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1 Introduction

In the previous paper [1], referred here as I, the contribution of the
core nucleons to the anapole moment (AM), arising from the core
polarization effects, has been calculated in the random-phase approxi-
mation (RPA). Recently, the first measurement of the AM of Cesium
has been reported [2]. The immediate application of this measure-
ment was the attempt to deduce the pion-nucleon weak parity-non-
conserving (PNC) coupling constant fr [3], [4]. The comparison of the
measured anapole moment value with the one calculated using a pure
single-particle model leads to a value for f, that exceeds by a factor
4 the value deduced from a parity violating measurement in ¥ F [5].
More sophisticated comparison was made in Ref. [6], where the results
from B F, the AM of 133C's, and the upper bound for the AM of 29577
[7] were used to deduce both fr and f, PNC coupling constants. The
combination of the coupling constants was found which satisfies both
B and 133Cs experiments and which is barely in agreement with
theory. These values, however, are inconsistent with the constraint
obtained from 2%°7] measurement. This situation, even independently
on '8 F experiments, raises the question how accurate is the theory of
nuclear anapole moments. Here we address this question and present
more accurate calculation of the many-body effects.

There are different contributions to the value of nuclear AM. The
most significant and the least model dependent contribution comes
from the valence nucleon. It is stable under variations of the single-
particle potential [8]. Within the single-particle model it is often con-



venient to use the leading approximation (LA ) [J] producmg the sim-
ple analytical expression for the correction to the single-particle wave
function 97 due to the PNC potential. The LA was used in I in calcu-
lations of the core nucleons contribution to the anapole moment. This
is another contribution which is not negligible. The accuracy of the
LA was estimated to be within 20% in [8]. We found, that although
this is true for the upper level of the spin-orbit doublet, for the lower
level the difference between LA and the exact correction §i can be sig-
nificant. This demands improving the calculation of the core nucleons
contribution.

Another phenomenon that has to be accounted for is the pairing.
The reason for this is that for 3C's nucleus there are single-particle
states very close to the Fermi surface. The transitions to these states
produce large contribution to the core polarization. In the presence
of pairing these transitions will be strongly reduced, thus affecting the
value of the polarization effects and the nuclear anapole moment.

Finally, we discuss the constants of the short range effective PNC
interaction used in nuclear structure calculations. These constants
were obtained from the finite range meson exchange forces by compar-
ing typical matrix elements both finite range and short range interac-
tions [10, 11, 12]. The factors W, ~ 0.4 and W, ~ 0.16 were found
for pi- and rho-exchange forces. These values, however, were obtained
for a-particle and the extension to heavier nuclei should be checked
separately. We found using the same procedure that the factor W is
state dependent and it is different for 1?3C's and 20°7.

The paper is organized as follows. First, we discuss the accuracy of
the LA. Then, we present the exact calculations of the core polariza-
tion contribution and demonstrate the necessity to include the pairing.
Finally, we discuss the constants of the short range PNC interaction.

2 Core polarization contribution

For completeness of the discussion let us to remind the basic equations
from I. There are several contributions to the AM arising from different
parts of the electromagnetic current. Apart from magnetization cur-
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rent whnich gives the main contripution, there are contriputions irom
the convection current, the spin-orbit current and the contact current
arising from the momentum dependence of the corresponding parts of
the Hamiltonian [8]:
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m
e 9 Z 9
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Here { , } is anticommutator, < 7‘}2, > is the proton mean squared
radius, pp is the central nuclear density, f(r) = p(r)/po - nuclear

density profile, and U, lz;n = lzp = 134 MeV - fm? is the proton-neutron
constant of the effective spin-orbit residual interaction [8]. G is the
weak interaction Fermi coupling constant, m is the proton mass, and
L is the nucleon magnetic moment. The contact current contribution
arises from the velocity dependence of the effective nucleon-nucleon
PNC forces [8, 14]

The operators in Eq.(1) have 3 types of angular dependence. All
of them, except the convection ones, are spin dependent. All of them
except a. are of E1 type. The operators created by the contact current
are of M1 type. The convection terms in Eq.(1) differ from the one used
in I and [8]. Here we accounted for the recoil correction by subtracting
the part related to the motion of a nucleus as a whole.

