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Abstract

The creation of electron-positron pair by a photon and the brems-
strahlung of an electron in a medium are considered in high-energy
region, where influence of the multiple scattering on the processes (the
Landau-Pomeranchuk-Migdal (LPM) effect) becomes essential. The
pair photoproduction probability is calculated with an accuracy up to
the "next to leading logarithm”. The integral characteristics: the ra-
diation length and the total probability of pair photoproduction are
analyzed under influence of the LPM effect, and the asymptotic ex-
pansions of these characteristics are derived.
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1 Introduction

When a charged particle is moving in a medium it scatters on atoms. With
probability ~ « this scattering is accompanied by a radiation. At high en-
ergy the radiation process occurs over a rather long distance, known as the

formation length l.:
{o 2ee! .
— == 1.1
144202 0 (1.1)

miw’

where w is the energy of emitted photon, £(m) is the energy (the mass) of a
particle, ¢/ = e —w, U, is the characteristic angle of photon emission, the sys-
tem h = ¢ = 1 is used. The spectral distribution of the radiation probability
per unit time inside the thick target (the boundary effects are neglected) can
be obtained from the general formula for the spectral probability derived in
the framework of the operator quasiclassical method (see Eqs.(4.2)-(4.8) in
[1]). It can be estimated as

le

a  Al) dw

aw ~ 22
mle m?2 4+ e292 w’

(1.2)

where o = ¢? = 1/137, A%(l;) is the mean square of momentum transfer to
a projectile from a medium (or an external field) on the formation length ..
We consider first the case when the angle of multiple scattering on the

formation length ¥, = \/ﬁflc is small compared to the angle 1/7,

2

L, L=In [% (1+7219§)] ,

dv?  4nZ%a’n,

92 — =
¢ dl g2

where Z is the charge of the nucleus, n, is the number density of atoms in
the medium, A\, = 1/m = (h/mc) is the electron Compton wavelength, a, is
the screening radius of the atom, v = £/m is the Lorentz factor. In this case
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one can consider scattering as a perturbation and perform the decomposition

over ”the potential” of a medium. The radiation probability in this case is the

incoherent sum of the radiation probabilities on isolated atoms of a medium

defined by the Bethe-Heitler formula. One gets from (1.2) for the spectral

probability of radiation per unit time in the case ¥, < 1/y (9. = 1/v, A? =
£292 « m?)

o dw a dw

dW ~ Qﬂlcﬁzp}/zj = ﬂﬁz’yzj (13)

At an ultrahigh energy it is possible that J5 3> 1/v. In this case the char-

acteristic radiation angle (giving the main contribution into the spectral prob-

ability) is defined by the angle of multiple scattering ¥;. The self-consistency
condition is

1
_2.

92 =92 =92 > .

(1.4)

From the condition (1.4) we find

: ly 1 [l

In this case one gets from (1.2) for the estimate of the spectral radiation
probability per unit time

a do  adydw

dW ~ — — = ,

mle w T vy W

. ArZ%a’ .
V2 = 92420 = %Llo > 1. (1.6)

So, the formula (1.2) gives the general description of the radiation process
in terms of the mean momentum transfer valid both in a medium and in an
external field, while formulas (1.3) and (1.6) describe the process probability
in the particular regimes in a medium.

Landau and Pomeranchuk were the first who showed that if the forma-
tion length of bremsstrahlung becomes comparable to the distance over which
the multiple scattering becomes important, the bremsstrahlung will be sup-
pressed [2]. Migdal [3] developed the quantitative theory of this phenomenon.

New activity with the theory of the LPM effect (see [4], [5], [6]) is con-
nected with a very successful series of experiments performed at SLAC re-
cently (see [7], [8]). In these experiments the cross section of the bremsstrah-
lung of soft photons with energy from 200 keV to 500 MeV from electrons
with energy 8 GeV and 25 GeV is measured with an accuracy of the order of
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a few percent. Both LPM and dielectric suppression are observed and inves-
tigated. These experiments were the challenge for the theory since in all the
mentioned papers calculations are performed to logarithmic accuracy which
is not enough for description of the new experiment. The contribution of the
Coulomb corrections (at least for heavy elements) is larger than experimental
errors and these corrections should be taken into account.

We developed the new approach to the theory of the Landau-Pomeranchuk-
Migdal (LPM) effect [9]. In this paper the cross section of the bremsstrahlung
process in the photon energies region where the influence of the LPM is very
strong was calculated with a term o« 1/L , where L is characteristic logarithm
of the problem, and with the Coulomb corrections taken into account. In the
photon energy region, where the LPM effect is "turned off”, the obtained
cross section gives the exact Bethe-Heitler cross section (within power accu-
racy) with the Coulomb corrections. This important feature was absent in
the previous calculations. Some important features of the LPM effect were
considered also in [10], [11], [12].

The crossing process for the bremsstrahlung is the pair creation by a pho-
ton. The created particles undergo here the multiple scattering. It should be
emphasized that for the bremsstrahlung the formation length (1.1) increases
strongly if w < e. Just because of this the LPM effect was investigated
at SLAC at a relatively low energy. For the pair creation the formation
2e(w —¢)

2w

lp maz = (w/2m)A.. Because of this even for heavy elements the effect of mul-
tiple scattering becomes noticeable at photon energies w > 10 TeV. Starting
from these energies one has to take into account the influence of a medium
on the pair creation and on the bremsstrahlung hard part of the spectrum in
electromagnetic showers being created by the cosmic ray particles of the ul-
trahigh energies. These effects can be quite significant in the electromagnetic
calorimeters operating in the detectors on the colliders in TeV range.

