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Abstract

We write explicitly a transformation of the scattering phases
reducing the problem of quantum chaotic scattering for systems
with statistically equivalent channels at nonideal coupling to
that for ideal coupling. Unfolding the phases by their local den-
sity leads to universality of their local fluctuations. A relation
between the partial time delays and diagonal matrix elements
of the Wigner-Smith matrix is revealed for ideal coupling. This
helped us in deriving the joint probability density of partial time
delays and the distribution of the Wigner time delay.
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1 Introduction

The random matrix theory (RMT) is generally accepted to be an ad-
equate tool for describing various universal statistical properties of
quantum systems with chaotic intrinsic dynamics, see Ref.[1] and ref-
erences therein. In particular, one can distinguish two variants of
RMT approach allowing one to address the chaotic nature of quantum
scattering. The first one [2] considers the scattering matrix S as the
prime object without any reference to the system Hamiltonian. The
probability distribution P(S) of S at the fixed energy E of incident
particles is chosen to satisfy a maximum entropy principle and natu-
ral constraints which follow from the unitarity and causality of .S, and
the presence (or absence) of the time-reversal (TRS) and spin-rotation
(SRS) symmetries:

p(s) o | Jet(1=5'5) (Fa+2=5)/2 "
dot(1 _ 519)2

Such a distribution is known as the Poisson kernel [3] and uses the
phenomenological average (or optical) S-matrix S(F) as the set of
input parameters. It depends also on the number of scattering channels
M and the symmetry index 8 (=2 for a system with broken TRS,
and f=1(4) if the TRS is preserved and the SRS is present (absent)).

The approach proved to be a success for extracting many charac-
teristics important in the theory of mesoscopic transport[4]. However,
correlation properties of the S-matrix at close values of energy E as
well as spectral characteristics of an open system related to the so-
called resonances turn out to be inaccessible in the framework of such
an approach, essentially because of the one-energy nature of the latter.
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To address such quantities one needs to consider the Hamiltonian
H of the quantum chaotic system as the prime building block of the
theory. It amounts to treating H as a large N x N random matrix of
appropriate symmetry and relating S to the Hamiltonian by means of
standard tools of the scattering theory[5, 6]. This idea supplemented
with the supersymmetry technique of ensemble averaging [7] resulted
in advance in calculating S-matrix correlation functions[5] and many
other related characteristics as e.g. time delays [8, 9, 10], see Refs.[9, 1]
for a review.

In the limit N—o0 one can prove[l11] the equivalence of both men-
tioned approaches by deriving the Poisson kernel (1) from the Hamil-
tonian approach (see also Ref.[9]), with the average S-matrix being

== 1 —7(iE/24+mv(E))
S = 35, B2+ ()

(2)

independent of 3. Here, the average density of states v(F) =
7 1/1—(F/2)? determines the mean level spacing A=(vN) ! of a
closed system, and phenomenological constants 7. > 0 characterize
the coupling strength to continuum in different scattering channels
(c=1,...,M).

The particular case of ideal coupling, S=0, (amounting to both
E = 0 and 7. = 1, according to Eq. (2) ) plays an especial role for
the S-matrix approach. KEq. (1) simplifies then to Py(S)=constant,
which is invariant under the transformations of S leaving the measure
invariant. Such a situation corresponds to the so-called Dyson’s circu-
lar ensemble (CE) of unitary matrices and is much simpler to handle
analytically.

A general situation of nonideal coupling, S # 0, turns out to be
much more complicated. It is natural to expect, however, that results
obtained for the case of nonideal coupling could be related to those
at ideal coupling. Although many useful ideas around such a relation
were discussed in the literature [2, 11, 9, 13], we are not aware of
explicit relations, to the best of our knowledge.