As in I, we use for the radial dependence of the effective operators
related to Eq. (1) the notation V[a;](r). The RPA equations for the
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etrective radial nelds v |a;|(r) are (see rgs.(1(),(1s) m 1)

V ="Vy(la)]) + F, AV, (2)
0V = F, AV + F,0AV + F, AdV. (3)
Here F,, is the PNC nucleon-nucleon interaction
Py =L LS ({00 = g1a0s) - (bu = o). 8l — 1)}
V24m o5

+ gwloa X ap] - Vi(re — 1)), (4)
and Fj is the residual spin-spin interaction
Fy(ab) = C (9o + g)Ta * Tb) Oa » pd(ra — 1p). (5)

As in I, we use C' = 300 MeV - fm3, gy = 0.6, and g, = 1. Averaging
the interaction Eq.(4) over core particles we obtain a single-particle
PNC potential

G gapo
Wa(r) = — o-p), f(r)}, 6
a(r) 7 om {(o-p). f(r)} (6)
where pg is the central nuclear density, f(r) is the nuclear density
profile and the constants g, are related to the interaction constants
gab (see Eq. (4) in I). In the absence of pairing, the static particle-hole
propagator A(r,r’) has the form

Alr,x') = 32 ()] () =2k ()] (0), (7)
127 v v
where n,, are the occupation numbers, €, and 1, (r) are the energies
and the wave functions of the single-particle levels. The Feynman
diagrams corresponding to Eq.(2,3) are shown in Fig.1. Eq.(2), which
is shown in the top diagrams (I) in Fig.1, describes the usual RPA
renormalization of the bare operator Vp[a;|(r). The next Eq.(3), which
is shown in the bottom diagrams (II) in Fig.1, describes an additional
contribution from the core nucleons arising both from the direct P-odd
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Figure 1: Feynman diagrams corresponding to Eqs.(2),(3).

I. The anapole moment renormalization diagram describing the core
polarization effects. The filled circle is the bare anapole operator. The
open triangle is the dressed one. The open square is the spin-spin
residual strong interaction.

11. Additional contribution to the anapole moment due to parity viola-
tion in the core states: a) the direct contribution of the two-particle
effective PNC interaction; b) and b’) — the effective contribution due
to parity violation in the core states; ¢) — the renormalization diagram.
The shaded circle is the single-particle PNC interaction. The shaded
square is the two-particle effective PNC interaction.



nucleon-nucleon mMteraction rfy,, see rig.l (11 a), and irom the r-even
residual interaction via admixture of opposite parity states to the wave
functions of the core nucleons, see Fig.1 (II b), (II b’). The last term in
Eq.(3), see Fig.1 (II c), is responsible for the renormalization of these
contributions.

It is worth mentioning that the correction 6V has the parity op-
posite to V. The change in parity happens because dV is created
from V by the interaction that does not conserve parity. While AM
is E1 type operator, the correction dV is M1 type. For this reason
the renormalization due to the core polarization will be different for V
and 0V, since different transitions are involved in the kernels of inte-
gral equations (2) and (3). Eq.(2) describes also the renormalization
of the operators a.. They don’t have JV since they themselves are of
first order in the weak PNC interaction. The AM value is given by the
sum of all these terms:

a; = (Y |Viaillp) + (4| VI]ail|6y) + ($oV]ai]l4), (8)

where the index i means here s, conv or ls. For the contact contribution
we have

ac = (Y|V]ac]|y).

2.1 Leading approximation accuracy

Eq.(3) was solved in I using LA in calculations of dA. The accuracy
of LA was estimated in [8] within 20%. This estimate was maid for
odd valence nucleons in a set of nuclei. Occasionally, all the valence
nucleon levels under discussion were the upper levels of the spin-orbit
doublet. The typical difference between exact JR(r) and rR(r) in LA
for the upper level of the spin-orbit doublet is shown in the top plot
of Fig.2. However, the sum in JA goes over all states. For the lower
states of the doublet the difference in the peak heights can reach a
factor 2 as one can see in the bottom plot in Fig.2. In all cases the
exact correction and the LA are peaked near the surface. However,
the ratio of the peak heights differs considerably for the upper and the
lower states of spin-orbit doublets.
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Figure 2: Admixture of the opposite parity d R(r) for different compo-
nents of the spin-orbit doublets. Top panel - 2d3/, level, bottom panel
- 1gg/o level. LA is shown by the dashed lines. Full lines show the
exact solution.



