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1 Introduction

In this paper, the problem of multipole synchrotron oscillations of
the multibunch beam will be considered without restriction on the
gaussian bunch length or on the width of the frequency range, in which
the impedance of the surrounding structure is taken into account. This
result has been provided at the cost of increasing the matrix order in
comparison with [2], for example, where it was equal to the number
of bunches. Now, this value is multiplied by the number of terms of
the distribution function amplitude expansion. But, with choosen set
of orthogonal functions for this expansion (for a gaussian distribution
of the undisturbed bunch), the necessary number of terms is not very
high.

This method is particularly useful for higher multipole synchrotron
oscillations, because the main contribution for their instability is given
by the harmonics with numbers m, for which mey is in some band near
v2n —1 > 1, where n is the multipole number and ¢¢ is the angular
r.m.s. length of the bunch. It is clear that the condition of small bunch
length (m¢o < 1) is not valid for the most important harmonics.

The amplitude dependence of the synchrotron frequency (the first
approach: = Qg(1 — f%)) can be taken into account rather simply
in this method, leading to the correction to the matrix elemets pro-
portional to the small parameter &. There arises no necessity to solve
the nonlinear equation with an unknown value under the integral as
it was in [2]. One can show (section 4.2) that both methods give the
same asymptotic in the case of big coherent shifts and small bunch
length, which verifies the correctness of present derivations.

Note, however, that the number of terms of expansion to be taken



into account depends on the ratio of growth rates o to the spread of
synchrotronous frequencies AQ. If ¢ < A, then, in order to get a
correct result, the number of terms of amplitude expansion should be
increased.

Further (section 2), the matrix problem is formulated in the general
form for the case of long bunches.

In section 3, the motion with regard to the spread of synchrotron
frequencies is considered, without coherent interaction with surround-
ing structure.

In section 4, the particular case of one type of multipole oscillations
and one bunch is considered for simplicity, in order to compare with
the method of [2] and to discuss the necessary number of terms to be
taken into account.

In section 5, the matrix problem is formulated, taking into account
coupling with neighbour types of multipole oscillations.

In section 6, the code MBIM?2 is described, in which the proposed
method of calculating the eigen modes and their eigen values for un-
symimetric multibunch beam with long bunches is realized.

In Appendix 1, the set of formulae for Laguerre polinomials is
given, which were used in present derivations.

In Appendix 2, the formulae for summing up the series with the
Watson-Sommerfeld transformation are given for the most common
case, which are used for summing up serties over harmonic numbers
in the case of resonant impedance.

2 Derivation of the problem of longitudinal
stability in the matrix form for the case of
the big bunch length

2.1 Vlasov equation for longitudinal motion of the
multibunch beam

As in [2], following to [3], we start from the linearized Vlasov equa-
tion, subjected to the Laplace transform (assuming that the multipole



oscillations are small as compared with the undisturbed distribution
function):

. or - of,

We use the following denotations: s is the Laplace variable; € is
the synchrotron frequency; J and v are the action and synchrotron
phase variables respectively; fy is the undisturbed distribution func-
tion, independent of the time in the rotating reference frame; f(@b, J,t)
is the disturbance of the distribution function; £+, J, s) is its Laplace
transform: F (v, J,s) = L[f(@b, J, 1))

In (5) a forcing term L[J] is determined from the equation
. H
J = —aa—¢, H = —€/Ezod2,

F. is the longitudinal component of the electric field on the equi-
librium orbit in the reference system rotating with the equilibrium
particle (calculated in the same way as in [2]), at z = [ — wo Rt.

A distribution function in eq. (1) describes the whole multibunch
beam. For our purposes, we rewrite the whole beam distribution func-

tion as a sum of separate distribution functions for all ng bunches in
the beam (as in [2]):

F:Eiﬂ.
=1

As each bunch oscillates in its own separatrix, we can further
use the space orthogonality of the distribution functions of different
bunches.

Thus, instead of one equation (1) we get a system of equations for
bunches distribution functions:

l l
SEU Tos) = 0,00+ Q9 4 1) 50

59 =0,l=1,...n0 (2)
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Note that in L[./] the currents of all bunches are summarized, there-
fore (2) is not splitted into ng independent equations, as it was done
in [2].

