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Abstract

Numerical experiments on the structure of the chaotic component
of motion under multiple crossing of the separatrix of a nonlinear res-
onance with time varying amplitude are described with the main at-
tention to the problem of ergodicity. The results clearly demonstrate
nonergodicity of that motion due to the presence of a regular compo-
nent of relatively small measure with a very complicated structure. A
simple 2D-map per crossing has been constructed which qualitatively
describes the main properties of both chaotic and regular components
of the motion. An empirical relation for the correlation—affected diffu-
sion rate has been found including a close vicinity of the chaos border
where an evidence of the critical structure has been observed. Some
unsolved problems and open questions are also discussed.
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1 Introduction

The present work continues the studies of chaotic motion under a slow sep-
aratrix crossing. This is a particular case of adiabatic processes which are
very important in physics because of the adiabatic invariance, approximate
though, that is of the conservation of action variables (.J) under a slow para-
metric perturbation. The main problem here is the degree of accuracy or of
violation of that invariance. Separatrix crossing produces the largest chaotic
component in phase space whose size does not depend on the adiabatic pa-
rameter € — 0 which, however, does affect the detailed structure of the motion
as well as its time scale.

In our previous paper [1] the single separatrix crossing for a particular
model was described in detail. Remarkably, a fairly simple relation for such
a model in Ref.[2] we used turned out to be surprisingly accurate within the
most part of the chaotic component.

In this paper we discribe the results of numerical experiments on mul-
tiple separatrix crossing. We focus on statistical properties of the motion,
including the structure and measure of regular component disseminated into
the chaotic ’sea’ in a rather tricky way. The existence of regular component
means nonergodicity of the motion, the question which has remained unclear
for a long time until recently. To our knowledge, the nonergodicity of motion
in a similar model was first predicted theoretically and estimated numeri-
cally in Ref.[3]. We have confirmed this result by different methods, and
found many other characteristics of the motion structure. The present work,
as well as the previous one [1], was stimulated by a very interesting study of
the corresponding quantum adiabaticity [4]. We use the same classical model
which is briefly described, for reader’s convenience, in the next Section (for
details see Ref.[1]).



The model is specified by the Hamiltonian:

2
H(z,p,t) = % + A sin () - cosz (2.1)

which describes a single nonlinear resonance in the pendulum approximation
(see, e.g., Ref.[5, 6]) with a time—varying amplitude

A(t) = Ag sin (Q1) . (2.2)

The dimensionless adiabaticity parameter is defined in the usual way as
the ratio of perturbation/oscillation frequencies:

Q
€= N (2.3)

where /A is constant frequency of the small pendulum oscillation for the
maximal amplitude.

Two branches of the instant, or frozen’, separatrix at some ¢ = const are
given by the relation

pa(2s1) = +2/TA@)] - sin (%) 2 = { 2, ﬁg;zg o (24)

r—m,

Following previous studies of separatrix crossing we restrict ourselves below
to this frozen approximation. As was shown in Ref.[1] the latter provides

quite good accuracy of fairly simple theoretical relations.
In this approximation the action variable is defined in the standard way

as )

J == d 2.5
oS (25)
where integral is taken over the whole period for z rotation (off the resonance)
and over a half of that for z oscillation (inside the resonance). This difference
is necessary to avoid the discontinuity of J at separatrix where the action is

given by a simple expression

J = Ji(t) = %\/|A(t)| < Jmar = %\/AT). (2.6)

At Qt = 0 (modn) the action J = |p|, and the conjugated phase 6 = z.
Notice that unlike p the action J > 0 is never negative.
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transformation: J/Jyae — J. Then, the crossing region swept by separatrix
is the unit interval, and J is simply related to the crossing time ¢t = ¢, by
the expression

Alter)] = 72, 0< T <1 (2.7)
while the adiabaticity parameter becomes ¢ = Q.