In this paper we consider the most simple but physically important
case of statistically equivalent scattering channels. We demonstrate
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the validity of the following simple statement (and discuss several

applications of it): Let S(E) = Us(EW', where 3(E) =

diag(e?(B) . e29m(E)) he the random scattering matrix at the

energy F, the distribution of which is given by the Poisson kernel (1)

with an explicit parameterization of S(E) from Eq. (2) (y.=y for all
¢). Then for every E the transformation of the eigenphases 0.(F)

¢ = arctan { F tan é. (&) + E” (3)

ol 2

maps them to the eigenphases ¢. of the random scattering matrix, the
distribution of which is given by the CE of the same symmetry. In
particular, the joint probability density function (JPDF) of ¢, is [1]

po({6e}) ox [ [e%e — 2| (4)

a<b

1
mv(E)

The matrix U of energy dependent eigenvectors uniformly distributed
in the orthogonal, unitary, or symplectic group (for 5=1,2, or 4, re-
spectively) is not affected by the map (3). This is a consequence of
statistical equivalence of the scattering channels.

The suggested transformation was first noticed and verified in Ref.[9]
for the case of broken TRS (5=2) and further exploited in Ref.[10]. It
can be easily generalized to the other symmetry classes as follows. We
calculate first the Jacobian of the transformation (3). After a simple
algebra it can be represented as

0p. cos? ¢, B T (5)

05, Ty €082 O, o 11— §*62iéc‘2 )

where
2 dymv(E)

T(E) =1-|SE)" = 1+72+2ymw(E) "

(6)

is the energy dependent transmission coefficient[5]. We note, that
exactly the same factors as Eq. (5) appear in Eq. (1). Employing the
identity

o2ida _ 2id COS Pq COS Py (7)

TV cos 0g oS Oy |

_ ‘ p2i0a _ 5210y
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we substitute the Jacobians (5) into Eq. (4) and, making use of the
identity Hé\ib fafo = (I, fo)M~1, arrive to

26, 2i8,|P it
p({8}) oc [T [e*® — 2" ]

a<b c=1

Db |FM—D)/2+1

0,

(8)

With Eq. (5) taken into account, we immediately recognize in this
expression the JPDF of the eigenphases corresponding to the Poisson
kernel (1). Due to the scalar nature of the transformation (3) it does
not change the matrix U of eigenvectors.

Let us start with considering the mean density p(d) of scattering
(eigen)phases at arbitrary coupling. It is self-evident that the phases
in the CE (i.e. for the case S=0) are uniformly distributed on the unit
circle, the average density being merely po(¢)=(1/M) 3. d(p—pc) =
1/7. The corresponding density for S # 0 is not constant. Indeed,
using the identity p(d)dd = po(¢)dp, we see that

10| T
p(0) = P '%‘ - I1— G e2i02” (9)

Whatever simple, this relation is an important one and establishes the
physical meaning of the Jacobians of the transformation (3) relating
them to the corresponding densities of the scattering phases. It is
clear that the density (9), being expressed in terms of S only, does not
already depend on the particular choice of S used in derivation. The
only condition met is the proportionality of the average S-matrix to
the unit matrix.

It is instructive to look at Eq. (8) in the limit of large number of
channels when the typical difference 6,—3d, ~1/M < 1. Then one can
expand 6, = 6y+0, (SC<<1) around, say, dp. The leading contribution is
given by p({d.})o¢ [Tawy 16a—00|" T1, 1065 /06 15" /> which further
goes t0 po({pe})x<Tucp |¢a— Bp|? and agrees with the distribution (4)
of the CE upon the proper rescaling of the phases

G = |00/ 0|5, 0c = mp(d0)de (10)

We see that in the limit M > 1 the local fluctuations of the phases
unfolded by their local density turn out to be uniformly described by
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the CE at arbitrary coupling strength. Such a universality in statistics
of phases of random unitary (scattering) matrices has much in common
with that typical for eigenvalues of random Hamiltonian matrices [1].
Let us now consider an application of the same ideas to the time-
delay problem where such a universality reveals itself explicitly. Fol-
lowing the original wave-packet analysis by Eisenbud, Wigner and
Smith [14] it is natural to define [9] the partial time delays via the
energy derivative of the scattering phases, 7. = 2h9d./0F. Their sta-
tistical properties have been studied in much detail in the framework
of the Hamiltonian approach for the case of broken [9] and preserved
TRS as well as in the whole crossover region of gradually broken TRS
[10]. Recently, some of these predictions were successfully verified on
the model of a quantum Bloch particle chaotically moving in a super-
position of AC and DC fields[15].
In particular, the mean density of partial time delays P(7) =
1/M)>>,. 6(T—7.) turns out to be especially simple at ideal coupling,
T=1, when it reads as