The longitudinal coordinate of the particle in the [-th separatrix is

) 2wl .
z2=0R+ z(J)sin(v) = n—R+ZO(J)szn(@b), (3)
0
hence, the distribution function can be spread into the Fourier series
over the synchrotron phase :

F(¢aJa S) = Z€Zn¢Fn(Ja S)a f0(¢a ) ¢aJ 0 Z€Zn¢f0
) <4)

With all these denotations, in [2] there was obtained the system of
integral equations for functions F! (J,s) (see [2], egs. (6),(7)):

FL(J,s) —eIOZZ/K“ J,J! s '(J’,s)dJ'zfé"i(.J) (5)

=1 a (s 4 1n2)
where
-li o
Kj,(J,J' ) =
afO 1/ 1o i : x (g1 im(6—6;)
~0J (s+ Q) ; mZm(S — imwo) Apn (J) Ay () , (6)

L (5 — tmwg) = Z Zi(s — imw0)|Ezkm|2.
k
Further, in [2], this system was considered in approach of short
bunches. Now, we shall consider the problem without this restriction,
assuming only that the motion of particles is still sinusoidal ((3)).



2.2 Application of Laguerre polinomials to the
Vlasov equation

Now, we suppose that the undisturbed distribution functions for all
bunches are gaussian and equivalent for all bunches:

B = fold) = g1,

Denote ¢ = % MQ’ = % MJS% = QR@ (see [2], App.2), then we
can write, using (27):

g m 2 meo ¢ _
Anmu)_Jn(R MQ)—Jn (2 . %)_

<—>Az<>

(&)

m 0 mﬁéo 2k+|n| k 2
Z_:< ) VI(n[+E+ 1Dk 0

The functions F! can be spread over orthogonal functions (23),
with the weight function proportional to fo(J) (as it was made, for
example, in [4]):

EL() = W) Y ai [ @), a=d/do, Wia)=e (8)

a;gl:/ FL) £ (@) de.

Substituting (6), (7) and (8) into eq. (5), dropping the r.h.s., we
get:

ng
(s+inQ)W Za |n| elon ””ZIJZ 1 L (s—imw )eim(al—aj)x

572
k>0 2J ]llomm



/ZA ' 8)dJ' =0

or, denoting for simplicity Z%(s) = Z,, (s — Z’mwo)eim(fh—f);)’

(W () S o ) + 5 ) Y A

k>0

Z5 (s

m

i S (moo\ P )
e 'Z< 2 ) VI(u Tkt Dk

k=0
m? % maoy 2k+|q| f|<1|(x/)
e ZZ( ) VaTETESE
xw(z') Y all ,L‘f'(x)dx':O 9)
k>0

or, integrating with f|7,1,|(x),

. elon <& 1; — Z4(s)
s+ Q)W (x a £7 |7,1,|xdx+— 2 m\%) o
/( ) ()};}kk()k() 27”0;:1102,71 -

xe~ 4¢2 <m¢0)2k”+|"| 1 y
€ O —=
2 \/F(|n|+k”+1)(k”)!

maoo 2k+|q| 1 v
ZZ( ) \/F(|q|+k+1)k!ak]_0’

9 k>0

or

[+ W (@) 3 a1 o) ) @) ot

k>0
clon 81 5~ Z3(s) |
27TJO — IO m
j=1"0 m
(m 0)2/’€+|q|+2/’€”+|n|
2 aJ
X a; =0, (10)
Z,;] V([ + R+ (R (g + & + DAL ©
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or, denoting,

o 2k+|q|+2k" +|n|
2 4

VIQu[+ 7+ DE)T (gl + &+ DE md

2 42 4.4
B”:l, Bl _ pl _ m %’ rpll _ m %’ e
( 00 01 10 2 11 32

(11)

we get

[+ inw @) Y a1 @) i) do+

k>0

61071 ¢0 Z Z lj

Zi (s k'k af’) = 0.
27TJO IO 7 k>0
Note that Jo = 0?MQ < 0 for M < 0. Hence, one can denote

. elon - &3 B elpn _Q_E, Ion - ¢} R_2_
o 2mdo-4 2m0fMIQ Q4 sV, psingy 0?

