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1 Introduction

The most common basis for the description of processes at small values of
r = Q?/s (Q?is a typical virtuality and /s is the c.m.s. energy) in the frame-
work of the perturbative QCD is the BFKL equation [1], originally derived in
the leading logarithmic approximation (LLA), which means resummation of
all terms of the type [asIn s]" (as = g?/(47) is the QCD coupling constant).
The calculation of the radiative corrections to the kernel of this equation has
taken many years of a hard work [2]-[7]. Recently, the kernel was obtained
in the next-to-leading approximation (NLA) [8] for the case of the forward
scattering, i.e. for the momentum transfer ¢ = 0 and the vacuum quantum
numbers in the ¢—channel. In the M S renormalization scheme with a rea-
sonable scale setting the corrections appear to be large. Now this problem
is widely discussed in literature (see, for instance [9]). In this situation it is
very important to be sure in correctness of both the basic hypothesys used
and the calculations performed in the derivation of the equation.

Remind, that the derivation of the BFKL equation (in the NLA as well
as in the LLA) is based on one of the remarkable properties of QCD - the
gluon Reggeization [10], which was proved in the LLA [1],[11]. In the NLA
this property was only checked in the first three orders of the perturbation
theory [6]. Since the gluon Reggeization forms a basis of the derivation of
the BFKL equation, it is clear, that more powerful tests are necessary.

As for the calculations of the radiative corrections to the kernel, they
are very complicated and up to now only a part of them was independently
performed [7] or checked [12]. Therefore, the calculations must be carefully
verified.

The both goals - the stringent test of the gluon Reggeization and the
examination of the calculations - can be solved simultaneously by check of
the “bootstrap” equations [13],[14] appearing as the requirement of the com-
patibility of the gluon Reggeization with the s-channel unitarity. In fact, the
BFKL equation is the equation for the Green’s function of two Reggeized glu-
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ons. In tne cotour singletv state tnese neggelzed gluons create the romeromn.
The self-consistency requires that in the antisymmetric colour octet state
the two Reggeized gluons must reproduce the Reggeized gluon itself (“boot-
strap” condition). The above statements are valid in the NLA as well as in
the LLA. Along with the stringent test of the gluon Reggeization, the check
of the bootstrap equations provides a global test of the calculations of the
NLA kernel, because these equations contain almost all the values appearing
in the calculations.

In the BFKL approach amplitudes of high energy processes are expressed
in terms of the above mentioned Green’s function and impact factors of scat-
tered particles, which are defined by Reggeon-particle scattering amplitudes.
The non-forward impact factors for gluon [15] and quark [16] scattering were
recently calculated in the NLA and the fulfillment of the bootstrap condi-
tions for them was demonstrated [15], [16],[17] for both helicity conserving
and non-concerving parts, in an arbitrary space-time dimension D = 4 + 2e.

The quark contribution to the non-forward BFKL kernel was also cal-
culated [18] and the fulfillment of the bootstrap conditions for the kernel
in the part concerning this contribution was explicitly demonstrated in the
NLA [18],[19], also in an arbitrary space-time dimension. The only one (but
most complicated) bootstrap condition remains unchecked - for the gluon
part of the kernel. In this paper we calculate the gluon contribution to the
non-forward colour octet kernel of the BFKL equation, having in mind sub-
sequent examination of the bootstrap condition.

A significance of the the non-forward octet kernel is not limited by the
check of the bootstrap condition. The kernel of the non-forward BFKL equa-
tion for an arbitrary colour state in the ¢ -channel is expressed in terms of the
gluon Regge trajectory and the part related to the real particle production
in the Reggeon-Reggeon scattering (“real” part, for brevity). The trajectory
is known [4] and enters into the kernel in the universal (not depending on
a colour state) way [13]. The “real” part includes contributions from the
one-gluon, two-gluon and quark-antiquark pair production. The first contri-
bution for any colour state in the ¢ -channel can differ from the contribution
for the octet state only by a group coefficient. The last two contributions can
be separated (for an arbitrary colour state in the ¢ channel) in two pieces,
one of which is determined by the colour octet state. Therefore, the colour
octet piece enters (with some group coefficient) in kernels for other colour
states, in particular, for the colour singlet state (Pomeron channel). In the
Pomeron channel the non-forward BFKL equation can be applied directly for
the description of experimental data. Evidently, a region of applicability of
this equation is mich wider than the forward-case one.
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1n the next sSection we present tne general 1orm o the gluon contribution
to the kernel and the explicit form of the gluon piece of the gluon trajectory.
In Section 3 we derive the gluon part of the contribution to the kernel from
the one-gluon production. In Section 4 we consider the two-gluon production
in collisions of the two Reggeized gluons. The contribution of this process to
the kernel and the result for the total gluon contribution to the kernel are
presented in Sections 5 and 6 respectively.

2 Definitions and basic equations

In the BFKL aproach the high energy scattering amplitudes are expressed in
terms of the impact factors ® of the scattering particles and of the Green’s
function G for the scattering of Reggeized gluons [13]. Considering the
Green’s function we can take, without any loss of generality, masses of the
colliding particles with momenta p 4 and pp equal zero: p:ﬂ = sz =0, (pa+t+
pB)? = 2(papp) = s. As usual in an analysis of high energy processes, we ap-
ply the Sudakov decomposition for particle momenta. The Mellin transform
of the Green’s function with the initial momenta of the Reggeized gluons in
the s—channel ¢1 ~ Bpa + ¢11 and —¢2 ~ app — ¢21 and the momentum
transfer ¢ ~ ¢, obeys the equation [13]:

‘UG&R) ((j‘la 525 q-) =

2 25(D-2) (» dP2r Lo L
q12q1/25(D 2) (¢ —qﬂ—l—/mK(R) (1,7 _)G&R) (7 q2d) . (1)

where R denotes the representation of the colour group in the t—channel.
The transverse momenta are spacelike and we use the vector sign for them.
Here and below we use for brevity v = v — ¢ for any v. The space-time
dimension D = 4 + 2¢ is taken different from 4 to regularize the infrared
divergences. We use the normalization adopted in [13].

