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We calculate in the next-to-leading approximation the non-forward
quark impact factors for both singlet and octet color representation in
the t-channel. The integral representation of the octet impact factor in
the general case of arbitrary space-time dimension and massive quark
flavors is used to check the so-called ”second bootstrap condition” for
the gluon Reggeization at the next-to-leading logarithmic approxima-
tion in perturbative QCD. We find that it is satisfied for both helicity
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1 Introduction

The BFKL equation [1] is very important for the theory of the Regge pro-
cesses at high energy /s in perturbative QCD. In particular, it can be used
together with the DGLAP equation [2] for the description of the structure
functions for the deep inelastic ep scattering at small values of the Bjorken
variable z. It was derived more than twenty years ago in the leading logarith-
mic approximation (LLA) for the Regge region [1], that means summation of
all the terms of the type («s1n s)™. Recently also the radiative corrections to
the kernel of the equation have been calculated [3]-[9] and the explicit form
of the kernel in the next-to-leading approximation (NLA) for the case of for-
ward scattering was found [10, 11]. A number of subsequent papers (see, for
instance [12]) were devoted to the investigation of its consequences.

In the BFKL approach the high energy scattering amplitudes are ex-
pressed in terms of the Green function of two interacting Reggeized gluons
and of the impact factors of the colliding particles [1, 10, 13, 14]. The BFKL
equation allows to determine this Green function for forward scattering (t = 0
and singlet color state in the ¢-channel). The impact factors must be calcu-
lated separately and only in some cases (such as strongly-virtual photon or
hard mesons) perturbation theory is applicable.

The key role in the derivation of the BFKL equation is played by the gluon
Reggeization. In the LLA the Reggeization was noticed in the first orders

of the perturbation theory and, assuming that it is correct to all orders, the



equation for the ¢-channel partial waves of the elastic scattering amplitudes
was derived [1]. It is evident that, for gluon quantum numbers in the -
channel, the solution of this equation must reproduce the gluon Reggeization.
This was explicitly demonstrated in Ref. [1]. This “bootstrap” condition
represents a stringent test of the gluon Reggeization, although it cannot be
considered as a proof. In the LLA such proof was constructed in Ref. [15]. In
the NLA the gluon Reggeization has only been checked in the first three orders
of the perturbation theory [6]. Since it forms the base of the BFKL approach,
a more stringent test is desirable. As well as in the LLA, such test is provided
by the “bootstrap” condition. Using the gluon Reggeization as a base, it is
possible to represent the high energy scattering amplitudes as a convolution of
the impact factors of the colliding particles and of the Green function for two
interacting Reggeized gluons (see Eq. (2.3) below) not only for the forward
scattering, but also for non-zero momentum transfer /—t and arbitrary color
states in the t-channel [16]. For the case of octet color representation, the
requirement of self-consistency leads to two “bootstrap” equations for the
gluon Reggeization in the NLA (Egs. (34) and (35) in Ref. [16]). Besides
providing a stringent check of the gluon Reggeization, these equations are
important since they contain almost all the values appearing in the NLA
BFKL kernel and so provide a global test of calculations carried out over a
long period of time [3]-[9] and only in a small part independently performed [8]
or checked [17, 18].

The first bootstrap condition involves the kernel of the non-forward BFKL
equation for octet color representation in the t-channel, expressed in terms
of the effective vertices for the Reggeon-Reggeon interaction. The explicit
demonstration that it is satisfied in the part concerning the quark—anti-quark
contribution was given in Ref. [19] for arbitrary space-time dimension. The
second bootstrap condition involves the impact factors of the scattered parti-
cles for octet color representation in the t-channel, expressed in terms of the
effective vertices for the Reggeon-particle interaction. For the case of gluon

impact factors, the explicit proof that this equation is satisfied has been given



in Ref. [20] for arbitrary space-time dimension and massive quarks for both
the helicity conserving and non-conserving parts. It must be stressed that
for this proof it is sufficient to use the integral representation of the NLA
non-forward gluon impact factors with color octet states in the ¢-channel
and it is not necessary to perform explicit integration and to consider other
color states. However, the impact factors have their own value, therefore in
Ref. [20] they have been obtained in the gluon case for arbitrary color repre-
sentation in the ¢-channel and the explicit integrations have been explicitly
carried out in the massless quark case.

The main aim of this paper is to demonstrate the fulfillment of the second
bootstrap condition also in the case of quark impact factors, along the same
lines as in Ref. [20]. We determine an integral representation of the NLA
non-forward quark impact factors for arbitrary space-time dimension and
representation of the color group and check that the second bootstrap condi-
tion for the octet representation is satisfied for both the helicity conserving
and non-conserving parts. The integrations are then carried out explicitly in
the case of massless quarks.

The paper is organized as follows: in Section 2 we explain the method of
calculation, in Section 3 and 4 we obtain the integral representation of the
contributions to the quark impact factors from one-quark and from quark-
gluon intermediate states, respectively; in Section 5 the check of the second
bootstrap condition is explicitly demonstrated for both the helicity conserving
and non-conserving parts; in Section 6 the integrations representing the NLA
non-forward quark impact factors are carried out in the massless quark case.

Section 7 contains the summary and a short discussion.

2 Method of calculation

The bootstrap conditions for the gluon Reggeization in the NLA were derived

in Ref. [16].  The starting point is the elastic scattering process
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Figure 1: Diagrammatic representation of the elastic scattering amplitude
A+B— A+ B.