Numerical integration of the motion equations for Hamiltonian (2.1) was
performed in (z, p) variables using two algorithms. In most cases it was
the so-called bilateral symplectic fourth-order Runge-Kutta algorithm as in
Ref.[1]. However, in a few most long runs we applied a very simple and
also symplectic first—order algorithm like in Ref.[2] which is actually the well
known standard map [5] with the time—varying parameter:

Ezﬁ-l-ffo-sin(ﬁf)vsinx, T=2z+p, (2.8)
where tilde marks the new set of quantities rescaled by the transformation
~ 1 - ~ Q .
A==, T=st, Q==, =1L, (2.9)
s s s

Here s is the scaling parameter, and we remind that Ag = 1. The primary goal
of the rescaling was decreasing parameter Ay which controls the computation
accuracy. Usually, it was around Ay~ 0.1.

As is well known, the variation of J under adiabatic perturbation consists
of the two qualitatively different parts: (i) the average action which is nearly
constant between the crossings, up to an exponentially small correction, and
which is of primary interest in our problem, and (ii) the rapid oscillation with
the motion frequency. The ratio of the two time scales is ~ ¢/y/]|A(t)| < 1
which allows for efficient suppression of the second unimportant part of J
variation by a simple averaging of J(t) over a long time interval ~ 1/¢ (see

Ret.[1]).

3 Ergodicity

The ergodicity is the weakest statistical property in dynamical systems (see,
e.g., Ref.[7]). Nevertheless, it is an important characteristic of the motion,
necessary in the statistical theory (see, e.g., Ref.[§]).

The question of ergodicity of the motion under separatrix crossing re-
mained open for a long time until recently. The upper bound for the mea-
sure (phase—space area) of a separate domain with regular motion (’stability
islet’) was estimated in Ref.[9] as p; Se.
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first predicted theoretically and estimated numerically in Ref.[3]. The au-
thors directly calculated the number and positions of stable trajectories for
two different periods. Moreover, they were able to locate some of them in
computation, and thus to measure their area in phase space which turned
out to be surprisingly small.

Here, we make use of a different, statistical, approach. To this end, we
first obtain from numerical experiments the steady—state distribution fs(J)
in the action. In case of ergodic motion it should be constant. Examples of
the distribution are shown in Fig.1 with the parameters listed in the Table
below.

Table. Regular component under separatrix crossing

n € pr x 102 T x Ny, Ny
11 0.1 0.68+£0.2 | 2-10% x 1000 200
21 0.05 | 0.75+£0.06 | 4-10° x 200 500
310.033| 070£0.2 | 4-10° x 200 200
410.033 | 0.81+£0.08 | 4-10° x 150 500
5| 0.02 | 0.604+0.05 | 2-10° x 100 200
6 | 0.01 | 0.754+0.04 | 4-10° x 100 200

€ — parameter of adiabaticity

pr — total relative measure of regular component

T - number of separatrix crossings for each of Ny, trajectories

Ny — number of histogram bins in Fig.1

n — reference number for Fig.1

The striking feature of all the distributions is clear and rather specific
inhomogeneity, reminiscent of a burst of ’icicles’ hanging down from a nearly
‘ergodic roof’. This directly demonstrates the generic nonergodic character
of motion under separatrix crossing.

The histograms normalized in such a way that for ergodic motion the
distribution f;(J) = 1 while the sum over all the bins is also unity for any
distribution. As a result the dips in the distribution (’icicles’), indicating
the regular component, are compensated by an increase in the ergodic back-
ground. The latter is clearly seen in all distributions, especially for small J,
and is a measure of the regular component. Namely, the relative measure
(share) is given by the approximate relation

e < fs(J) = 1>, J < Ji, (3.1)
6



1.6

1.2+ V

£0)

0.8

0.6

0.4 : : - : L
0.0 0.2 0.4 0.6 0.8 10

Figure 1: Histogram of the steady-state distribution for 3 values of ¢ (see
Table): (n=4) upper curve shifted up by 0.3; (n=>5) middle curve; and (n=6)
lower curve shifted down by 0.3. Solid lines correspond to J values at
|A(t)] = 1 while dotted ones are related to A(t) = 0 (see text).

where J; is the position of the first dip from below. The approximation
comes from the border effects around J = 1 for any finite ¢. Typically,
at this theoretical border f;(1) ~ 0.5, and drops to zero within the interval
|J—1| ~ €. For this reason we used also other methods for measuring y,. One
of them was the direct calculation of the area of dips in Fig.1. Scattering of
the values provides an estimate for the accuracy of measurement of g, which
is also given in the Table.