The non-forward kernel, as well as the forward one, is given by the sum
of the “virtual” part, defined by the gluon trajectory j(¢t) = 1 + w (¢), and
the “real” part IC&R) , related to the real particle production in the Reggeon-
Reggeon collisions

IC(R) ((Tb CTZ; q_‘) =
[w (=) +w (=@ )] @@ 6P (¢ — @) + K (G @) - (2)
As it is seen from (2), the gluon trajectory enters the equation in the uni-
versal (independent from R) way. In the one-loop approximation (LLA) the
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trajectory 1s purely giuonic:

2\t Jb-2
w® (t)= g D_1 / ) —»/qzl ; (3)
2 (2m) 41'a

where t = ¢2 = —¢2, N is the number of colours (N = 3 in QCD). In the
NLA the trajectory was calculated in [4]. Since the quark contribution to the
non-forward kernel was already considered [18], we present here the two-loop
gluon contribution:

2 (D—2)
gt d q - Lo
wg)(t) = _ / 6»126»1/21 [FG(QDLD*QFG(QDQO] s (4)

where

FG(Jlaq) = -

gzqu—»z d(D*Q)qQ
4(2m) Pt / 3 (% — )?
e D D
<G Sar) 20-9-v (3-3) 2 (5-2) +o0)

2 D-2 I(x)
. — 5
O 3D 9 +4(D1)(D3)] P v@) =Ty ®)
I'(x) is the Euler gamma-function. In Egs. (3)-(5) and below g is the bare
coupling constant related to the renormalized coupling g, in the M S scheme

by the relation
11 204\ G,
1 — -1 )=£ 6
+ ( 3 3N> 26‘| ' (©)

where ny is the number of the quark flavours,

g=gup €

R ")

Let us stress that in this paper we will systematically use the perturbative
expansion in terms of the bare coupling g.
The “real” part for the non-forward case in the LLA is [1], [21]:

g°cr (512672/2 + 3507 _ q»z)
@2m)P=t (¢~ @)? ’
where the superscript B means the LLA (Born) approximation and the colour

group coefficients cg for the singlet (R = 1) and octet (R = 8) cases are

N
ClzN, 68:5. (9)

K®B (3, 0:7) =

(8)
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In the NLA the Teéal part oI the Kernel can be presented as [19):

oL L *° ds
Kﬁn)(ql,qz;q):/ 2B T AT (31, o3 T) 0 (55 — 5p0re)
o (2m)”
1 (d°®r r)B - - R)B /> = - 52
75/,:’27:*/2’@ ) (‘ha“i)’d ) (Ta QQ;q)ln((F—ql)ZEF q_')

(10)
Here .Ag;) (q1,q2;q) is the scattering amplitude of the Reggeons with the
initial momenta ¢ = Bpa + ¢11. and —q2 = app — g2, at the momen-
tum transfer ¢ = ¢, and the representation R of the colour group in the
t—channel, s, = (¢1 — qz)2 = saf3 — (¢1 — ¢»)? is the squared invariant mass
of the Reggeons. The s, ,—channel imaginary part ZmAg%) (q1, @25 q) is ex-
pressed in terms of the effective vertices for the production of particles in the
Reggeon-Reggeon collisions [13]. The second term in the r.h.s. of Eq. (10)
serves for the subtraction of the contribution of the large s, region in the
first term, in order to avoid a double counting of this region in the BFKL
equation. The intermediate parameter s, in Eq. (10) must be taken tending
to infinity. At large s, only the contribution of the two-gluon production
does survive in the first integral, so that the dependence on s, disappears
in Eq. (10) due to the factorization property of the two-gluon production
vertex [13].

The remarkable properties of the kernel are

KRN0, 7) = K (1,05 7) = K(G, @3 4) = KV (G, 7)) = 0, (11)

and

KNG, @50) = K@ @ -0) = K (. @ —-0) . (12)
The properties (11) mean that the kernel turns into zero at zero transverse
momenta of the Reggeons and follow from the gauge invariance; Eqs.(11)
are the consequences of the symmetry of the imaginary part of the Reggeon-
Reggeon scattering amplitude (13).

Using the operator Pr for the projection of the two-gluon colour states
in the t—channel on the irreducible representation R of the colour group we
can present the imaginary part of the Reggeon-Reggeon scattering amplitude
entering Eq. (10) in the form

c1¢1|Prleac *
ImASY (a1, 02:7) = %Z/%ﬁ (q1,2) (7{” (qi,q;)) dp; .
{r}
(13)



nere ngr 15 the numper ol 1mmdependent states In tne representation /o, tne
sum {f} is performed over all states f which are produced in the Reggeon-
Reggeon collisions and over all discreet quantum numbers of these states,
'*/c{fcc}z (q1,q2) is the effective vertex for the production of the state f and dpy

is the phase space element for this state,

1 D (D) dDilki
dpf = E(QW) N — g2 — Zki)H

— 5 (14)
icf ict (2’/T)D 1261’

where n is a number of identical particles in the state f . In the LLA only
the one-gluon production does contribute in (13) and Eq. (10) gives for the
kernel its LLA value (8); in the NLA the contributing states include also
the two-gluon and the quark-antiquark states. The normalization of the
corresponding vertices is defined in Ref. [13].

The most interesting representations R are the colour singlet (Pomeron
channel) and the antisymmetric colour octet (gluon channel). We have for
the singlet case

501 o 502 cl

(clc'1|751|czc’2> = ng=1, (15)

N2 -1 "~
and for the octet case
) Fo et oforer
(c1¢)|Ps|cacy) = % , ng=N?-1, (16)

where f,p. are the structure constants of the colour group.

3 The one-gluon contribution to the kernel

The gluon contribution to the Reggeon-Reggeon-gluon (RRG) vertex was
calculated in [3]. Remind that the complicated analitical structure [20,
3] of the vertex is irrelevant in the NLA where only the real parts of the
production amplitudes do contribute ( only these parts interfere with the
LLA amplitudes, which are real). Remind also that in the NLA the vertex
depends on the energy scale sg used in the Regge factors. In Egs. (10),(13)
it was assumed that sp = k 2. where k is the produced gluon momentum.
Neglecting the imaginary part, we have for the gluon contribution to the
RRG vertex with this choice of sg [21]

20°NT (1 —€) ( (G) | 4(G)
G _ d *
76162 (qh q2) — chlczeu(k) {C#(q27 Q1) |:1 + (47T)2+€ ( 1 + f2 )
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ey tos)) g”““‘”[§G>—<2E2—q12—q32>f§®1}. (17)
“w

kpa)  (kpp) (4m)*e
Here d is the colour index of the produced gluon, e*(k) is its polarization
vector, Tcd1C2 = —ifdc,c, are the matrix elements of the colour group generator

in the adjoint representation, kK = ¢1 — ¢o is the gluon momentum,

242 247
Clgzyq1) = —qi1 — qa1 + (@1 — qu1) ( - %) + (g2 — q21) ( — %) ,

(19
and

where ((n) is the Riemann zeta-function. Note that the one-loop contribution
to the RRG vertex is not known for arbitrary e. Therefore Eq. (19), contrary
to all the preceeding formulas, is valid only in the limit ¢ — 0. The only term

N €
of this equation which remains unexpanded in € is (k 2) . For this term the

expansion is not performed because the RRG vertex is singular at k2 =0
and in subsequent integrations of its contribution to the kernel the region
e|In(k2)| ~ 1 does contribute. In Eq. (19) all terms giving nonvanishing in
the limit ¢ — 0 contributions after these integrations are kept.

