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1 Introduction

High-energy circularly polarized photons, if available, would help in
solving several important problems in high energy physics like that
of spin-crisis (see e.g.[1] and literature cited there). If we start with
linearly polarized multi-GeV photons, then they can be converted into
circularly polarized ones provided that the suggestion of Cabibbo and
collaborators [2] to use a specially chosen crystalline plate for this
purpose is true. This idea is now under experimental investigation at
CERN within NA59 project, where the linearly polarized photons are
also produced by means of a crystalline target from unpolarized elec-
trons passing through it. From theoretical point of view, the conver-
sion process itself is very interesting since for multi-GeV photons it is
caused by the polarization of vacuum in the presence of the periodical
electric field of a crystal. This phenomenon has not been investigated
so far.

To develop a description of the photon propagation, we start in
Sec.2 from the Maxwell equations taking into account a current in-
duced in a medium by the incident wave in a rather general form.
When the wavelength of a photon is much shorter than any other
characteristic distance scale of the problem, the parameters of a wave
packet change slowly while it propagates in a medium. Using this
fact,we obtain the solution to the Maxwell equations in the short-
wavelength approximation, which is the analog of the eikonal approxi-
mation in the fast particle scattering theory. The approximation used

becomes valid starting with a relatively small photon energy w 2 m,
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our solution with that of [3] obtained for an amorphous medium, we
find that a matrix, describing a change of the polarization and inten-
sity of a wave packet is deeply connected with the forward scattering
amplitude. At least, it is the case for large thicknesses, when this
change becomes really prominent. In the multi-GeV energy region
of interest, the photon scattering via virtual et e~ pairs is the only
process relevant to the problem. Its amplitude for a separate atom
is well known (see [4] for the forward scattering amplitude). In crys-
tals, along with this incoherent (amorphous like) contribution to the
amplitude, the coherent one, caused by the periodicity of a lattice is
present. The latter is calculated in Sec.3 by means of the so called
quasiclassical operator method. The details of this method along with
many applications can be found in [5]. We use the results obtained
to consider the circular - to - linear polarization conversion process.
Optimal (according to the criterion formulated in [6]) thicknesses and
orientations are found for diamond, silicon and germanium crystals for
photon energy w ~ 100GeV.

2  Propagation of short-wavelength photons
For the electric field E of a wave we obtain from the Maxwell equations
92
(55 — V?) Eila) = 4n / &’ Rip(2) xmi (2, ') Ey(2), (1)
where the operator
52 92
Jz;0,, ot?

When deriving eq.(1), the following relationship of the electric E and
the induced D fields was used:

Di(z) = Ei(a) +4r / e’ xij (2, 2') Bj(') | )

R (2)

as well as the condition dD;(z)/0z; = 0. By definition, differentiat-
ing the integral in eq.(2) over ¢, we obtain j(z) being a density of the
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difference ¢t — t', the equation for the vector potential A is essentially
the same as eq.(1) for the electric field.
In the vacuum the solution to eq.(1), satisfying the condition

OF;(z)/0x; = 0, reads
Eo (2) = / dk g(k — ko) e (k) e~ 3)

where z and k are 4-vectors: z = (t,r), & = (w, k) with k =
wrv,v? = 1, and et (k) being an arbitrary vector, perpendicular to
k. If we introduce & = 8;; — v;v;, then e (k) = & e;. We assume
that the function ¢ in eq.(3) vanishes except of the narrow region
where | k — kg | <| ko,|. So, the incident wave is a wave packet
propagating along kg . Let it encounter a medium at some boundary.
We try to satisfy eq.(1) in the medium using the field E in the form

of
Ei(z) = /dkg(k ~ ko) Fy(r, k) ek (k) e, (4)

with F;(r, k) = ¢é;; on the boundary. Assuming that wg is suffi-
ciently large, we expect that the function Fj;(r, k) varies very slowly
with respect to r. Substituting eq.(4) into eq.(1) and neglecting the
term V2 F (keeping only kd/dr F), we obtain
0= /dkg(k - ko) {Qie_ikzkliaﬂj_(r’ by
or
(5)

+4m /d4x’ Rim (@) Xmi(z, 2') F35(x', k) e_”””'} ey (k).

The integral [ d*z’ in eq.(5) can be easily taken if we use the Fourier-
transforms:

Al d*ky
il ) = [ T k),

dq i
Byt 10 = [ 2;362qrﬂj(q,k).