1 he systematic study ol this ratio 1S presented 1 rig. o. riere we
plotted the ratio of the peak heights of the exact dR(r) and rR(r) in
the LA for a set of proton states in the Woods-Saxon potential. While
for the states with j = [ — 1/2 the ratio remains close to 1, for the
states with j = [ 4+ 1/2 the ratio goes down with increasing orbital
angular momentum [. For the state 1h;/5 the exact correction dR(r)
differs more than by factor 2 from the correction rR(r) calculated
using LA. From these results we see that the estimated accuracy 20%

in calculation of JA cited in I is too optimistic and more accurate
calculation is necessary.
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Figure 3: Ratio ¢ of the maximum in exact JR(r) to the maximum in
OR(r) found in LA for a set of the proton single-particle orbitals.
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4.4 LXact oA

Let us start with the expression FsAV in Eq.(2). In coordinate space
it can be presented as follows

(FsAV[ay])p(r) = ngcaXC(r),

where C' and 90 are the parameters of the residual interaction (5), and
ny —
Xe) = 35 P [ e @l 6OV ). 0

In the following derivation we keep the external frequency w. It will be
put to zero in the final result. Introducing the single-particle Green’s
function
/ % (r')
G(rr'|E)
p) = 3o UAPE)

v

we can rewrite the Eq.(9) in the following form

= Z n, / d&r {Q,bl(r)a'G(r r'le, +w)V(r' ), (x)

+ V)G rle, — w)aw ()} (10)

The correction to Eq.(10) arising from the single-particle PNC po-
tential can be obtained using the correction to the single-particle wave
function 1, (r) defined in I:

0y (r) = —1€,(on)IR, (1) (n) = 1€,0R, (r)Qs(n), (11)

where
e, = &
a \/igapo-
We used here the relation
Qi (n) = = (o) Qi (n),
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where | = 27 — (. FOr the correction oA (r) we 1ind then
(SX(I') = 5X1 (I‘) + 6X2 (I‘),

where

0X;(r szny/r'er/

X {(Ql(n)a’Ql/(n))Glﬂ (r,7'le, +w) < V|V ()7 > 6R, (7R, (7)
— (2 ()0, ()G (r, |6, + w) < V|V ()| > SR, (r)R, ()
+ 0R, (MR, (") < vV ()Y > (Q,(0)oQ(n)G, (1'r]e, — w)

— R,(r)oR, (7)) < 2|V (| > (Sll,(n)an,(n))G,,/ (r'rle, — w)},
(12)

and

5Xs(r) =Y m, / d*r' {4} (r) oG, + )V ()i ()

+ 9} )V (X)0G(rr e, — w)othy (r)} . (13)

The angular brackets in Eq.(12) denote the matrix elements in angular
and spin variables only. In the following calculations for spherical
nuclei, it is convenient to separate the angular variables by expanding
both 6Xj(r) and §Xs5(r) in a set of the vector spherical harmonics
YFfM (n)7

Z X (r)Y Jy(n). (14)

In Eq.(14) the total angular momentum J is fixed, J = 1, and the sum
goes over L only. Multiplying Eqgs.(12-13) by JM( n), integrating
over angles and separating the dependence on all angular momentum
projections M via Wigner-Eckart theorem, we obtain for the reduced
functions of r

XEr) =5 Yo [P (SR, ORIV )G
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— oL, () Lo, (r) WV ) [l )WL |IY) ¢
X (Gui(r,r'|e, +w) + Gui(r, 7’6, — w)). (15)

Here, double vertical lines mean the reduced angular matrix elements.
The tensor operators TJLM are defined as in I:

Thy ={o® YL} sm - (16)

Similar expression can be obtained for XZ(r):