N Qg Ion
Q 2¢, 4V, psin gso
One can see that equations for azl with n = 0 are independent

of all others and have the trivial solution, thus, the last equation for
n # 0 can be rewritten as

[+ imw @) Y a s @) sl @) do-

k>0

K"k ] + a;q]) =0. (12)

ng I )
—A - YA

WL

]:1 m
Further, we will consider a linear dependence of synchrotron fre-

quency on J: Qz) = Qo1 = &x), =z = J/Jg, & = qffgéga(gés),
a(0) =1/16, a(r/4) =1/6 (see [2]). In this case we have:

(S + Znﬂo) Z azl(skku — anOé' Z /«’EW |77'| f|n|( )

E>0 E>0
9

9>0 k>0



g (m) (@ +a ") = 0.

ng I )
—AY LN 2 (s)em
> S
Remember (see (28)) that

M, = / oW () " (@) fll () do =

= (Inl + 2k + 1)0km — \/k(In] + k) dk—1,m — \/m(|n| + m) bk m-1,

hence, the amplitude dependence of the synchrotron frequency adds
the terms proportional to £ to the diagonal matrix elements (k = m)
and to their neighbours (k = m=1). With regard to this, the equation
can be written (for £n, n > 0) as

g>0£k>0

(s inQ0) D af Sy F inQ€ - > Mpweal' (13)
k>0 k>0
:FAZ ZZ’J ZZB"},',L‘” a¥ +a;¥) =0,
q>0k>0

With denotations SP! = (af! + ™), DY = (a}! — a;™), the sum
and the difference of these equations can be written as

sS™ 4 (inQ) (B — EM™) D™ = 0,
sD" (mgo)(E —eM™) S -

—24 Z N7 (s

JlO >0

Expressing S via D, we get the system only for Dzl:
S2ﬁnl B (Zn90)2(E B 6Mn)2ﬁnl_

2
_QAZ ZZIJ 2¢ ZB|”||Q|(—tiO)(E — MDY = 0.
J=1 fo >0
(14)
The last equation formulates the eigen value problem for the most
common case of multibunch beam, for which all multipole synchrotron
oscillations are considered simultaneously, with regard to their cou-
pling.
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3 Incoherent motion in the case of
the synchrotron frequency spread
along the bunch

Let us consider the equation in the absence of coherent interaction,
i.e. when [p = 0. In this case, the multipole oscillations with different
n are decoupled, for each n we have the independent matrix equation

s2D™ — (inQo)3(E — €M™)2 D™ = 0, (15)
or, keeping only linear dependence on & and denoting

B (82 — (in€2)?%)
A= (—217190)

AD™ — (inQo) (EM™) D™ = 0,

This equation describes the uncoupled motion of particles with
frequency spread: in a time 7i,c0n ~ 7/(§n820) the primarily sinphase
particles get phase shift of order 7. The matrix of this equation can not
be restricted in the common case, hence, the solution should contain
all terms of amplitude expansion.

In the time domain, if at the moment ¢ = 0 there is only one
nonzeroth amplitude D", for example, it will excite, in time 7;,con
the next modes as D™ ~ (t/nncoh)k (at ¢ < Tincon)-

Figs.1,2 show pictures of different expansion terms amplitudes in
the time domain, when N, = 10 and N, = 40 expansion terms were
taken into account. One can show that the sum of squares of the
amplitudes of all terms is i\fzro |D"k|2 = |D™|* = 1, therefore the
amplitudes of expansion terms decrease (in average) with the increase
in their total number N,.

Figs.3,4 show the contribution of the taken into account expansion
terms into eigen modes for these two cases. One can see that beginning
from the mode with the eigen value 25—2‘3&% ~ 10 ( which corresponds

to the mode with the number k = /N, - 10/¢, see further, Fig.6) the

eigen vectors practically do not contain the lowest expansion terms and
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Figure 1: The expansion terms amplitudes in time domain for N, = 10

expansion terms taken into account.
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Figure 2: The same, for N, = 40.
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this fact is valid for all &V, > 3. It means that the primary excitation of
the lowest expansion terms, at any V,, excites in fact the eigen modes
in limited frequency range, with |A| < |Agl.
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Figure 3: Contribution of taken into account expansion terms into
eigen modes for N, = 10.
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Figure 4: The same, for N, = 40.