If we are interested in statistical data only, like in Fig.1, the computation
of J value after each crossing is not necessary, nor is the averaging J(¢) done
in Ref.[1]. This can be used for a further speed—up of the computation by
applying simple relation J = |p| at A(¢t) = 0 that is at each second passage
between crossings (see Section 2 above). It is especially important for the
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Fig.1. With the main standard code this also was used for calculating two
different distributions, after odd and even passages. Both are shown in Fig.1
for cases n=4 and 5. The total regular area for the both is close, yet the
positions of dips are different, sometime quite a lot. Another interesting
peculiarity is the concentration of regular component near J = 0.9.

Even though the total regular area is very small (~ 1%) the local share of
that can be as large as 20%. In spite of stability islets the chaotic component
remains connected in the whole crossing region.

The dependence pr(€) is weak, if any. Apparently, the measured value
is already close to the asymptotical one p,(0) =< g, >= 0.0072 where the
average is taken over all six cases in the Table.

All this peculiarities will be further discussed in Section 5 below.

4 Diffusion, instability, and the critical
structure

The diffusion in J was studied for a similar model in Ref.[2]. The essential
difference from our model (2.1) was the restriction of separatrix oscillation
(2.2): A(t) > 0 always. In this case the diffusive kinetics is valid in the whole
crossing region. In our model the diffusive regime is restricted to the domain
J > ¢'/3 while for J < ¢'/3 the ballistic regime takes over with a completely
different kinetics (see Ref.[1] and below).

The diffusion rate in the random phase approximation (RPA) immediately
follows from a simple expression for the change of J per separatrix crossing

e V1 —J2 ,
AJ(J, ¢, €) = $§-T-ln|251n¢|, 4.1)

where the sign coincides with that of A(t), and is given by the relation:

2,2
Dy =< (AJ)? >= 6478r <% = 1) , (4.2)
where sub zero indicates RPA (see [2] and Ref.[14] therein).

Simple Eq.(4.1) was carefully checked in Ref.[1], and proved to be sur-
prisingly accurate in the whole diffusive region J > €!/3. However, as was
shown already in Ref.[2] the correlation—free diffusion rate (4.2) holds true
for a few crossings only (see also Ref.[1]). Afterwards, the correlation in ¢
builds up which decreases the diffusion rate D by a factor of 2. Here we
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rate in comparison with the RPA theory (4.2). To this end we computed the
correlation factor as the ratio
< D>

R(< J>) = <Dss " (4.3)
It was done in the following way. A number of trajectories Ny, = 100 with
initial J = Jp and random z were run during 7" = 800 to 1600 separatrix
crossings. Then, the empirical diffusion rate was calculated in the standard
way:
< (J(T) - Jo)? >

T

with averaging over all the trajectories while the RPA theoretical rate
< Dy > was computed by averaging expression (4.1) over all Ny, x T' cross-
ings. Altogether, 23 groups of trajectories with different initial Jy in the
whole range 0 < Jg < 1 (and random ) were run and related to the mean
value < J ># Jy over all the crossings. Actually, all < J > values were
found to lie off the ballistic domain because the trajectory quickly leaves the
latter [1]. Nevertheless, for the initial Jo < ¢'/3 the trajectory spent some
time within this domain, and we needed a certain empirical relation for the
"diffusion rate’ there to perform averaging < Dy >. That was obtained from
the results in Ref.[1] in the form

<D>=

Dy = 0.16 €3, J < €3

It depends on € but not on J.