In the present paper both the spectral probability and the integral prob-
ability of the pair creation are calculated within an accuracy up to ”the next
to logarithm” and with the Coulomb correction taken into account (Sec.2).
In Sec.3 the radiation length is calculated under influence of the LPM ef-
fect. The total probability of photon radiation is considered also. In the
Appendices the technical details of calculation are given.

length [, = attains maximum at ¢ = w/2 and this maximum is



2 Influence of multiple scattering on pair
creation process

2.1 Formulation of approach

Our analysis is based on the theory of LPM effect developed in [9]. The prob-
ability of the pair creation by a photon can be obtained from the probability
of the bremsstrahlung with help of the substitution law:

widw = e?de, w— —w, € — —¢, (2.1)

where w is the photon energy, € is the energy of the particle. Making this
substitution in Eq.(2.12) of [9] we obtain the spectral distribution of the pair
creation probability (over the energy of the created electron)

d 2am?
_ZVP = 2 i (01 (G = G5Y) +52p (G™1 = G31) pl0),  (2.2)
€ e
where
2, 2
s1 =1, 52:6—:6 , &€ =w-—g
w
G0:%0+1; %OZPQaP:_ZVQ;G:%+1;%:P2_2V(Q)u
4 2rZ%alee'n a?
_ 2 _ a _ 2
V(Q)_QQ <L1+IHE_QC>1Q_ 4, ) Ll_ln;ga
a i 1
52 _ _1/3 —f _ v \2 .
2 =1837 = f(Za)=(Z E —_— 2.

k=1

where C' = 0.577216 . . . is Euler’s constant, n, is the number density of atoms
in the medium, g is the coordinate in the two-dimensional space measured in
the Compton wavelength A, which is conjugate to the space of the transverse
momentum transfers measured in the electron mass m. Let us remind that
our theory (see e.g.[1], Sec.7.4) is based on the kinetic equation taken in the
quasiclassical approximation (Migdal [3] used the quantum kinetic equation).
After series of transformations we obtained an integro-differential equation
(see Eq.(7.70) in [1]) similar to the Migdal equation. Note that the scattering
cross section was taken in the Born approximation in Migdal paper [3], while
we used the cross section in the eikonal approximation. This permits us
to include the Coulomb correction [9]. Caring on the Fourier transform we
obtained the differential equation of the Schrodinger type in the g-space with
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the Hamiltonian #H. Migdal, in turn, used the Fokker-Planck differential
equation which allowed him to find result in the logarithmic approximation
only. The mean value in (2.2) is taken over the states with the definite value
of the operator g (see [9], Sec.2). The contribution of scattering of the created
electron and positron on the atomic electrons can be incorporated into the
effective potential V' (g) by substitution

l.88-|-f(Zo/)] (2.4)

1.
Q%Qesz(l-l-E), asz%aef:aszexp[ 7

The potential V(o) in Eq.(2.3) we write in the form

V(e)=Ve(e) +v(0), Velo)=4g0®, ¢=0QLe,
2 2 2
— _ Ao 40 o
LC = L(QC) =1In @, U(Q) = — LC <1H 4@2 + 20) 5 (25)

where the parameter g. is defined by the set of equations:

2

a N
oo =1 for 4QL; <1; 4Qg§1n/\;52:1 for 4QL, >1,  (2.6)
cCEC

where L; is defined in Eq.(2.3). The parameter g. ~ 1/p. is determined by
the characteristic angles of created particles with respect to the initial photon
momentum (or the corresponding momentum transfers). In accordance with
such division of the potential we present the propagators in the expression
(2.2) as

Gl-Gyl=Gt -G+ G -Gyt (2.7)
where

Ge=He+1, G=H.+1—iv, H.=p’—iq0’

This representation of the propagator G~! permits one to expand it over
the ”perturbation” v. Indeed, with an increase of ¢ the relative value of
the perturbation diminishes (7 ~ L—) since the effective impact parameter

c c \
diminishes and, correspondingly, the value of logarithm L. in (2.5) increases.
The maximal value of L. is determined by a size of a nucleus R,

2

a
Linas = In 55 = 2Ly, (2.8)

where a; = agpexp(f —1/2) = 111Z2-Y/3)\.. When g. < R, one cannot
consider the potential of a nucleus as the potential of a point charge. In this
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case the expression for the potential V(o) has been obtained in [9], Appendix
B
V(@) = 40°(Lmaz — 0.0407).

The matrix elements of the operator G ! was calculated explicitly in [9]:
[e) ) »
< 0,|G o, >= z/ dte™" < o, | exp(—iH t)|0, >,
0

< 0] exp(—iH t)|@y >= Ke(or, 09, 1)

- v Z 2 2 _ 2 ,
" 4risinh vt exp { 4 [(Ql + 03) coth vt sinh vt 9192] } , (2.9)

where v = 2\/5.

2.2 Probability of pair creation

Substituting the expression (2.9) in the formula for the spectral distribution
of the pair creation probability (2.2) we have

dWe am?
dsp = omee ®p (v),
o0 . 1 1 1 1
3, (v) = dteit — =) —ivsy [ — — =
» (V) 1//0 e [51 <sinhz z) sy <sinhzz z2>]
1 . 1 .
=8 <1HP—¢ <P‘|‘ 5)) + s2 <1b(p)—1np-|— %) ; (2.10)

where z = vt, p = i/(2v), ¥(z) is the logarithmic derivative of the gamma
function. Some details of the derivation of the last line can be found in
Appendix A (see (A.1)-(A.8)). This formula gives the spectral distribution
of the pair creation probability in the logarithmic approximation which was
used also by Migdal [3]. It should be noted that the parameter g, entering
into the parameter v (see Eqgs.(2.3) and (2.5)) is defined up to the factor ~ 1,
what is inherent in the logarithmic approximation. However, below we will
calculate the next term of the decomposition over v(g) (an accuracy up to
the "next to leading logarithm”) and this permits to obtain the result which
is independent of the parameter g.. It will be shown that the definition of
the parameter g. in Eq.(2.6) minimizes corrections to (2.10) practically for
all values of the parameter g.. It should be emphasized also that here the
Coulomb corrections are included into the parameter v in contrast to [3].