1
X5 (r) = 3 > n (V| TE V) Ry(r)
X /T’erl(éGy,l;,(r, r'|€y+w)+5Gy,V~,(r, r'|e,,—w))(l;’||V(r')||1/)Rl,(r’).

(17)
In Eqs.(13,17) 0G is the correction to the Green’s function of the
Schrodinger equation for single-particle orbitals due to the PNC po-
tential Eq.(6). In first order the correction is

5G(r,r') = / PrG(r, x)W (x)G(x, r')

. Separating the angular dependence we obtain for the radial correction

2 0
6G,,,,(r,r'):% ™ 2o g @) | Golroo)(— —%)G;(m,r')
(18)

Here k = (I—7)(25+1). For obvious reason, the PNC potential couples
only the states with the angular momenta [ and L.

The final equations for the radial functions v[a;|(r) and dvr[a;](r)
are as follows

vialr) - 3 g’ [ " r2dr! A (Yol fad) () = wfad(r);  (19)

b=p,n
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o [a;]( L L / redr’ A7 (r,r)ovl ] (') = dupay](r),
_p7
(20)
where the radial particle-hole propagator A%, (r,r') is

1 . . .
AL (rr') = 3¢ ST nb GUITEN Y GUITE 15'1) Rjn (r) Ry (')
Glng'l

X (Gj’l’ @ 7“/; €jin + w) + Gj’l’(""a 7'/; €jln — w)), (21)

with w — 0. Here C' is the normalization constant of the residual
interaction Eq.(5) and Gji(r,’;€) is Green’s function of the radial
Schrédinger equation.

Eqs.(19),(20) are similar for all anapole operators Eq.(1), except
for the convection current operator which will be treated separately.
The right-hand-side of Eq.(19) for the spin current anapole operator

vi[ay](r) = —Z\/? ”;{L‘“ . (22)

The transition from the Cartesian vector product in Eq.(1) to the
tensor operator T4, results in the factor —1,/87/3. The factor is
common for the spin and spin-orbit anapole operators. The radial
dependence follows Eq.(1). The right-hand-side of Eq.(20) is given by

5vP*[a;](r) = C Z 96 le ‘|‘X2b( ))- (23)
b=p,n

In Eq.(23) we omit the direct contribution of the two-particle effec-
tive PNC interaction corresponding to the diagram (Ila) in Fig.1. Ac-
cording to the estimates made in Ref.[13] this contribution is small,
it does not have the factor A%?. The estimate in [13] was obtained
with harmonic oscillator wave functions. We calculated the diagram
(Ila) for V°[ay] from Eq.(1) with the Woods-Saxon wave functions.
For 133Cs nucleus we obtained the contribution

Ok, = (—4.1gpp + 0.1gp, + 4.9g,, — 1.6g,,,) - 1072 = —0.015
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Ior the "best values ol the couplimg constants |1s|. 10h1S number
should be compared with the single-particle value of kg = 0.32, and it
gives the contribution less than 5%. Similar calculations give dkp, =
0.003 for 25T, 6kp, = 0.023 for 2 Bi, and dkp, = 0.0085 for 207 Pb.
All these values are in agreement with the estimates of Ref.[13].

The convection current anapole operator Eq.(1) expressed via ten-
sor operators has the form

[8T e r2—Z <2
(G’Ic)onv)M =1 ?E (#{ laY%J\J}

1.0 1, Z >
I ST Yim ) - 24
\/g{aT +T,7‘ A<7‘p>} 1M ( )
8 A 1 0 1
(@na)s =1y oG < 12> (G0} = S+ DY)

The operators Eq.(24) are non-local and do not include spin. For the
last reason they are not renormalized directly by the residual inter-
action Eq.(5). However, due to the spin-orbit potential a new spin
dependent contribution to AM is generated in first order in the resid-
ual interaction Eq.(5). Its tensor structure is given by the same tensor
operator as that for the spin current AM a,. The radial dependence
of this polarization contribution is given by

Vot (T Z 93" > mu Ry (r) (V|| TE [|V)* (25)