(8/2)M112 &1

Po(t=7/tr) = T'(BM/2) tBM/2+2° (11)

with tg=27h/A being the Heisenberg time. [In the crossover regime
the density is a slightly more complicated function, see Ref.[10].] Due
to Eq. (10), the partial time delays at ideal and nonideal coupling

(T(SO) and 7., respectively) are simply related as
TC(O) = 2ha¢c/8E = Wp(éc)Tc . (12)

Here, we have neglected the smooth non-resonant dependence of the
density p(d) on E. Since the phase and its derivative (the partial
time delay) are uncorrelated quantities in the CE [12], their joint dis-
tribution factorizes: py(¢, 7(?) = (1/7)Po(7(?). This is not the case
for p(8,7), when §#0. The relation py(¢,7?)de dr(®) =p(6,7)dd dr
between them allows us, however, to represent the joint probability
density of partial time delays at a nonideal coupling as



Bo(9(6), 7 (6,7))

s |9, T
P(r) = /Od(5| Ele

= [ w6 Poloo)r). (13)
One can easily convince oneself [17] that such a formula reproduces in
every detail the expression obtained in Ref.[9] by means of supersym-
metry calculations. It is worth mentioning that the density of phases
(9) is independent of the underlying symmetry and therefore Eq. (13)
is valid also for the crossover regime of partly broken TRS studied in
Ref.[10].

The expression (13) is the proper one for generalization to the
JPDF of the partial time delays, w({7.}). Before doing this, we first
establish a useful relation between 7. and the matrix elements of the
Wigner-Smith time-delay matrix Q = —ih(9S/0E)ST [14]. Writing S
in the eigenbasis representation as S = U3UT, one obtains

0§ oU
Jf . _AJ[ . A Jr_ AT
U'QU = —ih 8 +ih {S,U ]s s (14)

where [,] denotes the commutator. The matrix § being diagonal, the
diagonal elements of the second term in Eq. (14) are zero whereas the
first term is exactly the diagonal matrix of the partial time delays.
Thus, the partial time delays coincide with the diagonal elements of
the time-delay matrix taken in the eigenbasis of the scattering matrix,

Te = [UTQU]ce . (15)

The physical meaning of the diagonal elements of the time-delay
matrix is well known: they describe the time delay of a wave-packet in-
cident in a given channel [14, 18]. Thus, the relation (14) sheds more
light on the physical meaning of somewhat formally defined partial
time delays. In particular, one expects that for the case of ideal cou-
pling the inherent rotational invariance of the problem makes all the
basises statistically equivalent and thus the JPDF of diagonal elements
of the @-matrix should coincide with that of partial time delays.
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The latter claim can be substantiated as follows. Following the
insightful paper [12], it is convenient to consider the “symmetrized”
time-delay matrix Qg

Q. = S~12Q8Y% = _ing-1293 g-172. (16)
oF

This similarity transformation unveils the symmetry which is hidden
in Q: Qs is already a real symmetric (hermitian, or quaternion self-
dual) matrix for 8 = 1, (2, or 4). In the eigenbasis of S the diagonal
elements of () and those of ) coincide. Moreover, in the case of
chaotic scattering with ideal coupling, the matrix Q)5 turns out to be
statistically independent of S, their joint probability density being
Py(S,Qs)=Py(S)Wy(Qs), where

Wo(Qs) o 0(Qs) det(QS)—3ﬁM/2—2+,86—(ﬂ/2)thrQ§1 (17)

is the probability density of the time-delay matrix [12]. The latter is
manifestly invariant under the choice of the basis for Q)3 proving the
above statement on relation between statistics of partial time delays
and diagonal elements of the Wigner-Smith matrix.