1

Let us expand the expression G~! — G

-~ over powers of v

Gl =G =GN )Go + G M) G ()G + (2.11)

Substituting this expansion in (2.6) and then in (2.2) we obtain the decom-
position of the probability of the pair creation. Let us note that for ¢ < 1 the

C

dw,
sum of the probability of the pair creation dap (2.10) and the first term of

the expansion (2.11) gives the Bethe-Heitler spectrum of electron of created
pair, see below (2.22). At ¢ > 1 the expansion (2.11) is the series over powers

of —. It is important that the variation of the parameter g. by a factor
c

order of 1 has an influence on the dropped terms in (2.11) only.
In accordance with (2.7) and (2.11) we present the probability of radiation
in the form

dWw, dwe dwl dW?
4 — P + p + p +

de de de de (2.12)

c

aw. .
The probability of pair creation 7 P is defined by Eq.(2.10). In formula

€
(2.2) with allowance for (2.7) there is the expression
<0|G™-G7H0 >

(o] o0
— i / dt, / dtye=i ) / d%eK.(0, ¢, t1)v(e) K. (g, 0, t2)
0 0

+i/ dtl/ dtg/ dtge_i(t1+t2+t3)/d291/d2921{c(0a91¢t1)v(91)
0 0 0

X Ko (01, 09,12)0(05)Kc(05,0,t3) + ..., (2.13)

dWw;
where the matrix element K. is defined by (2.9). The term dap in (2.12)

corresponds to the first term (linear in v) in (2.13). Substituting (2.9) we
have

dWw; 2am? © e : g2 1 1
L =— Re [ dt / dipe™ 1Ht2) /d2
de ee! eA "o 2 ov(e) m2v? ginh vt; sinh vi,

q0° 4q% ¢*
X exp - (coth vty + cothvts)| |s1 + Tsinh i, sl vt sa|. (2.14)

Substituting in (2.14) the explicit expression for v(g) and integrating over
d%¢ and d(t; — t2) we obtain the following formula for the first correction to
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the pair creation probability

dw; am? © dre~it
p P— . — _ .
de 47!'66’le Fy(v);  Fp(v) /0 ——— [s1f1(2) — 2is2 fa(2)],

sinh? 2
filz) = (ln o2+ ln% —Insinh z — C) g(z) — 2cosh zG(z),
Al = o (50 - 12,

sinh z
g(z) = zcoshz —sinhz, t =1t +1t2, 2 = vt

G(z) = /N(l — ycoth y)dy
0
1 \
-7 — - — — zln (l - e_zz) + §Liz (3_22), (2.15)

here Li, (2) is the Euler dilogarithm. Use of the last representation of function
G(z) simplifies the numerical calculation.
As it was said above (see (2.6), (2.8)), ¢. =1 at

Wi =v2=4QL <1 (¢=QL1). (2.16)

If the parameter |v| > 1, the value of g, is defined from the equation (2.6).
Then one has

1 , _
Ine?+1In” = 5 In(efQLe) — zg = —ig, 0*QL, = 1. (2.17)
2

So, we have that the factor at g(z) in the expression for fi(z) in (2.15) can
be written in the form

(In o2+ lnl:—, —Insinhz — C) = (In1I9(1 —v1) + ln(l/ogg)ﬁ(ul -1)

—ig —Insinhz — C) =lnwnd(1l —vq) — zg —Insinhz — C (2.18)

where Y 5
8mn.Z o ee
vs = [v|* =4¢=4QL(ec) = ——5——L(ec), (2.19)
miw
Y(z) is the Heaviside step function. So, we have two representation of |v|
depending on g.: at g. = 1 it is |v|=v; and at g. < 1 it is |v| = vp.
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2.3 Asymptotic expansions, integral probability

When the scattering of created particles is weak (v; < 1), the main contri-
bution in (2.15) gives the region where z < 1. Then

N NG 3 22 2 )
fi(z) = —(C’—i—ln(zt))? + 9% = ?(g — C —1In(it)),
Fy(v) = —ézﬂ (s5—s1), L— L. (2.20)

Substituting the expansion (C.1) into Eq.(2.10) we find the corresponding
asymptotic decomposition of the function ®,(v)

<I>(I/)~S V_2_|_7_V4_|_31V6 +s V_2_|_%_|_16V6 (|1,|<<1‘
P T 60 126 ? ’ )
(2.21)

3 15 63
Combining the results obtained (2.20) and (2.21) we obtain the spectral dis-
tribution of the pair creation probability in the case when the scattering is

weak (Jv] <« 1)

dw, dWg dW,  am® 1
& - & A 27r65’lm [Qp(y)—ﬁFp(u)

am? 2Q 31w} 1 16v7 1
- Zolsi (L (1- — ) 428 Ly (1 -
2naa/3[81<1< 21) 3>+52(1( 21)+6)]
47%a3n 1 . 3t 1
_ 427", ~1/3) _ _3lmy
3mZw {(m (183Z ) f(Za)) <1 21 ) 6

122 :26/2 [(m (1832711 - f(za)) <1 - 12’1’14> + 11—2] } (2.22)

where Ly is defined in (2.3). Integrating (2.22) over £ we obtain

987%0°n, s 331207\ 1
Wy = = [<1n(183Z 1)~ f(7a) <1 - ME) - E] . (2.23)

where .
We =M (27r22a2na>\§L1)" (2.24)

Note that in gold w, = 10.5 TeV. This is just the value of photon energy
starting with the LPM effect becomes essential for the pair creation process
in heavy elements. If one omits here the terms o v and « (w/w.)? these
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expressions coincide with the known Bethe-Heitler formula for the probability
of pair creation by a high-energy photon in the case of complete screening (if
one neglects the contribution of atomic electrons) written down within power

. m .
accuracy (omitted terms are of the order of powers of —) with the Coulomb
w

corrections, see e.g. Eqs.(19.4) and (19.17) in [14].