The vertex (17) is explicitly invariant under the gauge transformation

et (k) — et (k) + k*x, (20)
so that we can use the relation
> e M (k)M (k) = —gu. (21)
A

Substituting (17) in (13), using (21) for the sum over polarizations and

* N%(NZ2-1)

2
(22)

d a \" d d
5610; 6026’2TC102 (TC;C/Z> = N(N271)’ fCngCfQCQCTCIQ (TC,IC,2>



Ior the sum over colour 1ndices, witih the nelp or Lgs. (1s8)-(1J) and (14)-{19)
we obtain from Eq. (10) the gluon part of the contribution to the kernel from
the one-gluon production in the Reggeon-Reggeon collisions:

2 22212 | 21222
G(R) /> = g cr 4742 ” + 41 °q R
K ( )( {( 19492 1 42 —q2>

RRG \41,492;49) = (27T)D*1 EQ
1 ¢°NT(1—¢) =9 2 2 o (@7
-4+ | (k) | = — 4eC(3)) =1 =
x(2—|— S(Am) e (k°) i +4¢€¢(3) n 2
2 >12 12 2
g*NT'(1 —¢) (@°-a7) k (-»2 —2 —1 =1 -»2)
+ 5 753 S @ +4 +441¢ — 29
6(4m)te (‘112 - q22) (ql2 - q22)2 ! 2 1

24705 ((712 ) 2 42}
X |l In|=%|—-¢ —¢
Llf — 43 s ! 2

20735 @a -4 _ W+ qr
Hl | 5—=5 + = ———5 ¢ | In
a7 — 4z k2 a7 — 43

=2
D)

.y g2cR — —/
—2G1G3 | ¢+ @m)D—1 GG (- (23)

The symmetry properties (12) of ICg}gé) (q1,¢2; Q) are evident from (23).
The properties (11) are not so evident, but can be easily checked.

4 The two-gluon production

Let us consider the production of two gluons with momenta k1 and ks in
collisions of two Reggeons with momenta ¢; and —g2. We will use the Sudakov
parametrization for the produced gluon momenta :

ki = Bipa + cipp + ki1, saifl = —k?, =k 2, i=1,2,

i+ 062=0, a1 t+ax=a kii+kot =11 — @1, (24)

and the denotation
k=ki+k=qgn—-q, (25)

so that s,, = k2. For the effective vertex of the two-gluon production in the
Reggeon-Reggeon collision we have:

Verca (a1, 42) (26)
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= g2l (k) el (k) [T T A% (ky ky) 4 T T Aazal(@,kl)} ,

c1) T Jc2 C1) ~Jc2

where d; are the colour indices of the produced gluons, e*(k;) are their polar-
ization vectors. The tensor A*1?2(ky, ky) obtained in [2] satisfies the transver-
sality conditions:

kSt A s (b1, k2) = k52 An,a. (K1, k2) = 0. (27)

Due to these conditions the two terms in (26) are separately invariant with
respect to independent gauge transformations of the gluon polarization vec-

tors
e (ki) — e (ki) + k¥ X, (28)

so that we can use different gauges for each of the produced gluons and for
each of the terms. Choosing

ea(k)kT =ea(k1)pT =0, eq(ka)ks = ea(k2)ps =0, (29)
we can present the polarization vectors as

(ke (k1))
k1p1

(k2e i (k2))

e(k1) = ey (k1) — kap2

P1, 6(k2) = eL(k2) - P2, (30)

and their convolution with the tensor A*'*2(kq, k) as
o, (k1) €, (ko) A2 (ky, ko) = 4e , (k1) €4, (k2) ™ (k1, k2).  (31)

The tensor ¢"¥(ki, k2) in the transverse space was defined in [6]. It can be
presented in the form

— H — v _ 12 v m
A (k1, ka) = (1 kl){(fh kl)Li((h ki)' (klélﬁ) +<k2 B %]ﬁ)

t1 k2 BQ 1 a1 1
% ((h - kl)’j_ klikli to +k2ik2’i t1 _ klikgli 1 {1 inkli
k2 k2 sof k2 safs k2 s B2 k2

1 t1 saife sasfBi  saifB aoti Sits
L T et i . 32
291 ( et ;2 2o g2 ) B2

where the denotations

ti=ql, i=1,2 ty = (qn — k1)? (33)
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are used, gl 1S the metric tensor 1m tne transverse plane:

uv _ PAPE + Peph

(pApB) (34)

g9 =9
Since the different gauges are used for each of the produced gluons, to obtain
the contribution of the second term in (26) one has not only to change k1 < k2
in the contribution of the first term, but to change also the gauges (e(k)p; =
0 < e(k)pz =0), so that

€q, (k1) €q, (k) A2 (ka, k1) (35)

=de’ (k1) €7 o, (k2) QP (k1)Q% (k) e, 5, (K2, k1) |
where
ke k?
In order to calculate the two-gluon contribution to the imaginary part of
the Reggeon-Reggeon scattering amplitude (13) entering Eq. (10) for the the

kernel we need to sum over gluon polarizations and colour indices. The first
sum can be obtained using the relation

S (AW w)) eIV k) = g2, (37)

A

Q8 (k) = g7 -2

(36)

and the second, for the most interesting singlet and octet representations,
with the help of
Senct Oepey T T2 T T

C2Cy T eriTice T el T el

2(N? -1
_ 2 2 dl dz d2 d1 _ N ( )
= N2(N? = 1), Gereq Doy LT T T = =5
N3(N? 1)
dy pda rpdy pda di do pda edy
fc1c’10fczc'26Tc1iTiC2chlejcz - 4 ) fc1c’1cfczcécTcliTiCQTCIIJ-TJ-C/2 =0.

(38)
Using these formulas, we obtain

{e1c)[Prlcach) .
W Z'\/gg (a1, 92) ('ch’fg (qi,qé))
GG

= 8g4N2 [(CLRCOQOL2 (kl, kQ)Cixlocz (]421, kQ)
12



TORCa s (R15 K2)Cp, 5, (K2, K1 )80727 (R1)8272(R2) ) + kkl — k‘z)J )

where ¢, ., (k1, k2) is obtained from ca,q, (k1, k2) by the substitition ¢; — ¢;

and the coefficients ar and bg for the singlet (R = 1) and octet (R = 8)
representations are

apg=1, by==; ag=-, bg=0. (40)

Evidently the term (k1 < k2) in (39) gives the same contribution to the
kernel as the preceeding terms, so that in the following only these terms will
be considered and their contribution to the kernel will be doubled.