Fig.5 shows the set of eigenvalues versus the number of expansion
terms taken into account N,. The numerical calculations show that
a1 ADNTOY T - . . ne AMkNp o ek?

one can approximately describe these eigen values as ol it
Increasing N, leads to the more wide (%ﬁﬁg ~ ¢N,) and more dense

spectrum of eigen frequencies. The limit N, — oc corresponds to the
continuous spectrum in the infinite frequency range, which corresponds
to the incoherent motion.

When we consider the coherent instabilities, one should compare
the time of developing this instability (7., ~ 1/o, where o is the

14
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Figure 5: Eigenvalues versus the number of expansion terms.

growth rate) with 7,c0n. I Tineon < Teon, the coherent instability
has no time to grow while the motion quits to be coherent. But if
Tincoh = Teoh, 1-€. when the coherent instability grows quicker than
incoherent diverging of phases, this diverging only reduces the growth
rate, and in order to estimate correctly this reduction, one must con-

sider all expansion terms which can be excited in the time ~ ...

4 Uncoupled multipole oscillations with
different multipole numbers

Further, the multipole oscillations will be considered separately from
each other, taking only ¢ = n:

SZD_'nl B (Znﬂo)z(E B é-Mn)ZD_'nl_

20 I . m2¢:2 A . . oo
—24% 7 L3 2y (s)em T BII (i) (£ — €017 DM = 0. (16)

]:10777,

15



Let denote (for s & —infd)

(s? — (in)?)

A=
(—217190)

m2

2
>l 17 _m % nl||n
Z =" 7y B (),

With these denotations, the equation becomes (keeping only linear
in & terms)

. S LOI S T L
AD™ — (inQu)eM D" — A I_JZJ(E _elMBY =0, (17)

j=1"°

4.1 Necessary number of expansion terms for coherent
oscillations

In the case of a single bunch (the simplest case, in order to see the
effect of expansion terms), dropping subscripts n and [, j = 1, we have:

</\E — (in)EM — AZ(E — gM)) D=0 (18)

Here E is an unitary matrix, Misa 3-diagonal matrix, Z is the ma-
trix depending on the impedance, with elements where the impedance

is summed up over all harmonic numbers m with factors BL?,'L”' () (see

(11)).
In the case of small bunch length (¢ = 0 for simplicity), the matrix

2(k+1)

elements Zj; are proportional to géo( and decrease with increasing

k, 1. The first correction to the zero approach (Ao = AZOO) is of order
o

00 Zoo
The following corrections are of higher orders of ¢¢ and can be
dropped.
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But in the case of big bunch length (172,,,,¢0/2 of order or greater
than 1) one can not say that Zy is proportional to géfj“. Instead of
that, one can use the upper estimation of all elements of the sum.

One can see that for different (|n|+k+ k") this factor has its maxi-
mum at different m,, .., thus, different parts of the spectrum influence
on different multipole modes of synchrotron oscillations: the function

f(N,z) = aNexp (—222) (for z = m(j’o, N =2(k+ K"+ |n]) - 1))
has its maximum at @, = /N/4, f(N, pmas) = (N/46)N/2. Note
that f’(z) = 0at x5 = \/(N + 1F V3N + 1)/4, hence, the spectrum

band can be estimated as 29 — 2; &~ V3N + 1/\/N ~V3 (for N > 1).

”ﬁ;‘?ﬁ

m’ .‘"‘"**‘\\ _

|

fH,x 0.5

i
il

' { :**
A

/ o‘::‘

W

0 1 2 3 4
.05 x 4

Figure 6: Normalized function f(N,z) = o™ exp(=22%)/ fuaw, fnaw =
(N/4e)N/%, for odd N=1,3,...,31.

Fig.6 shows normalized function f(N,z)/f(N, #mas), for odd
N=1,3,...,31, i.e. for k+ k" + |n| = 1,2,...,16. It is obvious that
the modes with different N interact mainly with different regions of
the spectrum, which are cut with the function f(N,x). The width of
the spectrum band is approximately the same for all N.