The pair creation spectral probability dW/dz vs = ¢/w is shown in Fig.1
for different energies. It is seen that for w = 2.5 TeV which is below w, the
difference with the Bethe-Heitler probability is rather small. When w > w,
there is significant difference with the Bethe-Heitler spectrum increasing with
w growth. In Fig.1 are shown the curves (thin lines 2,3,4) obtained in log-
arithmic approximation dWy /de (2.10), the first correction to the spectral
probability del/de (2.15), curves ¢2,¢3, ¢4 and the sum of these two contri-
butions: curves T'1,72,T3,T4. It should be noted that for our definition of
the parameter g, (2.6) the corrections are not exceed 6% of the main term.
The corrections are maximal for vy ~ 3.

The total probability of pair creation in the logarithmic approximation

EIGH)

can be presented as (see (2.10))
2 \ ! _
+(1=2y+2°) (¢ () ~lnp+ 5] |, (2.25)

_bs 5—71 b=ex (Z'E)y/ﬁ&
p_41 _\/m) - p 4 Lcwi

W}%H is the Bethe-Heitler probability of pair photoproduction in the loga-
rithmic approximation. The total probability of pair creation Wy in gold is
given in Fig.2 (curve 2),it reduced by 10% at w ~ 9 TeV and it cuts in half
at w ~ 130 TeV.

At vo > 1 the main term of the function F,(v) (see (2.15) and (2.19))
can be written in the form

Wy 9w /1 y
= ——Im v
WhHH 14w o y(l—1y)

where

. ® dz . . . .
F,(v) = / —— [s1/1(2) — 2isa fa(2)]. (2.26)
o sinh®z
Integrating over z we obtain
Y= T(sy — Yo _ T
~Im Fy(v) = 751 = 92) + % (1n2 C+ 4) 52, (2.27)
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Pair creation probability dW/dx
o

0.0 0.2 0.4 0.6 0.8 1.0
Electron energy x

Figure 1: The pair creation spectral probability %, r = Z in gold in
terms of the exact total Bethe-Heitler probability taken with the Coulomb

corrections (see Eq.(2.24)).

Curve BH is the Bethe-Heitler spectral probability (see Eq.2.23);

curve T1 is the total contribution (the sum of the logarithmic approx-
imation dWy/de (2.10) and the first correction to the spectral proba-
bility dW,! /de (2.15)) for the photon energy w = 2.5 TeV;

curve 2 is the logarithmic approximation dWy /de (2.10), curve c2 is the

first correction to the spectral probability dW,!/de (2.15)) and curve

T2 is the sum of the previous contributions for the photon energy w =
25 TeV;

curves 3, c¢3, T3 are the same for the photon energy w = 250 TeV;
curves 4, c4, T4 are the same for the photon energy w = 2500 TeV;

13



Ly I ] I ] ] i 1
0.8 ¢~ .
[ a - 3
0.6 -
< o -
el
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“
1 - 1 2 ~
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0.2 -
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.0
1E~2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Photon energy (TeV)

Figure 2: The relative energy losses of electron per unit time in terms of the
Bethe-Heitler radiation length L2 ,: =L, in gold vs the initial energy of
€

electron (curve 1) and the total pair creation probability per unit time W

(see Eq.(2.25)) in terms of the Bethe-Heitler total probability of pair creation

WEH (see Eq.(2.24)) in gold vs the initial energy of photon (curve 2).

where we take into account the next terms of the decomposition in the term
o s3. Under the same conditions (v > 1) the function Im ®,(v) (2.10) is

oo N7 .
Im ®, (v) = (51 = 52) + 70232. (2.28)
1

Thus, at vg > 1 the relative contribution of the first correction Ep is
defined by

dw}! 1 T 0.451 .

= P — n2-C+—) ~ . 2.29

" awg or; (m2-C+ 7)== (2.29)

14



In this expression the value r with the accuracy up to terms ~ 1/L? doesn’t
depend on the energy:L. ~ Li+In(w/w)/2. Hence we can find the correction
to the total probability at w > w.. The maximal value of the correction is
attained at w ~ 10w, it is ~ 6% for heavy elements.

When the parameter vZ is not very large (vg < 10, g. > R, see (2.8))
one can solve the equation vZg? = 1 (2.17) using the method of successive
approximations. In the first approximation we have

L Invy
2:1/12L—i, LC2L1<1+ Ll 79(1/1—1)>,

1 W 1 w
~ J— 1+ —(In——21 h . 2.
vy cosh e\ w [ + 1L, <nwe 1 cos £>] (2.30)

It should be noted that the relative error in the expression for L. at 9. > Rj
is less than In2/(4L;) < 2.5%. Here we introduce variable &

ee! 1
1+ tanh¢), — =—" —co<& < o0 2.31
(1+ tanh¢) w?  4cosh?¢ o0 <f < oo ( )

N | —

Substituting the terms o v in the asymptotic formulas (2.28) and (2.27) into
the first line of Eq.(2.22) we obtain expression which contain the integral of
the type

/00 de (1 #> [A+ Blncosh¢)] = 37 [A+B <1n2+ l)]

—eo COsh§ 2cosh? ¢ T4 6/]"
(2.32)

Using this result we obtain the total probability of pair creation under strong

influence of multiple scattering (vo > 1, but not very large)

3o m? 1 w
Wy ~ —— 1+ —|In—+D
RN, [ 4L, (“we )]
RYSATEITI U 1 w
= - — ].-l- - 11’1—+D 3
2v2m? Y w [ 4Ly ( We )]