To perform the integration in Eqgs. (10), (13) over longitudinal compo-
nents of the produced gluon momenta we will use the variable x = (31 /3, so
that

1 =x, 19 =1z, xi:@,izl,z (41)

g

The alternative choice is y, with
(072N
Y2 =Y, ?Jl:l_% yi:j7lzl72' (42)

The variables x and y are connected by the relations

$E22 yE12

Yy = — , L= = =
wkzz +(1— ﬂE)k12 Z/kl2 +(1— y)kf

(43)

which are inverse each to other. Remind that the vector sign is used for
the transverse components. The integration measure in Egs. (10), (13) with
account of (14) has the same form for both choices :

dk? y B dx dP—2f, B dy dP 2},
@n) "¢ T A=) @n® D T 1 -y) 2nP D’
Note that o .
kithke=k=0—-H=34 - (45)
is fixed.

The important symmetry properties of the convolutions

Ja(k1, ka) = 92 (ky, k2)chy, o, (K1, k2) (46)
13



ana
fb(k1, kg) = Cayay (k‘l, k2)c,/6’2,6’1 (kJQ, k‘l)QOﬂBl (kl)QazﬁQ (kg) (47)

entering (39) are their invariance with respect to the “left-right” transforma-
tion
ki ky, ar e B, aze P, G =G @ G- (48)

This invariance follows from the transformation law for the tensor ¢** (ky, k2).
It is easily seen from (32) that this tensor turns into ¢“#(kq, k2) under the
transformation (48). In terms of variables k;,x,y this transformation reads
as . .

ki ko, x oy, § o =Gy G~ (49)

One can check by a direct inspection that the tensor ¢ (ki, k2) (32) is
equal zero at zero transverse momentum of one of the Reggeons, i.e. at
q@1 = 0 or ¢b = 0. It guarantees another important properties of the functions
fa(k1, k2) and fp(k1, k2) - their turn into zero at zero transverse momenta of
the Reggeons (cf.(11)).

Let us adopt the first choice (x,k;) of variables for the integration in
Eqgs.(10), (13). Then the two-gluon contribution to the kernel is presented in
the form

ICI(QRR)GG (71, G2;9) (50)
_ 4g*N? dP—2ky [t dab (s, — k?)
~ 2m)PT / (2w)(D1>/o (i —z)  erfalkrke) Torfu(kr, ko)
1 [dP~2r
1 (R)B (7 7 KRB (7 & o) 1
2/F2F/2’Cr (qlarai)lcr ('ra Q27Q) n((F_%) ( _52) )

where the group coefficients ar and bg are defined in (40) and the func-
tions f,(k1,k2) and fp(ky, ko) in (46) and (47) respectively. The functions
must be expressed in terms of z and k;. It can be done using Eq.(41) and
the relations

k2 ((173:)]217%2) i 1—a2)k? 4 z(k 2
21— 2) ’ 1—_5<( - ) 1+$(1—Q1))
.. k2
ky+he=k, t;=q% a;= gﬂ i=1,2. (51)

To analise the behaviour of the functions fo(k1,k2) and fp(ky1, k2) in the
integration region of (50) it is convenient to express the tensor c¢*¥ (ky, k3) in

14



(94) 11 terms Ol o and ~p. Alter this 1t 1Is not diicult to show that Ior any
2 in the interval [0, 1] the tensor falls down as 1/k2, so that the integration
over k; is well convergent in the ultraviolet region. As for the x- behaviour
at fixed k1, it is easy to see that in the limit 2 — 0 the tensor 122 (ky, ko)
tends to zero, whereas at x — 1 the tensor has a finite value. It means that
the function fy(k1,k2) (see (47)) turns into zero both at = 0 and z = 1,
so that performing the integration of the term with fy(k1,k2) in (50) we
can ignore the restrictions on the integration region imposed by 6 (s A= k2).
Remind that the parameter s, must be taken tending to infinity, therefore,
due to the convergency of the integral over El in the ultraviolet region, the
restrictions have the form:

72 12

1-— ks >ax> ke . (52)

SA
From the discussion above it is clear that the restriction from below does
not play any role, but the upper limit is important for the integration of
fa(kl,kg) in (50)

The limit x — 1 corresponds to the multi-Regge limit of large relative
rapidities of the produced gluons, so that the value of f,(k1, k2) at this limit
is related to the LLA kernel K™ Indeed, using (41) and (51), we obtain
from (32):

M (k1 k2)|z=1 (53)
-1 (¢ — ];1)2 : (@ — El)2 ’
=S r Q1—k1+~72k1 611—1471—-,72%
(q1 - kl) kl L kZ 1

This result and Egs.(30), (31) and (18) give us the relation

ey (k1)CH(q1 — k1, q1)e; (k2)CY (g2, 1 — k1)
(G — El)2

)

e, (k1) ey (ko) AM (k1, k2)|z=1 = —

(54)
which means that in the multi-Regge limit the vertex for the two-gluon pro-
duction is expressed in terms of the one-gluon production vertices. For the
function f,(k1,k2) (46) we obtain from (53), using (8):

20%r \
<(27€)%> fa(k1, k2)|z=1

1 I R
= = = SKRP ((IlaQI*kBQ)’Cg’R)B ((Il*klaq%(I)-
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Lnererore the substraction term 1n (ovU) can be written as

1 dDizr]C(R)B = R AKRB (7 2. 2] Si
_5 m r (qlaraq_) r (Tv q2; q) n (T_"* 2 )
72

1 2g°c 7%\ dx
5 () [ i fe " e )

Taking into account that ¢% = N?ag (compare (9) and (40)), we obtain that
the two-gluon contribution to the kernel can be presented as

R - =
Ko (@ @3 @)

an2 gl " 242,
- éi)ﬁ)v_l / x(ld ) / éwwlil {a [falkr, ko) = 2(falk, k2) o=1)]

2¢g*N? d?t2eg kZ
(g)D 1/(2 )D 11‘1Rfa(k1,k2)\z 11n<k2) . (56)

Remind that from general arguments the kernel must be symmetric (see (12))
with respect to the substitutions ¢; < ¢/, i =1,2 and §§ < —@, §i < —@5
(note that at both of them ¢ changes its sign). The symmetries of the two-
gluon contribution to the kernel can be explicitly demonstrated using the
representation (50). First of all, it is easy to show with the help of the
expression (8) for the Born kernel that the substraction term is symmetric
under these substitutions. After this the symmetry of the total contribu-
tion under the first transformation follows from the evident invariance of the
convolutions (46) and (47) under this transformation. The symmetry under
the second follows from the invariance of these convolutions as well as the
integration measure (see (44)) with respect to the ”left-right” transforma-
tion (48), (49). Turning to (56) we see that the contribution of fy(k1,k2)
is symmetric with respect to both transformations. As for the terms with
fa(k1, k2), the last of them gives the contribution antisymmetric under the
substitution ¢1 < —g, ¢/ < —g. Therefore, this term can be omitted
together with antisymmetric contributions from remaining terms. So, the
total contribution of all three terms with f,(k1, k2) can be obtained by the
integration of the first term over = from zero to 1 — § at arbitrary small §
with subsequent omission of terms proportional In § and terms antisymmetric
under the substitution @1 < —@, ¢ < —G-