5
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Xt (1, k2) = (27)4 Zcml(Q7k1)5(k2 -k - Q) (7)
Q

where Q = (0,Q) is a reciprocal lattice vector. Using this represen-
tation, we obtain from eq.(5)

Z,klOFij(r, k) 4

0= / dkg(k — ko)™ {2 - (8)

+amwdy, / (j;’)g > en(Q .k + g — Qe ¥ Fij(a, k) € fef (k).
Q
The second argument of the function ¢,,; in eq.(8)is ky = k+¢—Q =
(w,k4+q— Q). This function depends actually on w; = w and
n = k; / | ki |= v+ st wheres = (q—Q)/w. We have
already used the fact that | s |< 1 neglecting it as compared to
unity. In particularly, that is why we have &1 in eq.(8) instead of
8im — kiikim/w?. We shall see below that owing to this replacement
the longitudinal components of Fi;(r, k) do not appear at any depth
if they are absent on the boundary. However, when v is almost par-
allel to some crystal axis, the transverse (with respect to this axis)
component of v should be compared with | s |. We can rule out
q — Q from the second argument of the function ¢,,; when the angle
of incidence ¥y with respect to this axis (transverse component of
v) is sufficiently large: 99 >| s |. In what follows, we assume this
condition to be fulfilled, bearing in mind that really it does not lead
to serious limitations as a typical magnitude of | s | at w ~ 1GeV
is 107®. The integral over q turns into F;(r, k) according to the
definition eq.(6), when we change ¢,,/(Q,k+ ¢ — Q) = cu(Q,k)
in eq.(8). This means that the integral over r’ in eq.(5) converges in
the domain | r — r' | < R where R is a characteristic scale for the
noticeable change of the function Fj;(r’). So that, we could substitute
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0= / dkg(k — ko) 6_””: { Qiklija(:l ) —|—

(9)
+ 470255, 3 ent(Q k)e ¥ Fij(r, k) et (k).
Q

Here we are interested in the transverse (with respect to v ) tensor
F;;. Let us analyze, whether such a form of the sought tensor is
consistent with eq.(9) and boundary conditions. According to eq.(9),

the left longitudinal components of this tensor FJ[| = v;Fj;(r, k) are

independent of the penetration depth. If we suppose that F]l| =0
on the boundary, then Fj; = 6, F,; = 5ZJ7:LFnj at any depth. In
particularly, this implies that only transverse components of the tensor
cmi(Q, k) are present in eq.(9). The right longitudinal components of
the sought tensor do not enter eq.(9) owing to the factor e (k). So, all
the tensors below are self-consistently assumed to be transverse. They
can be presented as two-dimensional matrices. Remembering this, we
obtain from eq.(9)

1
F(r, k) = exp { 27riwzz c(Q ,k)e_iQp/ dx e_”ZQII} , (10)
Q 0

where p = 1 — zv,z = vr,Q) = vQ. For ) = 0 the integral in
eq.(10) equals unity, while for @ # 0 it is of the order of (QHZ)_1.
Noticeable effects appear when the main (Q” = 0) term in the phase
of eq.(10) is of the order of unity. As shown in the next Section, it
happens for z of several centimeters when the contribution of terms
with @ # 0 to this phase ~ (Q”z)_l < 1 and can be neglected.
Since matrices 3¢ ¢n1(Q k)e~'Qr are in general non-commutative at
different z, the exact solution to eq.(9) is the z -ordered exponential
function. However, corrections to eq.(10) due to z -ordering are con-
nected with terms Q) # 0 being as small ((Q)z)~") as terms already
neglected. It must be remembered also that (for the coherent yield)

-
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to the sum in eq.(10). These means that for sufficiently thick crystals
we should keep only terms with @ = 0 in the sum of eq.(10):

F(r, k) = exp { QFiWZEC(QJ_ ,k)e_iQLp} . (11)
Q.

The condition Q) = 0 implies that Q. = 0 too, if v is not aligned
on some crystal plane. More precisely, let @ be the angle of v with
respect to the plane. For ¢ > ¢ = dy/z, with d, being the
inter-planar distance, we can retain the single term ¢(Q = 0,k)
of the sum in eq.(11). The angle ¢ is extremely small, even for
very thin films. The integration over v in eq.(4) should smear out
a dependence of the general result on p. We are not interested here
whether such a dependence is observable or not. In what follows, the
sum Y q, c(QL ,k)e™*QLP in eq.(11) will be replaced by the matrix
c(Q = 0,k) = ¢(0,k) which coincides with the average of this sum
over p. The matrix ¢(0,%k) has no singularities and is practically
constant in the region ¥ < g. So that, any directions are allowed
for v.