T 1 1
D= 5—20—5_0.083_ T (2.33)
It should be noted that only the main term of the decomposition (x vp)
can be used in Eqs.(2.27) and (2.28) for the calculation of the total probability
of pair creation. In the interval w > w, the contribution into the correction
terms gives also the region where coshz.f ~ w/we, where the parameter vy ~ 1
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and the expansion used in Eq.(2.26) is ineligible. The next terms (without
corrections o 1/L;) are found in Appendix A (Eq.(A.12)), so we have

3o m? V2 o fwe Tw, 1 W
Wy~ ——+1|1-—(4ln2-1)y/—=——4+—(In—+D
’ 4\/51/—(.«%.06[ g (m2=1)y/ 18w+4L1<nwe+ )
(2.34)
In terms of the Bethe-Heitler total probability of pair creation this result is

Wp We We We 1 w
~ 214, /— |1 -0.836y/— —0.548— 4+ — [ In — 4+ 0.274
WhH w [ w w +4L1 <nwe+ )]

(2.35)

3 Influence of the multiple scattering on the
bremsstrahlung

3.1 Bremsstrahlung spectrum at high energy

The spectral radiation intensity obtained in [9] (see Eq.(2.39)) has the form

1
2L,

am?zdzx .

. o0 ) 1 1 . 1 1
d(v) :/0 dze ™ [1"1 <sinhz — ;) —ry <—sinh2 - Z—2>]
=n <lnp— (0 <p+ %)) + s <w(p) —Inp+ %) :

0 —it
Fv) = /0 dze”? [rif1(2) = 2ir2f2(2)]

sinh? z

F(z/)], x:§, (3.1)

where

)
t= i, ri=2x% rp=14(1-2)% (3.2)
v

where z = vt, p = i/(2v), ¥(z) is the logarithmic derivative of the gamma
function.Some details of the derivation of the second line can be found in

Appendix A (see (A.1)-(A.8)). The functions fi(z) and f3(z) are defined by
Eq.(2.15),
Invy il -z

2 _ .02 2 2 2 : 2
v:=1iv vi=lvlF~vi (1l d(yy —1 Vi =
0> 0 || 1<+ Ll (1 ))a 1 c. )

. Lo~ Ly <1 + hzylﬁ(yl - 1)) (3.3)
1
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Note, that the parameter €, is four times smaller than the parameter w,
defined in Eq.(2.24). The LPM effect manifests itself when

£
et

vi(ze)=1, z.= (3.4)
The formulas derived in [9] and written down above are valid for any energy.
In Fig.3 the spectral radiation intensity in gold (e, = 2.5 TeV) is shown
for different energies of the initial electron. In the case when ¢ < e, (¢ =
25 GeV and € = 250 GeV) the LPM suppression is seen in the soft part
of the spectrum only for # < 2, ~ ¢/e, < 1 while in the region ¢ > &,
(¢ = 2.5 TeV and ¢ = 25 TeV) where 2, ~ 1 the LPM effect is significant
for any z. For relatively low energies ¢ = 25 GeV and ¢ = 8 GeV used in
famous SLAC experiment [7], [8] we have analyzed the soft part of spectrum,
including all the accompanying effects: the boundary photon emission, the
multiphoton radiation and influence of the polarization of the medium. The
perfect agreement of the theory and data was achieved in the whole interval
of measured photon energies (200 keV< w <500 MeV), see the corresponding
figures in [9],[10],[11]. Tt should be pointed out that both the correction term
with F(v) and the Coulomb corrections have to be taken into account for
this agreement.

In the case ¢ < &, in the hard part of spectrum (1 > z > =z.) the
parameter v{ ~ z./z < 1 and the contribution into the integral (3.2) give
the region z <« 1. Using the decomposition (C.1) we find (compare with
(2.21), (2.22))

. 31 vi 16
Im<I>(1/)~r16 <1—ﬁ )+ 23 <1—ﬁ 4)
1
—Im F(v) = —5(7'2—7*1)1/12(1—1—0(1/?)). (3.5)

In the last formula, which presents corrections ~ 1/L; we restricted ourselves
to the main terms of expansion. Substituting into (3.1) we have

dI  27%a%nge 31 22 - 1
- A l L= 5720 -2) ) ‘5)
6z

+2r, <L1 (1 - ——g( z)2> + é) (3.6)

Note that if neglect here the terms o z2/x? we obtain the Bethe-Heitler
intensity spectrum with the Coulomb corrections.
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Figure 3: The spectral intensity of radiation w 4% = z4W 4 — “ in gold in

3

w d €
terms of 3L,qq taken with the Coulomb corrections (see Eq.(3.9)).

Curve BH is the Bethe-Heitler spectral intensity (see Eq.3.6);

curve 1 is the logarithmic approximation wdW,/dw Eq.(2.28) of [9],
curve cl is the first correction to the spectral intensity wdW;/dw
Eq.(2.33) of [9] and curve T1 is the sum of the previous contributions
for the electron energy ¢ = 25 GeV;

curve 2 is the logarithmic approximation wdW,/dw Eq.(2.28) of [9],
curve c¢2 is the first correction to the spectral intensity wdW;/dw

Eq.(2.33) of [9] and curve T2 is the sum of the previous contributions
for the electron energy e = 250 GeV;

curves 3, c¢3, T3 are the same for the electron energy ¢ = 2.5 TeV;

curves 4, c4, T4 are the same for the electron energy € = 25 TeV;
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In the case € > £, the intensity spectrum differs from the Bethe-Heitler
one at ¢ ~ 1 also. When £ > ¢, one can use the asymptotic expansions
(2.27) and (2.28) in the interval not very close to the end of the spectrum
(z =1):