+br fo(k1. ko} +
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4 11T LWOU=51U011 LU1L110oguivll to uiic ULuou

kernel

Up to now our results could be used for any colour representation R. Starting
from this point we will consider only the case of the gluon channel (antisym-
metric octet representation). In this case only the function f,(k1,ks) does
contribute to the kernel. From the discussion at the end of the preceeding
Section it follows that the the two-gluon contribution to the octet kernel can
be presented as

g*N? A/l dx /d2+26k1 fa(ky,k2)
(57)
o (

®) o oo
Krrae (@@ = 5518 | a=o7 | @Gop T =

where & denotes the operator of symmetrization with respect to the substi-
tution ¢ < —@, ¢ < —@ and (1 — ), means the substraction:

bda [t dx
/0 T )= / T ) = £ (58)

1—x)4 1—x)

According to (46) the function f,(k1, k2) is determined by the convolution of
the tensor ¢ (k1, k2) given by (32) with the tensor ¢, (k1, k2) given by the
same formula with the substitution ¢; — ¢ = ¢; — ¢. We obtain (details of
the calculation are given in Appendix A):

e o=a) s ((gﬂ) +(1—22)(1 x>7§12(§g))

falky k) = { =

D)

(GHR) (@A) | | 21 —2)§? (21 — 2)@? K ay
kﬂku _oMiIMIL
T Ty 2k2y LTS k2
qu—'ll 26'22 wq—'ll Zq—'22

x(2(1+ €)A A, + A2t ) + =2 2
(( M “) 4E2Y 4(1 — 2)k2k?

N (.7;(12— x)>2 qﬁ’ztj‘f (1-;6 ~ (34 20)z(1 —x))

_M {(1 — ) ((1 + e)(2(E1§1) —zG’) — 5x(E2 - q‘f))

2k2%
=2 =2 —/2 7. o
Y = xqrq . (¢ ° = 2(k1dY))
—1+ek2+22}+~—q— 1—7)————12
( )ks 4z ALk ? (@q)( ) W,
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UT €U =) (g — 2k141))\41 — 2(F141))
z 0

o= [2@@) (Bad) — (@ @) (k@) + 26232 — ok 2(@d) + 32(d D

—aap P - S - o @ - 2B @2 - o) - 2 )

_*_]?12;7'22 _‘1/2 } + (52)2 + m§12§2z2 m§1/2(§22)2 x@52(§12)2
X 8£1£I1 4]€2t~1E12 4k22t~1 4k2£1E12
2@ 2(72(5 k) — T2 () k- 22( 7/ . .
i @ (G5 (G k1) ?1_’2% 1)) 9 (q1q_j2~ Haeqh, (59)
2(1 — Z)thlkl 2(1 - .’L')k tl

where #, is obtained from #; (51) by the substitution ¢ — &,
A=((1—-2)ki —2aks), , S=A2+z(1-2)k> (60)

Unfortunately, the integral (57) can not be expressed in terms of elemen-
tary functions (and dilogarithms) at arbitrary e. Therefore we present the
result (see details of the integration in Appendix B) in a “combined” form,
leaving untouched the terms in fo(k1, k2) which can not be integrated in
elementary functions.

= e—1
2
. 4g*NT(1— ) T2(1+¢) | (& o L
ICJ(‘?S}%GG(QL(D;CD: g ( ) I ) ( ) {( /2 =2 /2 =2

(4m)Prlte  T(1 4 2e) 4e 00+ @)

+27.2
><(%+1/)(1)+w(1+6)—2¢(1+26)— 11+ 7e )-qk ]

2(1 + 2€)(3 + 2¢) €
o\ €+1
L)
4e
1147 L U4Te (@) (@)
21+20)(3+20))  4e(1+20B+20) "2 @2

9 -9 e+1 9 e+1 9
¢ (@) —(B) (1
— [ — —¥(1 1+2
+€<1+2€) qt — G} + de \ 2¢ Y+ + (1l +2¢)

<—% + (1) — (1 —€) + 2¢(1 4+ €) — 2¢(1 + 2¢)
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@) +(@) )+ i maE 129
<200+ 0ra (@) - (ﬁf)—dﬁ+@@(@n”l(ﬁf“n

§ 2 2 2 2 2 J{Z le
X 7(q +(T +2_’/ +2_’/ — 2k —2(1’)—ﬁ>
<(§12 @ ) ' ’ (qf —@5)*

e+1 ooy e+1
+<( ) (ff) )( (*’2+ T E2) 2(1+e)(72>

Byl

(@ - @)

(L0429 mp b AN b g DOED e )
Sl Sl ) &gt iNT 1P +e o =
4F2(1+6) q1,42; q (47T)D7T1+€ € F(1+26) q1 q15 92 qs 7,

(61)
where -
d* ¢k
=48
(q17q21 q_j / 1 — +CE / 7r1+61"(1 _ 6)
=2 7o —/2 P
p [o (@B —@ED) )0
ZAZEJ' k12 ! 4A2{1
o A N O
X l 122 4+ L2 = F(ée;( 2) (@202 + @237 — 7°K?)
1

—2\2 1 d2+2e] l"z l"_ E 2
_(q ) 1+€ / - — - - ln (_'4 ) i (62)
4 U =a ) (@ - D -1 q

The first of the symmetries (12) of the two-gluon contribution is explicit in
(61); the second is also easily seen. The properties (11) are not so evident.
It takes some job to demonstatate their existence. In particular, one has
to calculate the function I(1,q>; ¢) at ¢ = 0 and ¢ = 0. It is not very
easy, but possible (see for details Appendix C), so that we have checked the
fulfilment of Eqgs.(11) for the two-gluon contribution at arbitrary e.