Keeping in the sum 3} q ¢(QL ,k)e~"QLP the only term with
Q. = 0, we disregard possible small-angle photon scattering. In
this approximation there is no exchange between fractions of the wave-
packet having different v, i.e., these photons propagate independently.
So that, for given direction, we can go over to the conventional ide-
alization of a monochromatic plane wave. Then the electric field
is obtained from eq.(11) and eq.(4) with the change in the latter
gk — ko) = 8(k — ko) and then ko= k

E(z) = et giwzn eL(k) , (12)

where the two-dimensional vectors F(z) and el (k) are correspond-
ingly the electric field in a medium and the polarization vector of the
incident wave. The quantity n = 524]- + 27¢(0,k);; is a complex ma-
trix representing, by definition, the index of refraction. It depends on
w and (in crystals) on v. We introduce a matrix I1 = 4rw?c(0, k),

8
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+
p(L) = exp{iL%}p(O) exp{—iLQH—w} , (13)

where p(0) is the density matrix of the incident photon.

Comparing eq.(12) with the corresponding result of [3] obtained for
an amorphous medium by the direct summation of fields coming from
individual scatterers, we find that in this case II = 47 f(0) N. In this
formula f(0) is the forward scattering amplitude for an individual
particle (the cross section do/dQ =| f(A) |, A= ky — k;) and N
is a number of particles per unit volume. So, to find the polarization
operator II, we have to calculate the forward scattering amplitude
normalized in such a way, that it reproduces 47 f(0) for an individual
particle. Moreover, using the amplitude (see Sec.3 for its normaliza-
tion) T'(kq,kz) for an arbitrary momentum transfer A | we obtain

for x(ki,kz) defined in eq.(6)
X(k‘l, k‘g) = T(kh kg)/(2w2) . (14)

From this relation and eq.(7), we can extract ¢,,;(Q, k1) and then, if
needed, take into account terms with Q # 0 omitted at the transition
from eq.(10) to eq.(12).

As any other 2 X 2 matrix, [1/(2w) in eq.(13) can be presented in
the form of 11/(2w) = a+bo, where o are the Pauli matrices. Note
that the eigenvalues of the matrix a+bo are a + vb2. Using a similar
representation for the initial density matrix p(0) = (I +no )/2, with
1 being the initial Stokes vector, we find from eq.(13)

1 1
p(L) = —e_WL{ 1tno (cosh a4+ cos ) +
2 2
1 —no
—|—(Cosha—cosﬁ)[ 217 (gf—l—g%)—k(&xgma—n)—l—

+(g1m) (819) + (821) (820) | — [(2, o +m) + (g1 x m, &)]sin -

—[(g1,0+n)— (g2 Xxn,o)]sinh a} , (15)
9



18y = b/\/ﬁ The real vectors gy and g satisfy the conditions
gig2 = 0, g2 — g2 =1, since g2 = 1. As tr p(0) = 1, the fraction of
outgoing photons is given by FRAC = tr p(L). The Stokes vector at
the depth L is n(L) = trop(L)/FRAC . In the explicit form:

(L) = 5 FRAC = et p L) = -2 —n’ (16)
K P’ o P2 J
where
P = gicosha — gicosf3 — (g1, n)sinha — (gz, n)sin3 —
(cosha —cos 5)(g1 X 82, M) ;
S = ( 2 _ g2 ) _
=mn (gjcosB — gjcosha
—[g1 — g2 x n]sinha — [g2 + g1 x n]sin f+
(g1 X824+ 81(81, 1) + 82(82, n)](cosha — cos 3)
(17)

We emphasize that, according to eq.(16), the polarization degree |
n(L) | is an increasing function of depth L except for n? = 1 or
P?=1.