On the other hand, the denominator of (11) increases very quickly
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with increasing k, k. Thus, the factors (11) have the upper estimation

(N/4e)N/? 4
V(] + &7+ (R (o] + & + 1)k 6§

Akk” =

where N = 2(k 4+ k" + |n|) — 1). The elements of the matrix A de-
crease very quickly with increasing &, k”. Fig.7 shows the level lines for

lg(Akkn%a) and Fig.8 demonstrates decreasing of the matrix elements
along the diadonal k£ = £”.

These figures show that, in fact, only a small number of expansion
terms should be taken into account, depending on n (for the case

£=0).
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Figure 8: Diagonal elements Agy and the first line elements Agy versus

k.

In each case, the necessary number of expansion terms to be taken
into account depends on the product m,,..¢o: one should consider
all modes with &k, k" < k44, for which 2o &= @00 + (22 — 21)/2 >
Mimad0/2, 1.6, 2hmaet |1 > [(Mumaedo+v/3)? +11/2 = [(Mmaxto)? +
2V/3Mpando + 4]/2, or, more rough estimation m,,,¢0 = 234z, in
order to overlap the whole region with ”large” coefficients, below and
above #,,4,, which gives

kaagc + |n| > (mmaz¢0)2-

Fig.9 shows an example of the dependence of eigen values on the
number of expansion terms /N, taken into account, for different bunch
lengths. The RE cavity spectrum contains one resonant mode with
the resonant frequency f = M - frep, M = 2000+ v,, v, = 0.01,
@ = 10000, f.., = 3M Hz. The dipole synchrotron oscillations of sin-
gle bunches with ¢ = 0.01,0.1, 1,2, 3¢m were considered. The graphics
are normalized by the corresponding values limits at sufficiently large
number of expansion terms taken into account. One can see that the
bunch with ¢ < lem can be considered (at this spectrum) as a short
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Figure 9: Dependence of the growth rates (s; ;) and shifts of the syn-
chrotron frequency (w;y) on the number of expansion terms taken
into account (/;), for different bunch length (¢ =0.01, 0.1, 1,2,3 cm for
k=0,1,....4.)
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bunch with 1 term of expansion. At o = lcm, the result obtained with
N, = 1is ~ 1.5 times less than the limiting value with N, >> 1, but
the calculation with N, = 2 already gives good approximation. And
so on, for 0 = 2¢m N, = 5 and for o0 = 3em N, = 12 give good ap-
proximation. Note that calculations were made for bunch currents at
which Av, € v,, in order to separate effects of the number of expan-
sion terms and that of nonlinear dependence of the matrix equation
on v,.

4.2 Comparison of the asymptotics of two methods

In order to compare the present results with [2], where the eigen values

are expressed only via Zgg, one can assume that the matrix Z has the
only nonzeroth term Zyg and all other terms are equal to zero (due to

the spectrum or to the small bunch length).
Let us consider, for simplicity, the modes with &, k" < 3. The
determinant of the matrix of eq. (18) is

Zoo(L —EMoo) + EMoo — N —EZ5o Moy + Moy 0 0
£M10 ngl - X £M12 0 =0
0 EMoy EMoy — N EMos '
0 0 E M3z EMss — XN
A _ A
where X' = —&=, 7}, = —=Zy;.

If we keep only the term with zeroth indexes, then the frequency
spread results only in the additional shift of the synchrotron frequency
proportional to & while the growth rate remains unchanged:

Ao = EMoo + Zjo(1 — EMoo) = E(n+ 1) + Zyo(1 = E(n+ 1)) =,

If we keep the terms with ¢, 7 < 1, then we get the next approach,
keeping the terms of order £2:

PR DTS (§M01)21_7Z60 =
e Ao — My
7l
=M+ (n+1) 1~ Zog ~

§(n+1) + Zo(1 = &(n+1)) = §(n +3)
21



One can show that the asymptotic of the solution obtained in [2] is
the same. For that solution, there was a dependence of the eigenvalue
z on the Z{:

! Fo0 eTTAN (] —
n! :/ e~ Fa(1 fx)dx’
Z, 0 z =&

where z = %%L For |z| > 1 and £ < 1 one can spread the
expression under tﬂe integral:

(1—53’/‘) f_x f_x 2

p— (1—5 JA+ =+ )+ () +) =
_ ! 1, _ €, 1
= tn-e0-0-Sa- G-
Hence, the equation becomes to be
1 1 [teo 1 1 2 1
Ao ol fy Tt S ) = e =

=§(1—€(n+1)(1—%)—52(n+1z)(n+2) 1—% -

or

o= 21—+ (1 - 4y oSt Dr2) Ly

20 Z0 20

where zg = Z{y(1 = &(n+ 1)) + &(n + 1) is the approach of order &,
hence, the next approach (of order &%) is

h+@n+2) 1

2% Lo (1€ 1) (1= g (1)) - R 1 )
~ Zo(l = §n+ 1)) +E(n+1) +E(m+ (- - 1).

!
ZOO
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In approach of order &2, we get the solution, which coincides with
that obtained above with Laguerre polinomials (for this case).

The numerical calculations show that by increasing the number of
Laguerre polinomials taken into account, one can get the closer solu-
tions in the region, where this solution exists for the previous method
(see Figs.10 and 11). The region in upper semiplane, where there is
no solution for the previous method, corresponds to the continuous
spectrum, which describes nonperiodical motion due to the spread of
synchrotron frequencies. Obviously, the previous method of searching
isolated poles does not describe this region.

Moreover, our present consideration shows the way how the previ-
ous solution can be extended into the lower semiplane z: the solution
should be a complex conjugate to that of the upper semiplane, with a
cut along the positive real axis of the z—plane, and the region between
the upper and lower edges of the cut corresponds to nonperiodical
motion, with an infinite number of expansion terms necessary for its
description and with no singular poles.

The following corrections should contain the terms Z;;, with j or k
not equal to zero, which are absent in [2]. When these terms become
appreciable, the approach of [2] becomes to be no more valid.

5 Coupling of different multipole modes

Turning to the equation (14), one can consider the coupling of neigh-
bour multipole oscillations with multipole numbers from n; to ny
(dropping the terms containing &*):

2D — (inQ)?(E — 26M™) D™ -

0 I ) m2¢2 . ] . . .
243 D 2T 3 B (—igQo) (B - €1%) DY = 0,
Jj=1 m q>0

(19)

n=mny,..,nNy.

In order to get the equations for solutions s mnear the given n.-
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Figure 10: The level lines of maximal growth rate at the plane

Zgo for different numbers of expansion terms taken into account
(n=2,5,10,20,40).
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Figure 11: Comparison of two methods. The level lines of maximal
growth rate at the plane Zy for n=40 (below) and the same picture
obtained with previous method (above).
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th harmonic of synchrotron oscillations, with regard to coupling with
neighbour harmonics from ny to ny (ny < n. < ny), one can denote

)\ (52 — (in80)?)
(—QianO)
A 02 Iy

A2 0
n Q 2¢, 4V, ssin ¢y

With this denotation, eq.(19) becomes to be

AD™ — (inQp) (EM™) D™ —

A 74 (s Blellal (B4 (fr _ enpypei = 0, (20
ZIOZ Z () (B = ear) (20)
for n = ng
2 _ 2y 2 . .
(\E + z’QO(n27nC)E QoM™ DM -
.

C

Ay Y

Jj=1 g>0

JE - EMY)DY =0, (21)

for n=mny,..,n2,n# n..

One can see that near the n.-th harmonic of the synchrotron fre-
quency, when [A| < |QO| the equations with n # n. have an additional

large diagonal term |——=| > |A[, which subdues the influence of non-
diagonal coupling terms dependlng on the impedance. Due to this fact,
we believe that each multipole mode (n.) should have the strongest
coupling with the closest modes (n, + 1, n. £ 2 and so on) and more
distant modes can be dropped. This assumption is obvious for higher
distant modes (with n > n.), because the coupling terms for these
multipole numbers contain higher powers of ¢y < 1. But for the lower
multipole numbers (n = n. — 1, ..., 1) one should check accurately the
combined effect of increasing diagonal term, which decreases coupling,

TL—TL

and lowering the power of ¢, which increases coupling with decreasing
n.
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6 The code MBIM2

The method given in this paper is realized in the code MBIM2,
analogous to the code MBIM1 [2] for short bunches.