_p’ Vl//

x / T,2dT/RV( )(VHacoanV )(GV’(T,’T‘GV + w) + Gy (Tv T,|6V - w))v
0

where w — 0. This operator undergoes the usual renormalization
described by Eq.(19) producing in the next orders in the residual in-
teraction the renormalized radial operator vpol( ). Although the direct
contribution of the convection current to AM is small, the polarization
contribution Eq.(25) is larger and has to be included. Total operator
generated by the convection current has the following structure

Ub[aconv](r) = a’?}onv + vzol(T)Tllv (26)
15



v
Where Gg,y,

Is given by Rq.(24) and v, (T) 15 the dressed polarization

operator Eq.(25). The tensor operator T} is defined by Eq.(16) and
we omit the total momentum projection. This very operator Eq.(26)
should be used in the Eq.(23) for the right-hand-side of Eq.(20).

Table 1: Contributions to the anapole moment of 33C's

K x 102 sp. |V—W % Total

—3.6g, | 2.5g, +0.41g, | 5.9g, +0.41g, I

ks x 10% | 7.0g, 1.2g, + 0.24g, | 4.6g, +0.24g, |11
—3.5g, | 1.99, +0.17g, | 5.4g, +0.17g, | 111

0.8g, |—0.4g, —0.03g,,| —1.2g, —0.03g, | I

Kis x 102 | —1.6g, —0.3g, — 0.02g,,| —1.0g, —0.02g,, | 11
0.8g, |—0.4g, —0.02g, | —1.2g, —0.02g, |III

—0.6g, | 0.9g, + 0.07g, —0.2g, + 0.07g,, 1

Keonw X 102 | —0.5g,, 0.2g, +0.04g, | —0.9g, +0.04g, | II
—0.7g, | —0.1g, + 0.02g,, | —1.3g, + 0.02g,, | 111
Ke x 102 10.65g,n, 0.45g,, — 0.03g, |LIT
0.36gp, — 0.02g,,, | 111

—3.4g, | 2.9g, + 0.45¢g, |4.4g, +0.45g, + k.| 1

Kot X 10% | 4.9g, L.1g, + 0.25g, [2.7g, + 0.25g, + .| 11
+K5P | —3.4g, | 1.5g, +0.18g, |2.9g, + 0.18g,, + .| 111

The values of the AM resulting from the solutions of Eqgs.(19), (20)
are summarized in Table 1 and Table 2 for 133C's and 2°°T'l nuclei. For
comparison, in the row labeled by I we listed the results of previous
calculation with the use of LA. The results of present calculations are
listed in the row labeled by II.
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Table 2: Contributions to the anapole moment of 29°T]

kx10%| sp. |[V=1 % Total
Ks 10.8g, | —5.7g, | 4.8g, +0.14g, | 9.9g, + 0.14g, I
x 102 3.1g, + 0.02g,, 8.3g, + 0.02¢, 11
Kis -2.2g,| 1.1g, |—1.0g, —0.01g, | —2.0g, — 0.01g, I
x 102 —-0.7g, — 0.01g,,| —1.8g, —0.01g,, | I
Keonw | —0.7g9, | —0.9g, | 0.9g, + 0.23g, —0.8g, + 0.23g, 1
x 102 —0.6g, + 0.10g, | —2.2g, 4+ 0.10g,, | 1I
Ke X 102 0.85g,y, 0.64gpn — 0.06g,,, | LII

Kot 7.8g, |—5.5g,| 4.7g, +0.35g, |7.1g, + 0.35g, + Kk¢| 1

x10% | +rSP: 1.9g, + 0.1g,, | 4.3g, +0.1g, + k. | 11

The value cited in column V — Vj is the renormalization of the
single-particle (column s.p.) value due to the core polarization by
Eq.(3). One can see that the polarization contribution is about half
of the single-particle one and it has an opposite sign compared to
the single-particle contribution for all spin dependent operators. This
is in accordance with the repulsive nature of the spin-spin residual
interaction Eq.(5). In this case the core produces a screening of the
valence nucleon spin.