3 Scattering of photons in a crystal

We now assume that w > m. Generally speaking, the amplitude of
the forward Compton scattering off electrons fc(0) may be of com-
parable size with that due to virtual et e~ pairs (VP) even in GeV
energy region (see discussion in [4]). However, we can neglect fc(0) in
what follows since it is, first of all, the unit matrix multiplied by some
scalar factor and, second, real. That is why its contributions to Il
and TIT in eq.(13) are cancelled. For the same reason we can omit the
real part of the incoherent contribution to the forward scattering VP
amplitude. Nevertheless, its imaginary part, which does not cancel in

10



w W, , with W, being the probability per unit length of the et e~ pair
production by a photon. Remember that the incoherent probability
W, in crystals is smaller than in corresponding amorphous media (see,
e.g. [5]). So, we must calculate here only the coherent contribution to
the VP amplitude.

The properly normalized transition amplitude of the photon with
4-momentum ky, = (wi,ki) and polarization vector ey, into the
photon with kg, = (w2,ksa), ez, reads

T(ky, k) = (18)

2m/ﬁl41‘10l4902T7‘ [G(%,m)éle_““l“ G(21,29) ége““”?} 7

where @ = 1/137 is the fine structure constant. The electron Green

(£)

function G'(z1, z3) can be expressed via solutions Wy ’(z) to the Dirac
equation in the corresponding external field

iG(w2,21) = 0tz —t1) Y W) (25) UP (2y) —

— 0t —t2) > W) (w2) U (ay) (19)

Recollect that (see discussion in [7]) for w > m the contribution to
the amplitude , in terms of the non-covariant perturbation theory, is
given by the diagram where the pair production by the initial photon
precedes the annihilation of this pair into the final photon. We find,
keeping only terms proportional to 6(t; — t1)

T(k‘l, k‘g) = i Z / d4$1d4$2 0(t2 — tl) X

X Vipm (71, €1, k1) V| (22, €2, ka) (20)
Vim (2,6, k) = U () e w(-) ()

11
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only small momenta | q | € m are present. For such potentials, the
quasiclassical operator method can be applied in its standard form to
calculate the amplitude T'(ky, k2). Then further transformations in
eq.(20) are completely identical to those leading to the quasiclassical
expression for the probability of ete™ pair production by a photon
in an external field (see Sec.3 in [5]), because Vi, in eq.(20) is es-
sentially the matrix element for this process. Notice that the ampli-
tude T'(kq, k2) is the contraction of e e}, with the sought tensor
T#(ky, ko). For the transverse (with respect to vy = ky/w; ) com-
ponents of this tensor we obtain from eq.(20)

16
o) 25(w2 —wl)/drx

xexp(—tAr) /dT d

T =

2 —iA pij
e[ dp_ (0)e4 BY,
w—s
0 0
7/2
wm? ds
A= ———— —p? :
2%w-—¢) | - // m2PL (#) | 3
—7/2

26 —w

2

W= 67 {mQ + (Pupu)} + ( ) PLipy. — PPy, (21)
where p;2 = p(F7/2) being the momentum of an electron on a
classical trajectory at the corresponding time, A = ks — ky. When
the external field vanishes, the amplitude T must vanish as well. It
assumes a subtraction which really affects only the term proportional
to m? in BY . This subtraction will be performed in the explicit form
below.

Generally speaking, for further calculations we have to know the
dependence of p, (t) on time, i.e. the corresponding mechanical prob-
lem should be solved. For arbitrary potential it cannot be done an-
alytically. Fortunately, it is sufficient to know the alteration of the

12
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is the characteristic size of the variable T Contrlbutlng to the inte-
gral. In the rectilinear trajectory approximation (RTA), we substitute
into equations of motion r + v ¢ instead of the exact solution r(t).
We refer for details to [5] stating here that in crystals the amplitude
T can be calculated by the use of RTA for arbitrary photon energy
(w > m) and crystal orientation.

Representing the crystal potential U(r) as a sum over vectors q
of the reciprocal lattice

= ZG(q) e
q
we find within RTA for the transverse momentum

pL(t) =pL(0)+8(t)=pL(0 ZG elar q: (eiqut _ 1), (22)

where ¢ = (v1q). Substituting eq.(22) into eq.(21) , we can take
the Gaussian-type integral over p, (0) . Performing the subtraction at
vanishing external field and going over to the variable y = 1 — 2¢/w,

we find
1

i; o .
T — ;5(4,92 —wy) / dr emp(—zAr)/ 1= 42 X (23)
21
T dr ) ij
X / ?exp [—6T (14 (7)) BY;
0
G(q)G(q’
U(r) = Z ( 7)712( )X
q,q’
(quDei(qur) [Sin(q” +a))r/2 _ s, qu(lT/Q]
a1 (@+apr/2 qr/2 47/
i ; 2.2 dy
By = y? alaQ—a2a1+5 (ajag) +m” | (y —1)'TE_ i
_ _ % 2 2m?
A — G(q elar | JFigm/2 _ m , = —.
1,2 Z q|| l q”T/2 ﬂ w(l — y2)