The results of these numerical experiments are presented in Fig.2 in the
log-log scale using the quantity 1— < J > rather than < J > as an argument.
The reason for this is our special interest in the asymptotics J — 1 at the
chaos border in phase space on the edge of the crossing region. Typically,
one would expect a very peculiar critical structure here (see, e.g., Ref.[§]).
This interesting question will be discussed below in this Section.

So far, we show in Fig.2 the fit of the four leftmost points in the immediate
vicinity of the chaos border to a power law expected in the critical structure.
The result is:

R(J) = 1.05-(1 — J)°%5, (4.4)

Interestingly, this simple relation describes to a reasonable accuracy the rest
of points as well except the five ones with smallest < J > which are affected
by the ballistic regime as explained below. Some clear deviations from smooth
relation (4.4) reveal a certain fine structure of the diffusion of unknown origin.
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Figure 2: The ratio of empirical to theoretical diffusion rate (the correlation
factor (4.3)) vs. the mean action < J >: € = 0.001 (circles); e = 0.003 (dots).
Error bars show the spreading of trajectories during diffusion. The dashed
straight line is fit (4.4) to four leftmost points (e = 0.001).

Factor R < 1 (4.3) is always less than one which means suppression of
diffusion by the correlation. The minimal suppression (maximal R) occurs
at J = Jp ~ 5e'/3 which is much larger than the crossover to the ballistic
region at J = €/3. This is the answer to the question about the width of the
ballistic—affected region put forward in the conclusion of our previous publi-
cation [1]. For J £ Jp the correlation strongly suppresses diffusion down to a
very low rate which is apparently determined by fluctuations. This unusual
kinetics certainly deserves further studies. In any event, such a suppression
explains a surprisingly long motion time required for a good steady-state dis-
tribution in Fig.1. The value of Jp marks the diffusion crossover from a big to
small correlation (cf. Fig.3 below). In the complementary region J 2 Jp the
correlation factor also decreases but very slowly only (4.4). Within fluctua-
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see Section 5).

The diffusion rate itself is given by the following empirical relation:
2 1 — JH(1 — J)He m?
EGQ'( )‘(]4 ) — EEZ'(I — J)CD, (45)
where the latter expression represents the asymptotics J — 1, and ¢p = 5/4
is the diffusion critical exponent.

A power law in Eq.(4.5) suggests the existence of a critical structure at
the chaos border J = 1. Detailed study of this structure is hampered by some
additional border effects as discussed above in Section 3. Even for fairly small
€ = 0.001 we managed to follow the asymptotic behavior to 1—.J ~ 1073 only
(see Fig.2). Also, we are not able, as yet, to calculate the critical exponent
¢p from the existing resonant theory of the critical phenomena [8]. However,
there is another way to test this our conjecture. Namely, beside the local
diffusion rate we might measure the asymptotics of the Lyapunov exponent
A(J). In fact, we did both simultaneously in the same run.

Positive Lyapunov exponent (A > 0) is the main condition for the strongest
statistical properties in a dynamical system, including the randomness of
most trajectories [10] (see also Ref.[11, 12]). The other condition for chaos
is boundedness of the motion in the phase space. The first measurement of
A, and in the same model, was reported in Ref.[13], just as a criterion for
chaos. Formally, the Lyapunov exponent is defined in the ergodic theory of
dynamical systems in the limit ¢ — oo [7] (as well as the diffusion rate, by the
way). However, in case of rather different time scales of the motion the lo-
cal Lyapunov exponent A(J) becomes also meaningful and, moreover, a very
important characteristic of the motion. Roughly, the ratio of time scales is
that of error bars to corresponding J values in Fig.2 provided the number of
crossings T per trajectory is sufficiently large for A to saturate.

