the maximum local error
specified, but not the real global error achieved is the argument of each horizontal
axis. Of course, these two values are different. For example, in the problem (21) the
real global error was ever 107" and less for the first two codes and ~ Tol for the last
one, but it indicates only not so good operation of the error estimator in the
appropriate formulae. In other cases the global error was ~ 7o/ or could vary within
2 —3 orders.

The Gauss-Kronrod code produced wrong results for the problem (23) most of
all, so appropriate graphs were excluded from Fig. 6. The explanation of this fact is
that the set of nodes of the Gauss-Kronrod quadrature does not cover the whole
integrating interval. The situation is possible when the break of the integrated function
is placed between the end of the interval and the extreme node, so the local error can
be arbitrarily large but the difference between the two quadratures in the pair is small
enough (0 in the mentioned problem). This phenomenon is impossible in the last two
codes as the nodes of their quadratures totally cover the integrated interval.

The DLobatto code experienced some troubles in solving the problems (22) -

(24) if a high order and comparably large Tol~10"* —1077 were chosen. The



explanation is that the error estimation using the two-step Lobatto based quadrature is
not so reliable in the case of not so smooth function. It is due to extremely small
coefficients in the difference of the mentioned quadrature and the base Lobatto one.
This trouble was never observed in the steps with the Richardson extrapolation. An
obvious conclusion is to use higher order methods only with small enough 7o/. Note

that a lower order formula is ever effective for the problem (23).

9. Conclusions

Four new quadratures with local error estimation were proposed and two of
them were numerically tested together with the combination step control algorithm.
They provides higher effectiveness and robustness than the well known Gauss-
Kronrod one. The Lobatto-Kronrod quadrature and the Lobatto based one have very
similar properties, but the latter has higher order of the result and less number of
function evaluations per step, all other things being equal. The two-step Lobatto based
quadrature looks more effective, but no so robust as the previous two. The proposed
choices are the Lobatto based quadrature for the most robustness and two-step
Lobatto-based one for the most effectiveness. In the last case do not use a high order
with a moderate tolerance 10™* —107" . Probably the most universal choice is the two-

step Lobatto based quadrature 8(9) .
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Appendix I. Coefficients of Gauss based quadratures

The Gauss based quadrature contains all the » nodes of Gaussian one except of
the border two, and the nodes 1. Values in the headers means the degrees of
exactness. The nodes and the coefficients of the Gaussian quadratures see in [8],
Table 25.4.
2(4) is the Lobatto 2 or Newton-Cotes 2 quadrature or the rule of trapezium.
4(6) is the Newton-Cotes 4 or Simpson or Lobatto 4 quadrature.
6(10) ¢, =5.13-107

32 870 7 W70 V70 2

457 225° 9 450 ° 30 15’
8(14) ¢, =1.48-107

0.491228086042237676196723, 0.305205271435932108450709 ,
0.369042823577108737967906, 0.080137861965840315483023.

10(18) ¢,, =2.93-10™"

0.289227785331667821393782, 0.354510243774847336894045,
0.214481706492419053738888, 0.235930702200018989069458,
0.050463454866880709600717 .



Appendix II. Nodes and coefficients of Lobatto-Kronrod

quadratures

The Lobatto-Kronrod quadrature contains all the # + 1 nodes of the Lobatto one
and » additional nodes. It is symmetric. Values in the headers means the degrees of

exactness.

4(2) is the Simpson quadrature.

8(4) is the Lobatto 8 quadrature

10(6): ¢,y =1.70-107"

Nodes Coefficients

0 16/35

V575 125/294
J6/3 72 /245

1 11/210

14(8): ¢, =616-107"

0 47104 /137025

5 665 46299523 4_2474329%3
11 143 1802152800 ' 257450400
2177 16807 /59184
5 6765 46299523 247432965
117 143 1802152800 257450400
1 139/4536
16(10): ¢, =2.03-107"
0 43264 /148995

19203149 24877797
81648765 | 163297530
75969518144 +_8720929984\@
417796730505 1054439367465
19203149 24877797
81648765 163297530
75969518144  8720929984+/53
417796730505 1054439367465
1223 /58905

Appendix III. Coefficients of Lobatto based embedded quadratures

The Lobatto based quadrature contains all the nodes of the Lobatto one except

of —1 and 1. Values in the headers means the degrees of exactness. The nodes and

the coefficients of the Lobatto quadratures see in [8], Table 25.6.




2(4) is the Gaussian 2 quadrature or the middle point rule.

4(8): ¢, =-1/210.

4/9,7/9.

6(12): ¢, =-321-107.

0.64, 0.288360222050567774864277, 0.391639777949432225135723.
8(16): ¢, =—123-107".

0.269931972789115646258503, 0.444525474196663679521031,
0.18721130931406719497772 , 0.233297230094711302371994 .
1020): ¢,, =-3.05-107".

0.374099269337364575459813, 0.214657354606219772026581,
0.315204381201282973567436, 0.128833882949035392704926,
0.154254746574779573971146

Appendix IV. Coefficients of two-step Lobatto based quadratures

The two-step Lobatto based quadrature contains all the nodes of the Lobatto
ones in the steps [—3, —1] and [—1, 1]. Its error constant has the same absolute value,
but the opposite sign as one of the Lobatto quadrature. The nodes and the coefficients
of the Lobatto quadratures see in [8], Table 25.6.
5(4):
—1/90,2/45,4/15,62/45,29/90.
9(8):

149 7421 16 49 7421 4 7399 7421
81007 13500 10125° 10125° 13500 ' 10125 45 13500~ 10125’

7184 7399  7.421 809
101257 13500 10125 ° 8100

13(12):

-2.0282412308990-10 , 6.9261275747576-10 , -1.965977375615296-10,

7.5684337185547-107, -0.0003923869878066355, 0.00216296636953521352 ,
0.04395604395604395604 , 0.27898901373110116153, 0.43135299422205598794 ,
0.48769473195623316688, 0.43172572143610647045, 0.27683297348914070562 ,
0.04761701937781672001 .



17(16):

-3.929175511241-10" , 1.2627332094564-10" , -3.1129527828904 -107,
9.740508127787-107, -4.07955787233817-10°, 2.262419161516132-10 ,
-0.00015235387263192787, 0.00095005296584106966,

0.02614379084967316514 , 0.16644541452664659413, 0.27438635862752980773,
0.34645113516466150632, 0.37151519481854342496, 0.34642948502385912380,
0.27453840120488344627, 0.16549548783412647067, 0.02777773848602266537 .