13



tions. It would be drastically simplified if we neglect the function
¥(7) as compared to 1 in the phase of eq.(23). We suppose that
the angle of incidence dg with respect to some major crystal axis
P9 € 1, since precisely for such angles the strengthening of elec-
tromagnetic effects happens in crystals as compared with amorphous
media. If vy is far in azimuth from any major crystal plane, then
| q |~ qido | and ¢,r5(1) < (Vo/m/d0)*. In this estimate Vj
denotes a typical magnitude of G(q) being of the order of the ax-
ial potential well depth. So, in this case we can omit %(7) in the
phase of eq.(23) for 99 > Vy/m. If now vy is aligned on some
crystal plane, there is a subset of q (q') for which ¢ (q|’|) are ex-
tremely small or vanish. Those q are perpendicular to the plane.
Expanding in ¢ and q|’| , we obtain for the corresponding contribu-
tion to the phase ¥,(1) = (7/m)*(dUy(z)/dz)*/12. Here z is the
distance from the plane, Uy (z) being the planar potential. As long as
¢(r) < 1 , we can substitute 7 ~ 37! into our estimate which turns
into ¥,(7) < k*(z). The magnitude of the strong field parameter
2

K(z) = E%(:)% . Ey= % = 1.32-10V /em
can be estimated using the Table 1 of [8], where, in particularly, av-
eraged over z values of (E,(z)/Eg)? are presented for (110) plane
of several crystals. As a result, for commonly used crystals, 1,(7) is
sufficiently small when w is less than several TeV . Assuming that w
and ¥y satisfy the formulated conditions, we, finally, rule out (7)
from the phase of eq.(23).

Now the integration over r in eq.(23) can be performed

/ drezplilq + q' — A, r)] = 27)°6(q + q' — A).
As a result, the tensor T% acquires the form
T (ki kz) = 27)° > 79(Q k1) 6(k2 — k1 — Q),
Q

14



eq.(14) we find that ¢¥(Q, ki) in eq.(7) are ¢/(Q, k) = 7%(Q,
k1)/(47w?). Here we are interested only in 7%/(0, k1) being just the
polarization operator II which determines a development of the pho-
ton density matrix at large thicknesses according to eq.(13) . Taking
elementary integrals over 7 and y, we obtain from eq.(23)

- 8m2 Z | Gla {qigij [idy (p) + do(p)] +

n (gq‘i&f - qiqi) ida() — a1} (21)

where p = 2m?/(w | ¢ |) and functions d; are

dy(2) = o2 [(1—|—x - %:ﬂ)m/ﬂ) - (1+x)m] 6(1— ),

d3(z) = o° @9(\/1 —z)+ V1 - x) 01— z), g(z)=In %’

= —{ @9 Vitaz)— \/1+x)2—

—\/ﬁ)Qe(x— 1)+

— <x arctan

7
+ [(gg(\/l —z) +VI- x)2 - (7;—3“")2] o(1—2)},

o) = o) + 2Ly (TR 4 VTR -

2

3 [1 V= (“ o(VIEa) - \/1—x)—|—

1—|—x]

6(1—z) arctan

+1 X

+\/F>—1] oz -1)}, (25)

15
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The photon energy w enters eq.(24) in the combination p except
of the factor w? in front of the sum. This sum is almost independent
of w near its maximum since the latter is given by p ~ 1. As a
result, the w-dependence of the quantities o and § in eq.(15) and
eq.(17) describing the behavior of the photon polarization is reduced to
the factor wl for optimal orientations. Correspondingly, the optimal
thickness L, is roughly proportional to w™'. As mentioned above,
there is a subset of q at perfect planar alignment' for which ¢ vanishes
(g — 00). The contribution of this subset to II*/, i.e. the yield of the
corresponding planar potential obtained from eq.(24) reproduces well
known results (see, e.g. [8] and literature cited there) derived within
the Born approximation:

04’1712

457

(k2(2)) (4eie] + Tebe ),

where (...) means averaging over the coordinate z, e; is the unit
vector perpendicular to the plane and e; = vy X e;. What is lost
when % (7) has been omitted in the phase of eq.(23), are higher order
corrections in crystal potential.