In the limit ¢ — 0 we obtain

4 n72 _
- - g N-<T 1—c¢ - € h o .
Kitnao (@, @) = Wﬁu){(’fz) (7232 + ara? - 7°F°)

(- @ (- e+ )

€
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-2 [+ 4 -2 Y1 Y2
+q b (Z +Ing )ln( 7 )—2C(2)

11 75 (72+ ‘1'22) 7P 1.5 (Gt 1. o5(q
<ln< =+ (_,2 _,2) In 722 +Zh’l 6_2 —I—Zln 6_2

=12 =12
2 4" — 4 )

QP
+ 3

1, 5, 0 1 E2 o o i
——(q |\ N5 (@ + & A R) —207) + o5
- (11 e i 6 ) 207 + o
20705 a7 2 Lo
(mln é @ -6 ) (G @ 4

4 nr2
gNF(l—e) - .y
W Qi < 9q; ¢ - (63)

In this limit the function I(q1, ¢2; ¢) takes the form
@1 -a)+ g

1t dz
I(q1. 42 q =—/ = —— In .
(@.8:0=35 | Gi-0+G? "\ Fo(-2)
22212 22212
27 = = 52 o 2 o 2 o a9~ — 434 - -
X =@~ &) 2000 ~ GG~ G0+ T (@ 6]

=2 1 =2 22212 _ 22212 =2 =2 =9
+q_ <4C(2) — 2 n2 <q712>> 919> _ 2% 4, (%) In (Ch_fb )

2 2 0 4k 2 D) k4
=2 22 22 212 2/ 2 =2 =2
4q 1 -2 9192 % 492 Loof 4 Loof @

- {<Z+lnq >ln< 7 )—i—iln e +§ln e .
(64)
The integral in (64) can be presented in another form:
/1 dzx In (1l —2)+ @
o (((1—2)+ @) k2z(1 - x)
B /°° dz 1
o 2+ k2 V(@ + @ +2)? - 402d7
«1 @C 4G5 + 2+ V(@ + 35+ 2)? — 4470 (65)
q'12 + (1’22 4y — \/(q'lz + 622 + Z)2 _ 4(?12(722
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11 1S PpOssIble also to exXpress tne mtegral i (O4) 11 terms Ol dllogaritnms, but
this expression is not very convenient:

/1 dz I P —x)+ @) 2
o (@1 —2)+ @) k2z(1—x) |¢1]|g2] sin &

psin ¢
(1—pcoso)

where ¢ is the angle between ¢; and @b,

p = min (i' @) L(z)z/z%ln(l—t). (67)

0

x [m parctan + Im (L (pexp i¢))] , (66)

6 The non-forward octet BFKL kernel

The general form of the kernel (for arbitrary representation R of the colour
group in the ¢-channel) is given by Eq.(2). The “virtual” part is universal
(does not depend on R) and is determined by the gluon Regge trajectory,
which is given by Egs.(3)-(5). (Remind, that in this paper we consider pure
gluodynamics. The quark part of the kernel was considered in [18]). The
“real” part, related to real particle production in the Reggeon-Reggeon colli-
sions, in the NLA is given by the one-gluon and the two-gluon contributions
considered in Section 3 and Section 5 respectively. Since the radiative cor-
rections to the effective vertex of the one-gluon production are known only
in the limit € — 0, the total “real” part of the kernel can be obtained only in
this limit. Tt is given by the sum of (23) and (63). After powerful cancella-
tions (in particular, between the terms with singularities 1/¢2 and all terms
with (72 — @Z) in denominators) we obtain

2 -2 =12 =12 =2
G~ = g°N G +d4 "G .
KE® (G, q01 ) = 2@n) D {( = — q2>

2 (4m)2+e
202 11 G*NT(1—€) [, (11 qqs
+e (—2—7 +7¢(3) + KC(2)>>> + (47)2+e {q (E In (52];2>

I @\, 1 (@ G2\ Lo (@
et (3 )n (5) 3o () m (5 )+ 30 (3
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_ 4142 ‘_"“1291 1n2(‘i_12)+‘11‘12 :‘12‘11 ln(‘i_g) (i—iln(q{,%))
2k 2 a3 k2 43 6 4 k4

Lioire -2 2 2 a2 aoevn Gd8 — B e o
R - B) 2 G - BT (6 ®)]
1 -2 72 2
dz l—z)+ g N . -
x/ - — 2ln ql(_, )+ & -|-97D71 Qz“—>qz‘l .
o (@(1—x)+ @) k2z(1—z) 2(2m)
(68)

After the cancellation of the terms ~ 1/e? the leading singularity of the
kernel is 1/e. It turns again into ~ 1/€2 after subsequent integrations of
the kernel because of the singular behaviour of the kernel at k2 =0. The
additional singularity arises from the region of small k 2 where €| In k 2|~ 1.

N €
Therefore we have not expanded in € the term (k 2) . The terms ~ ¢ are

taken into account in the coefficient of the divergent at k2 =0 expression
in order to save all nonvanishing in the limit ¢ — 0 contributions after the
integrations.

The symmetries (12) of the kenel are easily seen. The first of them is
explicit in (68). To notice the second it is sufficient to change z «» (1 —z) in
the integral in (68).

In order to check that the kernel (68) turns into zero at zero transverse
momenta of the Reggeons (11) one has to know the behaviour of the integral
n (68). A suitable for this purpose representation is given in (65). From this
representation one can see that singularities of the integral at zero transverse
momenta of the Reggeons are not more than logarithmic. After this no
problems remain to verify (11).

In conclusion let us note that in [17] the octet kernel was obtained using
as a basis the bootstrap relation and a specific ansatz to solve it. Our results
disagree with the results obtained in [17]. To see the disagreement it is
sufficient to observe that the kernel obtained in [17] is expressed in terms of
elementary functions. We conclude that the ansatz used in [17] is not correct.
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Appendalx A

In this Appendix we present the details of the calculation of the convolu-
tion fa(kl, kg) (46)

It is suitable to represent the tensor ¢*”(kq, k2) in the form

Cl”w(kl, kg) = 111“/ + léw + lgu, (A]-)
where
o TGP KRS Kok k) (-2 T R
! k2| 0z (1—a)k? 2 % 1—z) =z /)|
(A.2)
1] ¢ A k2 \"
W= |- —|—<k—_,— i
2 TR (-2 ke )
2z _'1/;1) . Y N
ﬁki<((1 — x)k2 - (611]€)k1> —(QaN)g"! ] (A.3)
1 J_
Bl —k) (o —Fk) (@ —k)7 ¢ (1—a) 7
=1L + Loy 2L L (G - 2kq).
k2 th 2 131 (@ @)

(A.4)

Analogous decomposition is made for the tensor c ,(k1,k2) obtained from

cuv(k1, k2) by the substitution ¢; « ¢/, i = 1,2 and we denote [  (n =

1,2,3) the tensors [, after this substitution.