To find the corresponding JPDF wy({7.}) one has to integrate out
all off-diagonal elements of ()5 which is a hard problem in general.
For the case of unitary symmetry, 0 = 2, one can perform the job by
splitting the integration into that over the matrix ¢ = diag(q1, ..., qar)
of eigenvalues of Qs and that of the eigenvectors, V,

AAA2
w(e)) x fald G0o

an)) = JaviT] o - (vVavhe). (19)

ettt Q({7.}), (18)

with A(q) = I1,<(9a — g») being the Vandermonde determinant. The
integration over the unitary group for Q({7.}) can be done, following
Ref.[19], by means of the famous Itzykson-Zuber formula[20]. Finally,
we find it more convenient to define the generating function of partial



time delays rather than JPDF itself and obtain

—i(kimi+-+knmTar) det [¢ (kjl)}
<e >7- x Ha<b(ktjl — kb) ’ (20)

where (k) = [;7dg I 3Me=tkia—tr/q the index [ spans the values
l=1,...,M and 5 =0,1,...,M — 1.

Such an expression allows us to calculate all the moments and cor-
relation functions of partial time delays by a simple differentiation.
Moreover, setting in the preceding equation ki=...=Fky;=Fk and cal-
culating the corresponding limit in the right-hand side, we come to a
convenient representation for the distribution Py, (t,) of the Wigner
time delay, t,, = (11+...4+7ar)/Mtg, for a system with broken TRS and
ideal coupling to continuum,

PU (b)) o A o:odkeiMktw det [y (k)] (21)

where ") (k) =d™y;(k)/dk", and j,n=0,..., M 1.

The distribution of the Wigner time delay was earlier calculated
explicitly only for the case of M=1[16, 9, 10|, when it follows from
Eq. (11). The compact expression (21) is valid for =2 and arbitrary
M. For M=2, Eq. (21) can be integrated further to yield

Pa(tw) o t,* Ty (B 25 + 2, ), (22)

with U(a,b,2) = [1/I(a)] [§dyy® (1 + y)* * le *¥ being the con-
fluent hypergeometrical function. Here we represented the above dis-
tribution (22) in a form covering all § = 1,2,4 which will be veri-
fied below[21]. In particular, an asymptotic behavior at &, > 1 is
Py(ty) o t7772 in agreement with the known universal tail ¢=#M/2-2,
which is typical for the time delay distributions in open chaotic systems
[9, 10, 12, 15].

To verify Eq. (22) for 8=1,4, it is convenient to consider a general
problem of finding the distribution WO(@) of the n x n submatrix Q
standing on the main diagonal of )5. This distribution is found to be

Wo(@) x0(Q) det(@)fﬁ(M/2+n—1)fze—ﬂtmré—l/z. (23)
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The particular case n=1 reproduces the result (11) of the Hamiltonian
approach. Eq. (23) for n=2 helps in calculating the joint distribution
Wo(t1,t2) of two partial time delays ¢1 9 =712/t for arbitrary M. One
obtains
doltits) U5 504642 57+ 57)
Po(t1)Po(tz) (t1t2)P/?

The knowledge of wy(t1,t2) allows us to find further the distribution
of the Wigner time delay for M=2 and thus prove the formula (22).

As follows from Eq.(24), there exist nonvanishing correlations be-
tween the partial time delays. They are, however, of different nature
as compared to the correlations between the proper time delays (the
eigenvalues of @) which show repulsion [12]. Such a difference is, in
particular, reflected by different behavior of the mean density of the
partial time delays and that of proper time delays at large M: the for-
mer (see Eq.(11)) tends to gaussian of a narrow width 1/v/M whereas
the later is highly asymmetric and covers finite extent as M — oo [12].

For S # 0 the matrices S and Qs cease to be statistically in-
dependent variables and do correlate. Therefore statistical proper-
ties of diagonal elements of @ in arbitrary basis (save the eigenba-
sis of S) are different from that of partial time delays, unless cou-
pling is ideal. Still, the JPDF w({7.}) of the partial time delays
at nonideal coupling can be found by repeating basically the same
steps which lead to Eq. (13). The identity p({d.},{7c})d[o]d[r] =
po({¢c} {Tc(o)})d[qb] d[7(9)], together with the statistical independence
of ¢. and 70 (which follows from Eq. (17)), allows us to relate w({7.})
and wo({7.}) as follows

/ 5 ]‘auasc} A0

(24)

w({7e}) po({gc} =)

({5}, {me})
M
_ / U p({8:N)wo({mp(6c)7e}),  (25)

where d[d] means the product of differentials.
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