Using the explicit form of I eq.(24) and adding the incoherent
yield,we can find the quantities presented in eq.(15), which describes
the properties of a photon beam for any initial conditions dependent
on the crystal thickness. As explained above, the incoherent yield is
present in eq.(15) only in the absorption coefficient v. We can use
any basis to calculate I1¥ . Let this basis be formed by two real unit
vectors e; and ey satisfying eje; = vie; = vies = 0. We should
use the same basis to obtain the initial Stokes vector n. Supposing
that vy is near some axis direction vz, we choose e; in the plane
(reaction plane) containing v; and ws. For the basis chosen, the
circular polarization degree is given by the magnitude of the second
Stokes parameter (L) =|n2(L) |. If we define the angle of incidence
¥9 as the angle between vy and vz, and ¢y which is the angle
between the reaction plane and the (110) plane, then the explicit
form of the basis vectors reads

16



e = —e;sinpg + e, cos g,
e; = v3sintg — (ezcos gy + ey, sin ¢g) cos Vg,

where e e, = vse, = vsze, = 0 and e, is in the (110) plane. In
this basis the quantities @ and b presented in eq.(15) take the form

1

By =0, By = 5[(ea1)’ ~ (eran)?]lida(w) — da(w)] . (26)

Remember that the eigenvalues of the propagation matrix I1/(2w) in
eq.(13) are @ &+ Vb?%. The corresponding eigenvectors ey satisfying
the normalization condition | ey |2= 1 are

e; + rey e; — reg by

ey = — , . = —— |, = —,
T VIR LHIr P by + Vb2

In general, the eigenvectors ey are complex. However, they become
real when the quantity r does so. In particularly, when v is in the

symmetry plane of a crystal like (110) plane (g = 0), r vanishes
and ey coincide with eq . Just such a case (g9 = 7/2,v3 along
< 110 > axis) was the only orientation considered in [2] where a quan-
tity accounting for the polarization conversion was calculated by the
use of dispersion relations. In our notation it corresponds to the term
in eq.(24) proportional to d4(p). We were unable to reproduce the
factor in eq.(5) of [2], nevertheless, we emphasize that the expression
in braces of the cited equation coincides with dg(u)/u®.

Consider now, as an example, fully linearly polarized (n; = 0,
n? = 1) initial photon beam. An efficiency of the polarization conver-
sion process is determined not only by (L) but also by the fraction of
surviving photons FRAC(L). We use the criterion of such an efficiency

(27)

17



FOM(L) = 10-¢(L)\/FRAC(L) |
L being the crystal thickness. Recollect that &(L) and FRAC(L)

depend also on w and vy. For given orientation of a crystal, we still
have a free parameter which is the angle ¢ of the initial polarization
vector with respect to the basis vectors e; and e;. We do not claim
here to the final analysis of the polarization conversion process, so that
the yield for different orientations will be compared at the same initial
condition. Namely, we set 7y = —1 which corresponds to ¢ = 7/4
with respect to ey (¢ = 37/4 with respect to e; ). Evidently, this is
the best choice for the alignment on the symmetry plane of a crystal
when the basis vectors are the eigenvectors of the matrix 1% as well.

In Fig.1 the maximum values of the figure of merit ( FOM ) are
shown near < 110 > axis of a diamond crystal for w = 100 GeV as
a function of the orientation (angles ¥g and ¢g). For each direction
(Yo, o), the figure of merit was calculated first as a function of L,
then its maximum value was found. Just these maximum values of
FOM are plotted, so that different directions correspond usually to
different optimal thicknesses L,,;. Owing to the crystal symmetry,
there is no need to perform calculations for ¢y beyond the interval
chosen, since they will simply reproduce the results already obtained
for corresponding g within the interval. For diamond crystal, the
largest effect is achieved for ¥y = 1.5 mrad off the < 110 > axis
on the (110 plane (¢ = 0), where (see Fig.1) FOM =~ 3.7. How-
ever, in this case the size of L,,; ~ 4.7 cm seems to be too large for
practical use. Generally, a typical size of the optimal thickness is of
a few cm. For the same axis of a silicon crystal (see Fig.2), the peak
is at ¥9 = 2.3 mrad and ¢y = 0 with FOM ~ 2.6. We empha-
size rather narrow angular with of the peak in both directions. The
optimal thickness in this case is L., ~ 8 cm. We have performed
the same kind of calculations for three major axes of diamond, silicon
and germanium crystals. Comparing types of crystals, we see that
the effect is the largest for diamond and the smallest for germanium,
where FOM =~ 2.0 can be obtained at L,,; ~ 2.8 cm. What about
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give a comparable but smaller yield.