The code allows to calculate the growth rates and synchrotron fre-
quency shifts for eigen modes of unsymmetrical multibunch beam (and
for the case of counterrotating bunches too) with long bunches. The
user defines the number of expansion terms taken into account. The
code implies the possibilities to take into account the spread of syn-
chrotron frequencies along the bunch and to calculate simultaneously
several neighbour types of multipole oscillations.

7 Conclusion

1. The alternative method for studying the coherent synchrotron os-
cillations was considered, in comparison with the method given in [2],
which was developed in an approach of short bunches.

2. The present method is useful in the case of long bunches, and
particularly for higher multipole synchrotronous oscillations, since the
main contribution for their instability give the harmonics with numbers
m, for which the condition of small bunch length is no more valid.

3. The method allows to take into account the spread of syn-
chrotron frequencies along the bunch. In the absence of coherent mo-
tion, it gives the qualitative picture of stochastic motion with an in-
finite spectrum. For coherent motion, it gives the correction to the
growth rates due to this spread.

4. The asymptotics of both methods coinside in the case of a short
bunch, in the region of big growth rates or frequency shifts, already
at a small number of expansion terms to be taken into account. In
the region of growth rates comparable or less than the synchrotron
frequencies spread, the results became to be the more close, the more
number of expansion terms is taken into account.

5. Comparison of two methods in the region of validity of both
methods shows the way of analytical extention of the previous so-
lution ([2]) to the whole plane s, which corresponds to the plane Z),
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(subsection 4.2) without a certain region along the real axis, where the
continuous spectrum of solutions takes place, which corresponds to the
nonperiodical motion in the presence of frequencies spread. Naturally,
the previous method of searching for isolated poles does not describe
this region.

6. Finally, one can propose the way how to combine these two
methods in order to get the correct results at the lowest cost:

One should check the solution convergence at increasing N, for a
single bunch, without frequency spread. If there is an essential differ-
ence between the converged result and a short bunch approximation
with NV, = 1, one should solve the whole problem for all bunches with
the frequency spread and sufficient number NV, defined for one bunch.
In the other case, one can use the previous method with matrix order
equal to the number of bunches and taking into account the frequency
spread by recalculating eigen values ([2]).
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Appendix 1
The Laguerre polinomials

Here, for convenience, the definition and the list of formulae for La-

guerre polinomials are given (from [1]). Definition (for @ > —1):
[1),(22.1.1,22.1.2,22.2.12):

/OOO w(@) up(@) tm () de = Sph, (22)

M'a+k+1)
k! '

For o« = n, the set of orthogonal functions with weight function

e % is fk|n| (z):
1

w(z) =e "o u(z) = Lfca)(x), hi, = hi(a) =

1"l(4) = - 22107 (). /OOO e I (@) 7 () die = S, (23)
[1],(22.3.9):
L) = Y xm(_ngm ( e ) . (24)

[1],(22.7.12, 22.7.29-22.7.32):

(n+ 1)Ll (@) = 2n+a+1-2)Li (@) — (n+ )L, (2);
@) = L@ —n) L (@ )+(a+n)Lff‘)1( )l;
L) = L9 (@) - L), (2); (25)
J(@) = L(n+a+ 1)L (@) = (n+ 1)L (2);
LY (@) = [+ DL (@) = (04 1 - 2) L5 (@)

pa 10 (w) = nLf ) - (04 )L (2) (26)
[1],(22.9.16)
22) =267 1/2 = z"
(02)72/2€% ) =Y O ey @



One can show that

/xe_xf/,'ﬂ(x)f,'];'(x)dx =

= hi/e_T’x|"|+1L§C|n|)(x)Lgl”l)(x)dx = ! X
k

= (|n] + 2k + 1) — \/k(n| + £)0k—1.m — y/m (] + 1) S p1.m- (28)

Appendix 2
Summing of the series

The matrix elements contain the series

oo
Sn(0) = Z mNeimae_m%gﬂZ,j;,
m=—0oQ

where Zt = Z(—i(mwo+nQ)) and N = n; +n; +2(k; +kg) — 1 is
an odd number if we consider only one kind of multipole oscillations,
separately from all others. If we consider a set of multipole oscillations
with different multipole numbers n;, N can be both odd and even.