The calculation of the products K1/, nruy 18 significantly simpler than the

calculation of the whole convolution f,(k1,k2) (46), though still rather te-
dious. The results are:

221222 _
i = PR (B 0= )
k k2% X m(l—:v)

nuv

() ) e
G =220+ -0 (12 (Z,ff’) @OR e

v xq? k2, o (2AK) 1
1571, = 2—,;2{(1+6)(193)22—~(q122/€1q1) 1 =22+ T -k
1
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XKfﬁﬁ+Of@@ffﬁbf2ﬂf@W@ffﬁﬁU
—2

— L (3 - 40 - 2)(@ - )
9>, qz ( z)(qy 1G1)
401 -2 - @ N ok 2(2q1ks — K 2)

22(1 — x)t; 2k 2%

1

s <(1 —2)(G2 - k@) + (1~ 22) (@ — EQ))

1 - -
+— [ 200 — 3z + 2 (k1) + 1xk2+:1:"22_'2)}, A7
el Nk + (1 - o) +ag? —2q7) b, (A7)

gy, = 20=2) (@) (1 k) (@k)@rh
2 k2 2 \(1-2? " k2] (1-a)k?
R E) @R
0+ BVEN gy, (A8)
pey = @) P@E) | (0=
2k 2 4t,t] 4
(@ 20Rq) @ = 2Rdl) 20— ) @2 - 2R ()
i 7 2 7
g2 —2(kq! . 20(k1q1) - o .
20D | g+ 2D (g R | +a - @ a— -
20,7, pE

(A.9)

B =~ (149 - )@ — 207 BN 4o - T g2y gz
" k2t1 2k‘12t1
2 = =/ — =/
T [z (i (=) T@Ad) 2 ((d)
| Rt — (R @ - @) | - 0 5

9
Tqy [ 7\ (72 72 217072
— (@) (@ + 2z — 1)k 2quq}
4(1 x)t1k12l€2 (1) (@ ( k) (@/k)ay
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T o | (B |36 ) = (1 20K - aaih)

x2(1+4x<1—w>>+4(§16’{)(113)}+% [2@? (@ R)H(@a) @+ 2>}

(@137)k { ra R — @i (2 iy
—z(l—z)—5—+ | (k1q1) (g1 k) — (¢ k k — + = .
(1—x) o (k1) (aik) = (G k) (@R) | { 157 I

(A.10)
With the help of (A.1)-(A.10) and the equations obtained from them by the

substitution ¢; < ¢; we arrive at (59).

Appendix B

In this Appendix we present the details of the calculation of the integrals
in (57) with fg(k1,k2) given by (59). Firstly let us remind the denotation
used:

k=ki+ke=@ ¢, K=0—-2)k—zky, §/ =G —q,i=12;

(1-— T)El — aky ’
| )

, S =A%+ 2(1—2)k?,

z(1—x)
= fé ((1 k2 4l — qq)?) (B.1)

and t{ is obtained from #; by the substitution ¢ — 7.
It is easy to see, that

b da d*>T2¢k,y L+e[2?(1—2)_,,
JO == 1 2 Q1
o (l—xz) ) 7 *T(1—¢€) | k X

X <((TIK) +(1—22)(1 — .7[:)512?];)) i (T N)(@:A)

k2

(1 —2)q)” (1 —2)¢? v kiqﬁ N2 oL
RESS SRR = = ) (20 9N + K2 ) 1 =0,

(B.2)
The zero appears as a result of the integration over El (or, equivalently, over
A). The first two terms here gives zero due to parity, the third - due to the
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daimensional regularization, and tie remalining terms - due€ to tne 1sotropy
of the transverse space leading to the replacement 2(1 + ¢)A A, — X lefy
after the angular integration.

The calculation of the contributions of the terms with the denominators
¥, X2, k%22 and K2k 2 is straightforward. We obtain, using usual Feynman
parametrization if necessary

g 1 -1 -
Ir= | ——— — = _"[z(1 — 2)k?]°,
) / 7r1+eI“(l _ 6) D) € [LI,‘( ﬂ?) } 3

d2+25k1 1 N
IAQE - / 7T1+6F(1 — 6) Kzz - E[Z‘(l - x)k ] 3

Trors — 4>k 1 T [22K2)<!
MRT ) a1 —e) X2z T T(20) '

The subsequent integration of these terms over x can be done without diffi-
culties.

The integrals over El from the terms with the denominators EfZ] and
Eft} can not be expressed through elementary functions at arbitrary e. Nev-
ertheles, these terms do not create problems. For them it is convenient to
make integration over kq,

d>t2E 1 Sone ot dz
lig= _/w1+€F(1—e) K2y <k ) /0 (z2(1 = 22))79)

d2+26k.1 1 e—1 1 dz
1. - (72 — - (B4
K2ty / me(1— €) k2f, x (a7) /0 (xz(1 —zz))le (B.4)

then to introduce the variable y = xz instead of z and to change the order of
the integrations over x and y, after that the integrals can be easily calculated.
In this way we obtain

J /1 dx / A G35 n xqi s
1 = — —
o I—a)pz) 7D —€) | 4k2E 401 — z)k2k2

. (x(lz— x)>2 J{Zq? (14; ~ (34 20)2(1 z)>
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gy |10 (A +0QRG) —2df) — ex(k® - @)

—(1+e)kf + 2@22} }

(146 ¢°q5

St b (E2)€{¢<1>+¢(6>_2¢<2@_ e )}, (B.5)

T(1+ 26) 2¢2 2(1 + 2€)(3 + 2¢

_ [ _de Pk wi? T e
" _/0 (1—I)+$/WHEF(1—6) ahkz  AD(26) (@) @[ (e) =t (26))-
(B.6)

The integrals with #;£; in denominators can be calculated with the help
of the trick used in [18]. Let us consider in (59) the first such term. It can
be presented as

— @D - 2) F+ iy

)(6’1'2 —2(k1d7))
tl il)'ilfll

o

@ ] e
The first term in the R.H.S. can be integrated over k1 and then over z . For
the second it seems more convenient to begin with the integration over z in
(57) getting

1 72 = S1TN2
dr i _F
| sis@nn -t - 80, [Gohf
o z(l—z) vty (¢ — k1)? — (@ — k1) (@1 — k1)
(B.8)

With the help of the representation

L 1 (@ = k)’
(@ —k1)? = (h —k1)? (G2 — k1)?