For ¢g = 0 the position of a peak is determined by the condition
p o= 2m*/(w | q | ) = 1 for the smallest non-zero | ¢ |. This
is connected with the threshold behavior of the functions d;3(p) in
eq.(24) at g = 1. From this condition we obtain for fec(d) structure
near < 110 > axis 9% = m?l./(7w), where [. is a lattice con-
stant. In particularly, for Si we have J§'**(mrad) ~ 229/w(GeV).
This fact is illustrated by Fig.3 where FOM (upper curves), FRAC
(lower curves), and the degree of circular polarization & are shown for
wo = 0 near < 110 > axis of a 10 cm thick silicon crystal as func-
tions of w. Three sets of curves (from the left to the right) in Fig.3
correspond to the angles of incidence ¥g(mrad) = 2.29, 2.08 and 1.91
respectively. All curves in Fig.3 have peaks exactly at the positions
prescribed by the condition obtained above. For a given orientation
(at fixed ¥y ), rather narrow shape of these peaks does not allow us to
handle with the same efficiency a photon beam having the wide energy
spread.

The magnitude of FOM (L) being proportional to &(L) dimin-
ishes for partially polarized initial photon beam roughly proportion-
ally to | | < 1 as compared to the fully polarized case (| n|= 1).
Depending on the orientation, more or less noticeable change of the
polarization degree | (L) | occurs for | n | < 1. It can be seen in
Figs.4,5 where the absolute values of three Stokes parameters and the
polarization degree are presented as functions of the silicon crystal
thickness L at w = 100 GeV. The calculations were carried out us-
ing eq.(16), eq.(17), and eq.(26) for 7, = —0.5, 72 = 3 = 0. The
angle of incidence ¥y = 2.29 mrad is the same for both figures. At
wo = 0 (Fig.4), n3(L) is small and | p(L) | (curve "tot”) practically
does not change due to the smallness of the parameter o (see eq.(15))
within the whole interval of L presented. The fracture of the curve
(1) means only that 7;(L) changes its sign at L = 21 cm. Since the
polarization degree practically conserves and 73(L) can be neglected
for this orientation, we could measure the linear polarization 7y (L)
to determine the circular polarization 73(L) appeared. However, the
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seen in Fig.5 calculated at ¢y = 0.015. Now the measurement of the
linear polarization does not help in the determination of the circular
one since the polarization degree is no more constant.

In conclusion, formulas derived describe the propagation of hard
polarized photons through crystals. They are valid in a wide pho-
ton energy range for any orientation and any crystal type as long as
the approximations used are correct. Our calculations show that the
linear polarization of multi-GeV photons can be converted with an
appropriate efficiency into the circular one using properly chosen sin-
gle crystals. However, if we do not use theoretical results for some
quantities involved (e.g. for the polarization degree), the only way to
determine the circular polarization appeared in a crystal is the direct
measurement of it.
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Figure 2: The same as in Fig.1 but for a silicon
borhood of the point ¥y = 2.3mrad, ¢g = 0.
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Figure 3: FOM (upper curves), FRAC (lower curves), and the degree
of circular polarization & for ¢g = 0 near < 110 > axis of a 10 cm thick
silicon crystal as functions of w (GeV). Three sets of curves (from the
left to the right) correspond to the angles of incidence ¥ (mrad) =
2.29, 2.08 and 1.91 respectively.
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Figure 4: Absolute values of the Stokes parameters | 1 (L) | (curve
1), | n2(L) | (curve 2), | n3(L) | (curve 3), and the polarization degree
| 7(L) | (curve "tot” ) depending on the thickness L of a silicon crystal
at w =100 GeV, ;. = —0.5, 93 = 13 = 0, Jg = 2.29 mrad, ¢g = 0.

25



Figure 5: The same as in Fig.4 but for ¢y = 0.015.
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