Further, we will derive the approximate formulae for summing
these series in the case of resonant impedance with resonant frequency
w, = mywy, effective character impedance p and quality factor Q:

ps
(s —s1)(s—s9)

—w ) 1 2
s = y S1g=dwy —v, v = =, vg =1 = vy
w 20)

r

Z(s) =

For the series given above the argument of the impedance is s =
s(m) = =i+ V= iy, = j}—o In the case of transformation
T

my )
to the symmetric modes, we have ¢ > o° with m = pg + k instead

p=—00

of 37, In this case s = s(p) = —i% +v, k=0,1,...,q— 1.
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Let us denote also s’ = s — v/ = —i - proportional to m and

my 2 = (8172 — Vl)imr.
With all these denotations, we can write Z(s) = Z(s(m)) (included
into the series given above) as

ble) = (8—81378— s2) (316982) <(S—131) - (3_182)) B

_ ﬁ(l+z—:)§: <81;V’>k_ <32;u’>k) —

k=0

(o) V/Nl
Era] PR IRTIh

k=0 k=N+1 k=0 k=N

o0

} Z1(s) + Za(s),

N I/lN 1
Zi(s) = (s1— $2) {Z-I_SI Z}

k=0

k=N+1

! N 12 N
B p s1 <81—I/) 3 S9 <82—I/)
(s1—s2) \ '+ — 51 s! s’ + v — sy s!

The series with the second addentum Z;(s) can be sumed up via
the formulae of Watson-Sommerfeld (putting exp(—m?¢3/2) instead
of exp(—m?*¢%/2), for sufficiently sharp resonance), giving the same
expressions as previously for N = 1, but with factors mfg instead of
my (see [2], App.1):

Z2(3)2(81_82 { Z + Z}

S, = _iﬂﬂ%e—mm/z.

Z(l + iﬂ)m¥26im1’2€(ctg(ﬂm172) —1-sign(f)) =

1,2 V2
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= —ye_mgégﬂ > (Es1a)myge ™2 (ctg(wmy p) — i - sign(6)),
V2 1,2 7

. 1, 0<L6<2r,
sign(f) =0 1 9 <<

Now, let us transform the first part of the series containing Z(s):

Si=) m™N il e=m 4/ (51 f 52) X
m

a 1 _ k=1 _ AT 2o R
X Z 7 (s1(s1 = 1) sg(sg — V"))
k=1 (S)

where

Sk = Sk(a, Qéo) = Z mkeim€€—m2¢g/2-

For even k = 2{

Sa1(8, do) = (6

forodd k=2{+1

l l
Sur1a (6, 60) = (3(_8%3)) 510.90) = (5777 (aﬁﬁi)) S0(6,60).

9,

5‘2l+1(0a ¢O) - m‘gﬂ(aa ¢0)a

where

50(0’ ¢0) — Z€im€€(_m2¢g/2).

m
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The last series can be summed up in an approach ¢g < 7, which
is valid in the most cases of bunched beams.
In this approach, neglecting terms of order exp —7?/2¢32, we have

VIR 6226

So(8, dy) = ~——
(0, o) %o
. @M, for =0, [ >0
521(‘9 ¢0) ~ %o (%) l ;
) 2 2 2 !
lg (%) e’ /2%’ for 6> ¢o.
- 160 -
Sai+1(0, ¢0) = (?)521(9, ®0),
0

for 6 > ¢y or 6 =0.

For convenience, denote S, = Sp¢%. Hence, we get:
’ k 0 ) g

322—_”6_62/2%, for k= 0;
Q
@(k -1 for # =0, k — even;

S} 0, dg) =~ %0 k
i ) @(—_922) /26—92/2955’ for > ¢y, k — even;

S 1 for £ — odd.

Note that Bzgl contains a factor (¢o/2)V !, where N = n+q+2(k +
k1) — 1 (see above). Hence, one can write down

@ N-1 _ Py N—k—1 Nek—1 S_llc @ No1
Sl( 2 ) - 2v4 g(slml $21, )¢§( 9 )
pm N-1
= 20, - HN-T > (s1(m1do) ¥ E = sy (mago)M TR S
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