In Fig.3 we present the results for A(.J) measured, as well as D(J), per one
separatrix crossing, and for the same parameters and initial conditions as in
Fig.2. A clear crossover to asymptotic behavior is seen at < J >= Jy =~ 0.8.
The latter was also fitted to a power law

D(J) =

A(J) = 0.98(1 — J) (4.6)

with the critical exponent ¢y = 0.156. In fitting we used ten leftmost points
besides the two at < J >= 0.95 which represent some unknown fine structure
(cf. Fig.2). Below crossover (J < Ja) the dependence is approximately linear:

A(J) = 1.9 — 1.4J. (4.7)
11
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Figure 3: Lyapunov exponent A per crossing vs. mean action < J >:
€ =0.001 (circles); e = 0.003 (dots). The dashed straight line is fit (4.6) to
10 leftmost points (¢ = 0.001).

The fluctuations are now much less than for D(J). In both cases the
dependence, if any, on € is weak. Interestingly, no effect of the ballistic
region is seen for A(J) (cf. Fig.2).

Now, the theory of the critical phenomena [8] allows for calculation of ratio
of the two exponents independent of other details of the critical structure. It
is:

rp = L2 =8 (4.8)
CA
while the empirical value for this ratio from Eqs.(4.5) and (4.6) is 7esp = 8.01,
a surprising agreement!
To illustrate this result more graphically we plot in Fig.4 the dependence
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Figure 4: Diffusion rate vs. Lyapunov exponent: ¢ = 0.001 (circles); ¢ =
0.003 (dots). The dashed straight line is theoretical prediction for the critical
structure (4.9).

D(A)/€? together with the expected asymptotic relation

o =A% (4.9)

This appealing result strongly suggests the existence of a critical structure
at the chaos border J = 1, and farther studies of this interesting problem are
desired.

5 A simple map

Since the principal change in the adiabatic invariant J occurs at separatrix
crossing it is natural to derive a 2D-map per crossing. This sort of maps were
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cated, at least for a theoretical analysis. For the model under consideration
here the global (in J) map has the form:

J= JF5 YL In2singl,
(5.1)
¢$= ¢+ 2(J),
where the sign coincides with that of A(t) (see Eq.(4.1)). The difficulty of
constructing and using such a map lies in the second equation. Notice that
both equations are approximate and cannot be a substitute for the exact
motion equations even in the simplest form of another map (2.8).
For simplification the global map (5.1) we first transform it to a local one
by the standard procedure, linearization of the second equation (see, e.g.,
Ref.[5, 6]):
dd
O(J) - mn + <—> AJ. (5.2)
dJ ) ,_,

Here the new parameter J,, satisfies the equation ®(J,,) = mn with any integer
n, and AJ = J — J,. In our problem this approximation is fairly accurate
for sufficiently small ¢ — 0. Particularly, we can consider discrete variable
Jn as a continuous one (see below).

Typically, the derivative ® = d®/dJ is still very complicated, and we
assume another principal approximation. Namely, in calculating the change
in ¢ between successive separatrix crossings we make use of the limiting
motion frequencies neglecting the change of those near separatrix. They are:

w = 2.7 for phase rotation,
T

(5.3)
w, = +/A(t) for phase oscillation .

The rotation frequency (off the resonance) remains constant between cross-
ings while the oscillation one slowly varies due to separatrix motion. Now,
the full period of phase ¢, which is equal to m, corresponds to the full period
of the rotation but only to half of that for the oscillation. Whence, the speed
of ¢ variation in this approximation becomes:

do _ [ 5= 2, J>VAQY) (5.4)
dt | wo = JA@), J < JA{t) . '
The latter inequalities determine transition from rotation to oscillation and
back which occurs at the crossing time ¢ = ¢, where (see Eq.(2.7))

ot
ot
=

ete, = arcsin (J?). (
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expressed in elementary functions as follows:

3 (larcsin(ﬂ) + L ) . J > VAR

! _ me \ 2 1— J4
¥'(J)) = LR (5.6)
¢ Vi-Ji»