The contribution of the convection current in the Tables 1 and 2
was listed together with the polarization effects discussed above. The
single-particle value is small compared to the magnetization current
contribution. Let us note that it differs from the corresponding value
cited in I. The difference, although small, comes from the center of-
mass-motion that was not excluded in 1. It is interesting to note that
for the convection current, the polarization contribution has the same
sign as the single-particle one. This is in contrast to the spin case where
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the polarization contribution has always the opposite sign compared
to the single-particle value. The difference between these two cases
lies in the polarization loop which is non-diagonal for the convection
current case. It has the spin operator in one vertex and the convection
part of the AM (see Eq.(1)) in the other. For such non-diagonal loop
the sign is not fixed.

The main conclusion that can be drawn from the present results is
that the LA overestimates the contribution of V' approximately by a
factor 2. The summed value k4, has decreased by 50%, as compared
to its single-particle value. Thus, the effect of the core polarization is
considerable.

3 Pairing effects

In general, the pairing effects are important only for the transitions
near the Fermi surface. Therefore, they can be neglected in calcula-
tions of 09 and in the polarization loop in Eq.(19) where the transitions
to at least next shell are involved. The situation is different for Eq.(20)
where the transitions within the open shell are allowed. Good example
is 133C's where the polarization loop includes the transitions between
the states with the excitation energy about one hundred KeV. Transi-
tions to such close levels contribute significantly into polarization loop
creating large response in V. These transitions will apparently be
suppressed by pairing correlations. For these reason the polarization
loop in Eq.(20) should be modified in order to include pairing.

The modification is straightforward and can be done similarly to
[15]. The particle-hole propagator for a T-odd channel in the presence
of pairing has the form

L )2 T (! T(r/)
A A (uuvu VyUy ) 1/11/(1“)1/1,/ (r>7/}1/ (I' )% 9
) =-3 Tty Y
where u,, and v, are the Bogolyubov factors, and E, = \/(e, — p)? + A?
where A and p are the pairing gap and the chemical potential. Below,
we shall neglect slight state dependence of the pairing gap and put
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A = const. Let us divide the smgle-particie space 1mmto o regions. Let
P, be a projection operator onto the region near the Fermi surface,
where pairing produces a significant effect. It is convenient to include
here all bound states above the Fermi surface. Let @, be a projec-
tion operator onto the hole states below the pairing region. In this
region we neglect the pairing effects. The states in continuum will be
projected by 1 — P, — @,. Introducing the identity

1:(PV+QV+1_PU_QV)(PV’+Qu’+1_PV’_QV’)

into Eq.(27) we obtain the expression for the particle-hole loop as a
sum of 7 following terms

— Up Uy’ 2
Alr.r') = = 3 ()], (004, (1)) () {(“ vi) pp,

vv'! EU+EV’
2 2
u us
7I’P , - v P,
+E,,—eu/+u v Qu +El,/—6,,+u v Qu
% p-P- Q) — PP Q)
E,,—i—el,/—,u v v v Eu""eu_ﬂ v v v
1 1
- QV’(l_PIJ_Qu)_ Qu(l_PIJ’_QV’)}- (28)
€y — €y €y — €y

In Eq.(28) we put A = 0 in all terms containing @,. The sum over
the whole single-particle space is present in the last 4 terms containing
the unit projection operator. Combining these terms together we can
present Eq.(28) as a sum of three different terms

A(r,r") = Ag(r,t’) + Ap(r,r') + Ap(r,1'),
where

Ag(r,r') = 3 Qu{tn ()Y (r)G(r' . rley) + G(r,r'le ) ()0l (1)}

(29)
includes the transitions from the deep holes,
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Ap(r,r) = (30)

= Bp{u ()L ()G x| — B) + Gr,x'|p — B, )v, ()] (x)}

includes the transitions from the pairing region, and

Ag(r,r') = = 0, (0)] (r)) 0,0, ()] () (31)
vv!
with
O = e B
2 2
HEV fuet, +u B, +2:: — > 1* ey]PyQ"/
+] ty v L ip.a,

EU/—€V+/J EV/+€V—[L+€V—€V/
includes the transitions from the pairing regions to the region of deep
holes. In all these terms the sum goes over a finite range of the single-
particle space and can be calculated directly.