ﬂ B am?vox [ LT Yy (1 T +r>]
de 2¢/2m(1 — z) [2v/2v0 ? 2v2v,
o 20V27%0%n.e [ e <1 L= :v)) [zz

m? e(l —2) 4L, Ee

Cok

+2(1 - ) (1 - % m) +ror

3.2 Integral characteristics of bremsstrahlung

, e(l—2)>ecx. (3.7)

Now we turn to the integral characteristics of radiation. The total intensity
of radiation in the logarithmic approximation can be presented as (see (3.1))

I

. 1d' "
gLSad:Q%Iml/o ?x,/lfx(Q(l—m)—}—xz)
1 a3dy 1
+/0 - (w(p+1)—¢ (p+ 5))

1
+2/ xdr(w(pﬁ-l)—lnp)], (3.8)
0
where
_omo ] _ LA
p="2 n=\/r7— g=ew(i7) e

LY., is the radiation length in the logarithmic approximation. The relative
energy losses of electron per unit time in terms of the Bethe-Heitler radiation
length LY, : ngad in gold is given in Fig.2 (curve 1), it reduces by 10% (15%
and 25%) at e ~ 700 GeV (¢ ~ 1.4 TeV and ¢ ~ 3.8 TeV) respectively, and it
cuts in half at w ~ 26 TeV. This increase of effective radiation length can be
important in electromagnetic calorimeters operating in detectors on colliders
in TeV range. The contribution of the correction terms was discussed after
(2.29). It is valid for the radiation process also.

The spectral distribution of bremsstrahlung intensity and the spectral
distribution over energy of created electron (positron) as well as the reduction
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of energy loss and the photon conversion cross section was calculated by
Klein [13], [8] using the Migdal [3] formulas. As was explained above (after
Eq.(2.10)) we use more accurate procedure of fine tuning and because of this
our calculation in logarithmic approximation differs from Migdal one. We
calculated also the correction term and include the Coulomb corrections. For
this reason the results shown here in Figs.1-3 are more precise than given in
[13], [8].

In Eqs.(3.6) and (3.7) we can use the main terms of decomposition only.
The main term in (3.6) gives after the integration over z the standard expres-
sion for the radiation length L,,; without influence of multiple scattering.
The correction term is calculated in Appendix C (see (C.9)) where we need
to put |32 =€ /e > 1

I am? 1 4t £ 47 ¢
L 14— -T2V (1-222
e 4drme, < + 9L, 15 6e> ”d< 15 6e>’

I 27%a3n, L, < 1 )

14+ —

o (3.9)

Lrad m2

The integration over z of the main term in (3.7) gives (terms x /e /¢ in
the square brackets are neglected)

OrZ20Bn,. /22, 1 e 46
Ipr—Fk—~——7L 1|14+ —(In—
0 4\/—1n2 1 [ + 4L1 <n Ee 27) +r0:|

ro = <1n2 C + ) (3.10)

2L,

The corrections (without terms o 1/L;) to (3.10) are calculated in Appendix
B (see Eq.(B.11)). The complete result is
9am? [e

4 e 25mle,
_Jam f(41n2+1),/6 o g
322 9 € 54 €

1 T 46
4L1 <lnt+21n2—20+§—ﬁ)]

I 5 1
~ 2 2 —asr 2 asrEy — (S 034 11
T3 6[ 37/~ 575 +4L1<n —-03 55)](3 )

Although the coeflicients in the last expression are rather large at two first
terms of the decomposition over /e, /e this formula has the accuracy of the
order of 10% at ¢ ~ 10¢,.
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The integral probability of radiation for ¢ < e, was calculated in [11]:

4 €e
W= g (1n?+02),
5 & 1 cosh z
=20—-+4+12 1 — — ———— | dz~1. 12
Cy=2C 8+ /0 nz(zs sinh?’z) z 96 (3.12)

In the case € > ¢, we can calculate the integral probability of radiation
starting with Eq.(3.7). Conserving the main term, dividing it by ze and
integrating over z we find

117 72%a%n, 8 .
Wy = WA ,/ [1-1—E <1n—-|— 11) +r0] (3.13)

The correction terms to Eq.(3.12) are calculated in Appendix B (see
Eq.(B.13)). Substituting we have

1lam? 4/2 €. e,

W = 1— 2In24+ 1)/ —+ ——
16\/2666[ 11 (2In2+1) € + 6 ¢

1 8
+— ln—+21n2—20+ + —

4L, Ee 2 11

11rZ2%a3n, [e. [ee .
= W ?Ll [1—123 +1645_+E <1H—e+253):|(3].4)

Ratio of the main terms of Eqs.(3.11) and (3.14) gives the mean energy
of radiated photon

w

9
—e ~ 0.409¢. 15
55¢ 0.409¢ (3.15)

4 Conclusion

In this paper we considered the influence of multiple scattering on the brems-
strahlung process in the high-energy region (£ > &, see Eq.(2.24)) where all
the spectrum of radiation is distorted. Previously the process was analyzed
for lower energies where a medium affected on the soft part of the spectrum,
although the formulae valid for any energy were derived in [9]-[11]. In this
region the total intensity of radiation diminishes and respectively the radi-
ation length increases. The cross section of e~et pair creation by a photon
changes essentially if the photon energy w > w, = 4e., see Eq.(3.3).
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If we restrict to the main terms of the decomposition Eq.(3.11) in asymp-
totic region € > &., then the intensity of radiation and the corresponding
radiation length can be written as

I~ 19_6 gzaz (engIn (97TZ20125naa?2))1/2’

€
Lrgg = —. 4.1
rad I(E) ( )
The integral cross section of radiation follows from the integral probability
of radiation (3.14)

WNll T Za?

o= —

ng 8 5,/671&

We have from Eq.(2.34) for the total probability of pair creation by a photon
at w > w, and the corresponding cross section

(In (10072%02en,a’y))"* | (4.2)

1/2
W, ~ % gZozZ (%ln (QTFZQQZWTLG(I?Q)) ! . Op = Wy (4.3)
The Eqgs.(4.1)-(4.3) don’t depend on the electron mass and the cross sections
of bremsstrahlung and pair creation diminish with energy and density n,
growth.
Let us note that for the very hard end of radiation spectrum at =z >
ze (w > we) Eq.(3.4)

~]l—-—, we~e—e. (4.4)

the spectral curve approaches the Bethe-Heitler cross section, see Fig.3. We
have the same situation for the pair creation spectral curves (Fig.1) near the
boundaries ¢ -+ w and w — € — w.