Since the most interesting part of motion structure is essentially concentrated
near sufficiently large J & 0.9 (see Fig.1), we may leave in the first equation
(5.6) the second term only with the factor 4/¢ from the second equation. In
fact, the difference between the two factors is less than it appears just because
of the contribution of the omitted term. However, the latter correction would
be certainly an excess in accuracy for our rather crude map. Finally, we
assume A 12
! ~ e —
D'(J) = :l:6 % (5.7)
The local map is derived now from Eqs.(5.1), (5.2) and (5.7) in the stan-
dard way (see, e.g., Ref.[5, 6, 16]), and has the form:

P~ P FK- In|2sin¢d| mod 7,
B B (5.8)
s~ 6F P41

where the signs in both equations change simultaneously at each crossing,
and where

-AJ mod 7 (5.9)

is a new, local, momentum while the only parameter K = 2 is simply a
constant in the approximation assumed. Additional phase change by /4
comes from the shift of separatrix by 7 in  each time it crosses zero (see
Eq.(2.4)). Literally, this change in ¢ is equal to m/4+ /4 but the alternating
part simply shifts P by a constant 7/4 and, thus, can be omitted.

The phase space of the local map (5.8) is a 2D—torus = x 7. It approx-
imately represents a narrow strip A;J x 7 in the phase space of our main

system (2.1) where
V91— J:
A =T V2" e (5.10)

4 J2
For local map to be applicable the following two conditions are to be satisfied:
Al J € < \
~r~ — 231 5.11
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M <. (5.12)
=75, S
The latter condition excludes a very narrow domain 1—J, < €2, which is prac-
tically impossible to observe, while the former comprises the whole ballistic
region.
The density of local strips (5.10) in J,

dn 1 4 J2 .
~ = = 5.13
dJ, AqJ me /1 — J4 ( )

n

is rapidly increasing with .J,, which explains the concentration of the regular
component near the chaos border (Fig.1). This also explains the shift §.J of
the dips between two different groups in Fig.1. The largest §.J & 0.15 on the
upper curve between the two leftmost dips is close to the full width of the
corresponding local strip A;J = 0.16.

An interesting feature of 4-step map (5.8) over a period of the adiabatic
perturbation (four separatix crossings) is a singularity at ¢ = 0 (mod 7).
The Fourier spectrum of this singularity

In|2sing| = — Y COS(HM (5.14)
n=1

is similar to that of the function with a finite discontinuity. As is well known
(see, e.g., [17, 8] and references therein) the chaotic component of such a
motion is always connected. It means that there is no invariant curve in the
whole range 0 < ¢ < 7 which would cut through and disconnect the chaotic
component.

This confirms earlier conjectures on universality of chaos under separatrix
crossings (see, e.g., Ref.[13]). Yet, the motion in such a system is typically
nonergodic that is it contains a regular component. For a particular model
under consideration it was first found in Ref.[3] and studied in detail in
the present work (Section 3). Using simple map (5.8) we are able now to
analyse and understand particular features of this less—known component of
the motion.

To this end, we first measured the relative area p, of the regular compo-
nent (stability islets) within the local phase—space cell (7 x 7) as a function
of parameter K. The result is shown in Fig.5 (lower circles). In approxima-
tion of constant parameter K the relative area is the same in each cell, and
hence is approximately equal to the relative area in the whole range of .J in
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Figure 5: Comparison of local map (5.8) (circles connected by lines to guide
the eye) and the main system (2.1) (dashed lines) with respect to: relative
measure g, of regular component (lower data), and Lyapunov exponent A
(upper data). For the main system the dashed lines give g, = 0.007, and
A(J =0.9) = 0.67 (see text).

the main system. The latter is also shown in Fig.5 (lower dashed line). The
agreement, within a factor of 2, seems reasonable provided local parameter
K £ 0.8 which is about half of the estimated value. Assuming K = 0.8 we
may further compare the Lyapunov exponent in the local map (upper circles
in Fig.5) with that of the main system at J = 0.9 the latter being larger by
a factor of 2 (upper dashed line).

Thus, a simple local map (5.8) considered allows, beside a qualitative
description, for even quantitative estimates within a factor of 2 which is not
that bad for such a primitive map.