Strictly speaking, in the presence of pairing the particle-particle
channel should be added to Eq.(25) and the equation for V' has to
be modified. With the particle-particle channel a new interaction F¢
appears and the total number of equations doubles. The parameters of
the interaction F¢ can be found from masses of the nuclei that differ by
two protons or two neutrons [16]. This procedure, however, determines
the spin-independent part of the interaction F¢. The spin-independent
interaction in the short-range approximation does not renormalize the
spin-dependent operators. As for the spin-dependent part of F¥¢, its
magnitude remains unknown up to now and for this reason we did not
include it in our equations.

For the right-hand-side of Eq.(23) one can obtain 6 A from Eqgs.(29)-
(31) using in first order 07) by Eq.(11) and 6G by Eq.(18).
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1n g.4 we plot the diterence v (r)—vn,(7r) 10or the spin part ot the
AM operator both in the absence and in the presence of pairing. As
expected, the difference between these two cases is insignificant. For
&V the situation is somewhat different. In Fig.5 we plot the right-hand-
side of Eq.(23) for the transitions with L = 0 (top plot). In this case
the difference is also small. However, for the transitions with L = 2
(bottom plot) the difference is significant. This is the direct influence
of pairing that reduces the transitions to closely lying levels. The final
value of AM does not changed strongly because the contribution of

XE[Wh | with L =2 to AM is small.

Figure 4: The difference v?(r) — vf,(r) for the spin part of the AM
operator in the presence of pairing (solid line), and in the absence of
pairing (dashed line).
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Figure 5: The contributions to proton XZ[vf,] with different L in the
absence (dashed line), and the presence (solid line) of pairing. The
interaction constant g, put equal to 1 for illustrative purpose. On the
top plot L = 0, on the bottom plot L = 2.
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Lhe results orf the anapole moment calculations with pairing are
listed in the Table 1 for 3C's nucleus in the row labeled I1I. For the
pairing gap A we used the values A, = 0.95 MeV for protons and
A, = 1.05 MeV for neutrons from Ref.[17]. As expected, the pairing
does not influence much the matrix element of the anapole moment
operator V. For 0V the effects are relatively larger. As mentioned
above, the pairing reduces the transitions near the Fermi surface with
small AFE. For the Cs nucleus this happens only for the proton tran-
sition 1g7/o — 2d5/5, Al = 2 that does not contribute significantly to
the anapole moment.

4 Parameters of the PNC nuclear forces

The constants g, and g/, of the PNC interaction (4) should be, strictly
speaking, treated as phenomenological ones and should be found from
experimental data. We can, however, try to relate them to the param-
eters of the free nucleon-nucleon interaction [18]. This relationship, as
obtained in [19], is:

9pp = _(:u + 2)WﬂAﬂh2 ’
r_ — 4 —
gpp - gnn - gnn - gpp’
Ipn = —(2,u + I)WpAphg + Wﬂ'Aﬂ'fﬂ' s (32)
Inp = —(2,u + 1)WpAphg - Wﬂ'Aﬂ'fﬂ' >

g;)n = g;’l,p = (p— 1)WpAph27

where
A — \/Egp A — r
P G Fm% ’ T G Fm?r

are the dimensional constants, p is the isovector nucleon magnetic
moment, and hg, and f; are the PNC rho-nucleon and pion-nucleon
couplings. The dimensionless factors W, and W were introduced to
normalize the matrix elements of the interaction Eq.(4) to the matrix
elements of the original finite range interaction [18].
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rollowing kel |0, m rig. 6 we plotted the extracted values oOf
coupling constants H! and HS in the notations of Adelberger and
Haxton [5]. They are related to fr and hg by

0

H — 9r fr HO — _gﬂhp

T \/3—23 p 9 9
where gr and g, are the strong coupling constants. The bands corres-
ponding to the 25T and 133C's data are slightly different from those

extracted in Ref. [6]. There, our previous calculations [1] were used
to extract the coupling constants from the anapole moment data.