Notice that the asymptotic expansions obtained above have quite wide
region of application. For example, from comparison of Eq.(3.11) and curve
1in Fig.2 we see that at € ~ 10e, the approximate formula gives the relative
energy losses to within 10% and accuracy of Eq.(3.11) increases with energy
growth. For pair creation the region of applicability of Eq.(2.35) is more
wide.

In this paper we considered the case of an infinitely thick target where
the formation length is much shorter than the thickness of a target. Because
of this we neglected the boundary effects. These effects were considered in
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detail in [9],[10], they can give quite essential contribution in the soft part of
spectrum depending on the target thickness. We neglected also by effects of
the polarization of a medium. These effects were also considered in detail in
[9]. The relative contribution of polarization of a medium into probability of
pair creation is (see [15])
2 2 2

< 10T, Wl dmeTne (4.5)

- m m

w?m?

where n, is the number density of electron in the medium, wq is the plasma
frequency. The contribution of polarization of a medium into the total energy
losses in thick target is of the order wg/m. The polarization of a medium
affects at the soft part of the spectrum only at w < wp = ywo (¢ < wp/e =
wg/m). Even for heavy elements wo/m ~ 2 -107%. This contribution was
analyzed in [9].
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A Appendix

We consider the integral which represent the integral probability of pair pho-
toproduction (see Eqs.(2.10) and (2.31))

: e 0 . 1 1
I(a) = /0 dE/O dz exp(—az cosh &) [sinhz -
1 1 1 1
+acosh£ <1_ 2cosh2£> (sinth _2_2)] (4.1)

Integrating by parts (over z) the second term of the integrand in (A.1) we
have

L e 1 o oo B I 1
H(“)‘_E/O cosh & <1_2cosh25>+/0 dE/O dz exp( aZCOShg)[Sinhz

1
l—cothz—i——)
z

+1 —cothz — . (A.2)

=]
2cosh? ¢

The functions entering in (A.2) we present as

1 0 0
sinhz kaﬂexp(—(Qk —1)z), cothz—1= 2;exp(—2kz). (A.3)

Let us consider the integral entering (A.2)

mi(a) = /0'00 LEFl(a cosh £),

cosh?
Fy(acosh§) :/ dz exp(—az cosh ) <1 —cothz + %) . (A4
0

To avoid a divergence of the individual terms in the integral over z we put
the lower limit of the integration § — 0. Using (A.3) we obtain

. . 2. exp(—2kd) x
Fi(z) = lim [—El(—&r) - ’; - +k§::1 | (A.5)
Using the expansions
~Ei(~02) = —In(62) - C, =Y e’ip(;ﬂ = In(1 — exp(—26)) = In 26,
k=1
xr xr R
Fl(x)—¢(§+1) ~In (A.6)
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where (z) is the logarithmic derivative of the gamma function, and taking
integrals over £ we have

4 a4 — 1 V2k+a+V2%k —a
=ln-—C-14-Y ——d? .
m1(a) = In p C—-1+ 1 Z 2 Z % 4k2 In T

k:
(A7)
The formula (A.2) contains also the integral
[ee]
ma(a) = / déFy(acosh§)
0 1
Fy(z) = /0 dzexp(—zz) (1 —cothz + sinhz)
x z+1 .
_ ¢(§+1)—¢< . ) (A.8)

Transposing the integration order and using (A.3) we find
)= 22/ d:Ko(az) (exp(—(2k — 1)) — exp(—2k2)),  (A.9)

where Ko(2) is the modified Bessel function. Taking here integrals we have

. = 1 2k — 1 2k — 1)? — a?
ma(a) = 2 Z In + VI )P -a
= | V(2k—1)2 —a? a
T _ 42
L 2% VAR a]. (A.10)
4k? — g2 a
Substituting (A.7) and (A.10) into Eq.(A.2) we obtain
m3a
I1(a) = ——+ (1 ng+1+C) - =

ln\/Qk—}—a—{—\/Qk—a
2k2\/4k2 —a? V2a

2 2% —1+/(2k—1)2—a?
I + VI )?—a
a

(2k — 1) — a?
7 _ 2
B 2 1n2k‘+\/4k a ' (A11)
4k? — 2 a
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This expression is particularly convenient at |a| < 1. In the case |a] < 1
the first three terms of the decomposition are (a = |a|exp(im/4))

3T T

+
8v/2|al

mal

482

Im II(a) ~ (1—41n2) (A.12)

oo

B Appendix

Here we consider the asymptotic behavior of the radiation integral character-

istics. The integral intensity (the radiation length) can be presented as (see
(3.1) and (3.2)):

Logde [ 1 1
PO = [ 125 [ deexp-sme) [mz (Smhz—;)

1 ) 1 1 [z
+ﬁ—n(1+(1—z))<——z—2>], n= - (B

sinh? z 1—2

Integrating by parts (over z) the second term of the integrand (x 1/(87)) in
(B.1) we have

P(B) :_%/01\/2(1“1—1»)2) dz+/011“’f’; /Ooodzexp(—ﬁnz)

x [xz <Sin1hz — %) + (14 (1 -=2)?) (1 —cothz + %)