! 1
/ dz — —— ,
o 2@ —k1)?+ (1= 2) (@ — k1)?
the integration over k; and the subsequent integration over z become trivial
and give

L dy d2t2g, (@2 = 2(k1q))
_ — 1 _ 1 - 1
Ja /0 ZE(l — .CI,') / 7T1+6F(1 — 6) (Q1q_)( x) tltll

(B.9)

P21 +e) (@10) [ra2ve  (-o\€
T 2¢) 6(1J1r26) [(qz) — (@) } (B.10)
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Analogously we obtaln

Y da P2k (1461 —2)° (@2 — 2(h@)) (@ — 2(k1d1))
el e hi;
F2(1 + 6) (1 + 6) ((51/2)1+e + ((712)1+6 _ (q*2)1+6)

T T(1+2) 8¢ (1+2€)(3+ 2¢) ' (B-11)

The terms in f,(k1, k2) with the denominator k?t; and with 2™ in numerators
at natural n can be calculated performing the integration over k; at fixed
Feynman parameter z, then making the change of variable y = zz:

/1 dx / A2k, gn
o v(1—x) ) wi+el(1 —€) k24,
n+1
dr [ d
/‘””/ Nz — )@ + (L )2

CI?
= dyy~ 1/ dr—— - - - . (B.12)
/0 y 2@ = d7) + a7 - yat]te

The change of variable y = zz has been performed in the last equality. This
integral can be now calculated integrating first over x and then over y. The
complete calculation for all such terms in (59) is long, but straightforward.
The integration of the terms

L[ L, —2)k2 1+e k2k2q)
= l—z)—=——
- [ R LR L L

can be done quite analogously, since under the transformation (49) they
acquire the form of the terms discussed above. In this way we obtain:

Yode A7 1 - -
_ 2((G@) (1 @) — (@/3) (R
| i | g [Paa G ~ @) Fa)

:17)]312}

+ady % qF — ok H(@d) + @@ D) — *’26722%

SR [ )+ g (0 @) 2™

(B.13)
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W « - hl (LT CE)L T L)

o z(1—xz) ) wl+T'(1—¢) 2 k2t

52 7o S1201 _ >IN 12E22§{2
(G1 —2(k1@))(@ “(1 — ) = 2(¢{A)) + ——

_ % Kzu +aata (@) (@)")

—e@ad) (@) - @)

< E2 2 2 /2 2 n2 2 51/2 *672/2
2 23 (671 + 35 + 24 + 24, — 2k* — 27 ) - ﬁ>
(@ - @)’ (@ - 33)°

((52)6-&-1 _ q_,2)e+1>

1 2 -

+ =2 _ 2 (5(§{2+(ﬁ2_k2)_2<1+€)(§2—§f)>

(@7 — d3)

(B.14)

All the calculations discussed before were done exactly at arbitrary e.

It can not be done for remaining terms. They contribute into the function
I1(q1, ¢2; @) (62). We have used the following equality:

/1 dr / d2+25k1 (‘?2)2
0o I—a)rz ) o+ —e€) 8t

_ () (@) [g —20(1) 4+ 20(1 — €) — 4p(1 +€)

I'(2¢) 16
(7)? a2k, In (fQ/(j'Z)
+49(1 + 2¢€)] — 3 / R s Y, (B.15)

This equality can be obtained performing the integration over x first, using
the representation (B.9) and the integral
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1ne Iast mtegral Can be €aslly obtalned with tnhe nelp or the generalised

Feynman parametrisation.
Using the integrals calculated above we come to the representation (61)

for the two-gluon contribution for the kernel.
In the limit e — 0 the expression (64) for I(q1, ¢>; ¢) was obtained per-

forming the integration over k in (62) first. We have

/ 222k, 1 :_(1—x){£(53x261 (E2>

mltel(1 — ¢) kgflgf q"’fEQ

2 — (q2(1— x))f}

=2 _ =2
i <(1q1— x)qi)aw [h’ (v @0 -0 +a@)") +

(
(2/2((1”1(1 —z)+ q"zzz;)) {ln <(j'12 (q2(1 — z) + G2x) ) +1 — (g2 - x))€:| } |

(@I —2) + Gr)? 2k 2
(B.17)
/ d2+2ek1 El N _x(l B x) Cj’l
A= RLRE @0 =) + @y
[ln (@ (@20 —2) +7a) | 1= (@0 - x>)€]
ok 2 €
- o 22
. i [ 1 : (l‘ (G (1—2) + G5x) ) N 1
—=— = = n Jy -
k2 | (21— 2) + ¢Fx) (1 —x) €
1 —2 1— + —2
- _ - ln (Q1 ( I) _’q2 I):| , (Blg)
(@(1 = z) + qa) (1 —z)k?
d2+2ek.1 In <f2/(j'2)
/ T (L =€) (¢ — 1)2(g] — 12
1 1 . qq? Lo (q7
~_— |[{=4+mag? )1 —1 . B.1
q-*zKe“q)“(((ﬁ)Z T\ (B.19)

The integrals (B.17),(B.18) are calculated for arbitrary small k2 and for =

arbitrary close to zero or unity.
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L he approximate form (04 ) I0r £{g1, 25 ¢) Can be obtained using rgs.(b. 17 )-
(B.19) and the relation

/1 xdx In 72(1 — ) + @2x
o (((1—2z)— ) k2x(1— )

_Rya @ / da W [(EA )+ e
2k 2 o (@l —17)—r)? k2x(1 —x)

Appendix C

Due to the symmetries (12) of the kernel (61) it is sufficient to show
that the kernel turns into zero at zero transverse momentum of one of the
Reggeons, let say, at ¢ = 0. But even in this special case the integration
in I(q1,G; ) (62) can not be done in terms of elementary functions. Fortu-
nately, the expression (62) can be simplified at g» = 0 and presented as

r2(o
2T (2¢)

-212 1 d2+2e] l"z l“_ E 2
—_ (q4) 1+€F 1 / _’2 - 5 1n ( -~ ) i (Cl)
(1 —e€) J 12— q) q

Note, that at ¢ = 0 we have ¢y = k and @ = —¢, ¢ =k — q.

Evidently, the integral term in (C.1) excludes for the piece of the kernel
(61) without the substitution ¢ < ¢/ the possibility to turn alone into zero
at @ = 0. Therefore we need to calculate I'(q1, ¢2; @) = I(qY,3y; —q) at
@ = 0. This function can be also simplified. Not, that as well as in the
preceeding case simplifications can not be done for separate terms in (62)
and are possible only due to the definite combination of them. We obtain:

1@, @ Dlgrmo = —rand® (F2) [0(1) +16(e) — 20(20)

&, 55 = Dlerma = qrasd? [(@2) (046 - w(20)

_ (;‘5 2)6 (W(1) —¥(26e)) — (7%)° ((1) — (1 — €) + 20 (e) — 2¢(26))]

31



qa~)” 1 oa” el L
— — 1 —— . C.2
4 7r1+€1_‘(1_6) / lQ(l_q‘)Q n ((l_k,)g) ( )

In the sum of (C.1) and (C.2) the terms with In(i — k)2 cancel each other,
after that the integrals can be calculated and we obtain:

(I(q1, @ O+ 1@ @5 —Dlg—o

= q? [(@1’2)6 (Y(e) = (2¢)) — (E2>6 (20(1) + () — 31h(2¢))

— ()" 20(1) = 26(1 = &) + 3u(e) - 3026))] . (C.3)

With this result to show that the kernel (61) turns into zero at ¢z = 0
(and, due to the symmetries (12) at zero transverse momentum of any of the
Reggeons) becomes a simple task.
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