10 =

10° xH';

Figure 6: Weak coupling constants H: and H! extracted from ¥F
(light band), 2°°T[ (medium band), and ?3Cs (dark band) exper-

iments. Also shown are the DDH [18] “best” values (square) and
“reasonable” range (box)

Our improved calculations did not change the general situation.
The coupling constants extracted from 23C's and 2°°T'1 data still look
inconsistent independently on "F data. This situation eventually
raises a question how reliable is the theory of nuclear anapole moment.
Our calculation has been done using the random-phase approximation.
There are two more calculations accounting for many-body effects [20],
[21] within the shell model approach. In Ref. [21] the shell model basis
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used Ior calculation ol the anapole moment of =*~ /1 was large enougn
to account simultaneously both for the single-particle AM and the core
polarization effects. The value obtained in Ref. [21] for the spin part
of the anapole moment of 2°°T1 is ks = 0.35. Our calculation, where
we use completely different quasi-particle interaction and the RPA,
gives ks = 0.37 for the "best” values of the coupling constants. Such
close values obtained in completely different approaches give hope for
a weak model dependence of the AM, although we cannot exclude that
this is just the coincidence.

The relation between effective PNC interaction constants and meson-
nucleon coupling constants given by Eq.(32) is less reliable. The nor-
malization factors W, and W, were determined by comparing matrix
elements of the interaction Eq.(4) and the finite-range DDH inter-
action of Ref.[18] for N — *He scattering at low energy. Therefore,
we hardly can expect them to be constant in a broad range of all
bound single-particle states. In order to check the accuracy of this
procedure we calculated W, as a ratio of typical matrix elements of
the finite range DDH [18] interaction and the zero range interaction
Eq.(4). The results are shown in Fig.7 where the normalization factor
W is plotted as a function of a single-particle energy for the proton
and neutron states. The factor W is really state dependent. Only
near Fermi surface W, = 0.16. For the states with lower energy it
becomes larger reaching the value Wy ~ 0.4 — 0.5 for 1s,/, states. For
this reason one should not use such a simple relation as Eq.(32) for
determination of the PNC meson-nucleon coupling constants. There is
an additional reason why Eq.(32) should not be used to extract the in-
teraction constants. As it was shown in [22, 23] strong renormalization
of the PNC nucleon-nucleon interaction can exist in nuclear media. As
a result, the neutron PNC potential constant g, (which is small when
estimated using Eq.(32)) can be comparable to the proton constant
gp- (See also discussion of the subject in Ref.[24].) From this point of
view, the measurements sensitive to g, would be extremely interesting.
These could be the measurements of the anapole moment of a nucleus
with an odd neutron or, another possibility, the measurement of the
neutron spin rotation in helium [10].
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Figure 7: Normalization factor W as a function of bound state energy.
Proton states are connected by dashes. Neutron states are connected
by dots.

In order to obtain the measured value of the AM of 133C's the PNC
interaction constants Eq.(5) should be increased approximately by a
factor of 2 as compared to their Eq.(32) "best values”. It is interesting
to note that a similar conclusion has been obtained from statistical
analysis of the PNC effects in compound nuclei [25].

In Table 3 we show the summarized results for a set of the proton
odd and the neutron odd nuclei. Here we list just the sum of all
contributions. For Ba isotopes the calculations were performed includ-
ing the pairing. It is worth noting that for nuclei with an odd neutron
due to the core polarization some contribution proportional to the
proton coupling g, appears in the anapole moment. In case of small
gn it can be of the same order as the direct g, contribution.
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Table 3: Calculated anapole moments for the set of nuclei

Nuclei Ksp. X 102 Kk x 102

Odd proton nuclei

133Cs | 4.9g, + 0.65g,, | 2.9g, + 0.18g, + 0.36g,, — 0.02g,,

20571 | 7.8g, +0.85g,, | 4.3g, + 0.1g, + 0.64g,, — 0.06g,,

209Bi | 5.4g, +0.96g,, | 2.5g, + 0.3g, + 0.57g,, — 0.04g,,

Odd neutron nuclei

135Ba | —6.5g, — 0.25g,p | —0.1gp — 4.6g5, + 0.01g,, — 0.19gn,

137Ba | —6.5g5 — 0.25gnp | —0.2gp — 5.7gn + 0.01gpn — 0.23gny

2TPh | —=9.6g,, — 0.16gy, | —0.1g, — 6.7g, + 0.01g,, — 0.14g,,
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