97 , . ,
= —@-I-Pl(ﬁ) + P2(B), (B.2)

where

1 3d o] 1
Pi(B) = /0 f_z /0 dz exp(—/pnz) <1 —cothz + sinhz) ;
, ! o . 1 .
P. =2 d d - 1 — coth — B.3
5 (5) /0 z $/0 2 exp(—pFnz) ( coth z + z) , (B.3)
We split the function P(8) into two functions:
P1(B) = Puu(B) + P12(B),
1 0
Pi1(8) :/0 dz /0 dz exp(—/fnz) <1 — coth z 4+ — lh > , (B.4)

1—= sinh z
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\ . , 1
Py(B) = —/0 (I1+2z+ zz)dz/O dzexp(—pnz) <l —cothz + sinhz)'
Transposing the integration order in Py1(3) we get the integral over z
ode © ydy
— =2 — 7 —
/0 T exp(—0nz) /0 1 g exp(—y)

= —2In(B2) + /OO In(3222 4 y?) exp(—y)dy. (B.5)
0

In the limit |3| < 1 we have discarding terms ~ (32

Pi(B) = —2/ dz(In(Bz) + C) <l — coth z + s1nlhz> . (B.6)

We use Eq.(A.3) in the calculation of the integral over z in Pio(5)
/00 d (=Bnz) [ 1 thz + :
i zexp(—pnz cothz 4 ———

= 1 1
_2; <2k—1+ﬂn B 2k+ﬁn>
~21In2 — An¢(2), (B.7)

where ((n) is the Rieman zeta function.
Taking into account that § = || exp(im/4) we have for ImP(8) at |f] < 1

o0
Impl]_(ﬁ) :—E/ dz <1—cothz+ﬁ) —7r1n2

ImPyy(g) = PL2) /,/ (142 +2?) 29\7/r§.|ﬂ|g‘(2).(B.8)

We will use Eqgs.(A.4)- (A 6) in the calculation of the integral over z in Ps(f)
Eq.(B.3)

o0

o0 _ N o2 B
/0 dz exp(—Pnz) <l—cothz+;) _lnﬁ_ﬂ_c+};m
zlnﬂ%7 -C+ %ﬁﬂd”' (B-9)

As a result we get
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ImPZ(ﬂ):Q/O zde ( W' Fc ) 5+387:|/ﬁ_| (2). (B.10)

Substituting (B.8) and (B.10) into (B.2) we obtain

97 m  257|3
mP) = ovam M1t vz

In the calculation of the total probability of radiation one have to make
the substitution in (B.1)

/1 zdz _)/1 dz
T T

¢(2) +0(B%). (B.11)

Then
ﬁ/ f_z (L+(1-2)) +0(8) +12(8),  (B.12)
where
@) = w2+ i) [0 e
- —w1n2+7—}|ﬂ|<<2>,

Im t5(8) = IﬁIC / yER s loke)

. 117r T . .
ImT(B) = m—§ 12+7|5|C( O(ﬂQ). (B.13)

C Appendix

Here we consider the asymptotic behavior in the region where the LPM effect
is weak. In this region in Eq.(A.1) the parameter |a| > 1 and in the integral
over z the interval z < 1 contributes, and we can use expansions

1 1 z 728 3125

smhz 2 67360 13120

1 1 1 22 24 )
1 = c1
snh?s 2 3713 1T (C.1)
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Substituting these expansions into (A.l) and taking into account that
a = |a|exp(im/4) we get

Im II(a) = /00 d¢ ! il + <1 #>
~Jo 6lal2cosh? € 126]al6cosh® ¢ 2cosh? ¢

1 16 7 184 .
% - =—_(1———1). C.2
(3|a|zcosh2£ 63|a|6c0sh6£)] 18]al? < 343|a|4> (C.2)

We turn to Im T'(3) Eq.(B.1) at |3| > 1(8 = |B| exp(in/4)). The integral
over z coincides with this integral in (C.1). The integral over z gives for  ~ 1
the same structure as in (C.2): the main term ~ 1/|3|? and the correction
~ 1/|B|°. In the region  ~ 1/|3]|? where the influence of the LPM effect is
significant, the correction is proportional to the phase space: [ zdx ~ 1/]8)2.
This is the main correction. Because of this we split the integration interval
over z into two intervals: 1) 0 < z < zg and 2) zo < z < 1, where 1/|8]? <
29 < 1. In the first interval

Py(B,z0) ~ %/Oxo %/000 exp(—fnz) < L iz) dz. (C.3)

-
sinh“z 2

Integrating over z by part and then over z we have

2
Pr(B,zo) ~ —%
8§ [*d . . h 1 ‘
_@/0 2—; (1= (Bzy/xo + 1) exp(—PB2/x0)) <% - z_3> . (C4)

In the integral which contains the term £z,/Z¢ the interval z < 1 contributes

so that g )
/0 Z—jﬁzmexp(_ﬁzm) (_%) = (C.5)

In the remaining integral we split the interval of integration into two: 1)

0<2<20,2)20 <2< 00 (1/(B/Zo) K 20 K 1), then

® dz cosh z 1
[ 5 0o (55 - 5)

= [ G- ew-pvm (-5)+ [ 5 (S5 - %)

2 \ cinh3 3
2o %7 \sinh®z =z

~ _11—5 (In(—Bz0/Z5) + C) +/O° dz (% : ) . (C.6)

2 - 13 . 3
20 % sinh®z 2
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So we have

9 2
m Py (8, xo) ~ —0 T

In the second interval over & (1 > « > () the interval z < 1 contributes as
well as in the first term of P(5) Eq.(B.1) which we include here
Im P ~ - O(==). .
Adding (C.7) and (C.8) we get for |3] > 1
1 27
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