The local map does not depend on ¢, and so do all the dimensionless
quantities of the variables and the parameter of this map. Those include rel-
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crossing (or per perturbation period)(Fig.3) as well as the correlation factor
R (Fig.2) except small J close to the ballistic region where the local map is
not applicable.

6 Conclusion

In the present work we studied the structure and statistical properties of
the chaotic motion under separatrix crossing in numerical experiments with
a typical model (2.1) used in such studies. An interesting distinction from
previous studies (except Ref.[13]) is in that we allow the full swing of sep-
aratrix (=1 < A(t) < 1). In this case the chaos comprises the whole range
(0 < J < 1), and there is only one chaos border at J = 1. Usually, the pertur-
bation amplitude A(t) > 0 is strictly positive (or negative) which implies two
chaos borders with the chaotic component between them (0 < J; < J < 1)
but without an interesting ballistic region.

We have qualitatively confirmed previous results on the existence of reg-
ular component (nonergodicity) of the motion [3] as well as the correlation
in chaotic component suppressing the diffusion [2], and found many other
interesting details of the motion structure (Sections 3 and 4). For a physical
interpretation and understanding of our empirical results we have constructed
a very simple but meaningful local map per separatrix crossing which not only
provides a qualitative description of the chaos structure but also allows for a
reasonable quantitative estimates within a factor of 2.

In Fig.1 the most of regular component is seen near the chaos border, at
J = 0.9. We never observed any at J = 0 at variance with the prediction in
Ref.[14] based on the approximation of the motion equations by the Mathieu
equation at small € — 0. The resolution of this apparent contradiction is in
that the amplitude of the parametric perturbation in the Mathieu equation
increases ~ €% (see Eq.(2.9)) so that the stable periodic solutions are only
possible in special very narrow windows of €. An interesting open question
is the size of the corresponding stability islets.

Another interesting problem is the expected critical structure at the chaos
border J = 1. The standard method - statistics of Poincare recurrences (see,
e.g., [8] and references therein) - is difficcult to apply here because of the
confusion with many internal chaos borders around stability islets of the
regular component. Instead, we measured the asymptotics (J — 1) of the
two quantities, A(J) and R(J). Unfortunately, we were not able to calculate
from the existing theory [8] the two critical exponents separately because of
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of both (4.8) does not depend on the singularity and surprisingly well agrees
with the empirical result (Fig.4). This is a strong evidence in favor of the
critical structute which certainly deserves further studies.

In the present work, as well as in previous one [1] we studied the crossing
of a single separatrix that is one of the two separatrix branches of a non-
linear resonance (see Eq.(2.4)). As is well known, there is another, related
but not identical, process - the crossing of the whole resonance with both its
branches. The latter was studied even much earlier [18] (see also Ref.[19]).
From the beginning it was found that the change in adiabatic invariant per
crossing: AJ ~ elne (in dimensionless variables) differs from that for separa-
trix crossing, calculated much later, by an additional factor In € which slowly
but indefinitely grows as ¢ — 0. The importance of this factor for the regular
component of the motion was understood in Ref.[3]. Namely, it was theo-
retically predicted that the stable trajectories of the two particular periods
are destroyed, together with the surrounding islets, for sufficiently small e.
An interesting open question is if the whole regular component, containing
infinitely many islets [8], would vanish too, and how fast?

In terms of our local map (5.8) the additional factor would completely
change all the structure of underlying motion because now the map parame-
ter K ~ |Ine| — oo does depend on the adiabaticity parameter, and moreover
indefinitely grows as ¢ — 0. It implies the dependence of all dimensionless
characteristics of the motion on ¢, in particular, the measure of regular com-
ponent. We performed some preliminary numerical experiments to estimate
the dependence pu,(K). Asymptotically, it looks like an exponential which
would imply a power law for p,(e).

In the very conclusion we would like to mention that the latter particular
interestng question is a part of the general very important and very diffi-
cult unsolved problem in the theory of dynamical systems, the problem of
ergodicity in case of analytic or even sufficiently smooth equations of motion.
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