A+ B — A’ + B’ in the Regge kinematical region

s=(pa+pe)’ =W4+0p)? =00, t=(pa—14)’=p—pp)® fixed,
(2.1)
where p4, pg and p/y, pp are the momenta of the initial and final particles,

respectively. We use the Sudakov decomposition for any vector p

p=PBm +aps+pi, pi=-p7,

where the vectors (p1, p2) are the light-cone basis of the initial particle mo-
menta plane (pa, pB)
m mi
pA=p1+Tp2, pB=p2+Tp17

pha=my, pp=my, pi=p5=0, s=~2(pip2).



In the Regge limit s > —t, the momentum transfer is dominated by its

transverse part

2 —2
—q .

g=pa—phmq, t=¢=q =
In the case of gluon quantum numbers and negative signature in the ¢-channel,

the amplitude for this elastic process has the Regge form

(A AE = FWAKjﬂﬂ?—CSY@]%B. (22)

Here ¢ is a color index, I'G, p are the particle-particle-Reggeon (PPR) ver-
tices which do not depend on s and j(t) = 1 + w(¢) is the Reggeized gluon
trajectory. In the derivation of the BFKL equation, this form is assumed
to be valid also in the NLA. On the other side, the s-channel unitarity of
the scattering matrix leads to (see Fig. 1, where the wavy intermediate lines

denote Reggeons)
J dD—2q1 dD—2q2
ms A A'B — S /
(40 t) e’ ) @a-0*) @ @-a°

d+1i00
7'\’,1/ dw - -
X g <I>E4,A aQ, G )/5 i K?O> G( )(%&m@}q’%ﬁ)(—%,—Q;So)7
(2.3)

where Ax stands for the scattering amplitude with the representation R

—1i00

of the color group in the t-channel. In the above equation, the index v
enumerates the states in the irreducible representation R, <I>S;.7,2}’§’ ) are the
impact factors and GSJR) is the Mellin transform of the Green function for
the Reggeon-Reggeon scattering [16]. Here and below we do not indicate the
signature since it is defined by the symmetry of the representation R in the
product of the two octet representations. The parameter s¢ is an arbitrary
energy scale introduced in order to define the partial wave expansion of the
scattering amplitudes through the Mellin transform. The dependence on this
parameter disappears in the full expressions for the amplitudes. The space-

time dimension D = 4 + 2¢ is kept different from four in order to regularize



the infrared singularities. The Green function obeys the generalized BFKL
equation
WG (@ @ @) = 70 5@ - @)
+ dDqu/C(R) (G. 3 D) G (G, s
/ 2 @G5 @) Gy (G @239) (2.4)

T Hir

where K(R) is the kernel in the NLA [16] and we have introduced the notation
¢} = ¢; — q (which will be used also in the following).

The two bootstrap conditions derived in Ref. [16] follow from the compar-
ison between the imaginary part of the amplitude (2.2) with the imaginary
part given by Eq. (2.3) in the case of the gluon representation in the ¢-channel.
In this paper we are interested in the second bootstrap condition (Eq. (35)
in Ref. [16]) which includes the NLA correction @Ef,’j)(l) to the octet impact
factor and reads

N )~ o R
~ig [ Gpts =3z VB @ o) = PO (72
(2m) a1"

1 _(a S Loy 2 s
+5T087 [w(”(q %)+ (wD(=7%) In (q%)] : (2.5)

where ¢ is the gauge coupling constant, N is the number of colors, w(!)
and w® are the one- and two-loop contributions to the Reggeized gluon
trajectory, F(X&B) and FE:,)S) are the Born and one-loop parts of the PPR
effective vertex.

The definition of the non-forward impact factors with color state v of the
irreducible representation R was given in Ref. [16]. This definition can be
written as

(@1, @ s0) = (o |PrIV)®Cy (@1, T 50) + (2.6)

where Pg is the projector of the two-gluon color states in the t-channel on
the irreducible representation R of the color group and the remaining part

@%A, is the unprojected impact factor of the particle A,
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Figure 2: Schematic description of the intermediate states contributions to

the impact factors.

%A’((ﬁa q_; 50)}

Ju(-a%) 3w(-a?)
S0 e So 2 dSAR c c’ -
:<T2> (2) Z/ o dps0sa—san)T ) (Tpya)
G N mn’

1 dD*Qq ,(B) o 52
_Z =3V T KP)eie (@@ @)n | —=2=<5 ). (2.
2/ 7232 aar (@ @)K Jere (G, G150) In (So(q;v —q)?2 (2.7)

For brevity we do not perform here and below an explicit expansion in ay;

evidently this expansion is assumed and only the leading and the next-to-
leading terms should be kept. Here w(t) is the Reggeized gluon trajectory
which can be taken at leading order, I‘? 14 is the effective amplitude for the
production of the system {f} (see Fig. 2) in the collision of the particle A

with the Reggeized gluon carrying color index ¢ and momentum
—q=app—q1;, a~(sar—mh+q°%) /s<1, ¢=-q, (28)

sAr is the particle-Reggeon squared invariant mass and the momentum of
the other Reggeon is ¢; = q1 —q, with ¢|2 = —(q1 — ) 2. In the fragmentation

region of the particles A and A’, all the transverse momenta as well as the



squared invariant squared mass s 4 are of the order of the typical virtuality,
ie. G2, sar ~ q>.

In Eq. (2.7) the summation is over all the possible intermediate states
which can be produced in the NLA and the integration is over the particle-
Reggeon squared invariant mass and over the phase space of the produced

system

n n D—1

dor = GmP5 pa —ai = > k) [ e (9)
in the case of an n-particle system. The parameter sp, which limits the
integration over sspr in Eq. (2.7), is introduced in order to separate the
contributions from multi-Regge and quasi-multi-Regge kinematics (MRK and
QMRK) and is to be considered as tending to infinity. The dependence on
this parameter disappears due to the cancellation between the first and the
second terms in the R.H.S. of Eq. (2.7). The second term of Eq. (2.7) contains
the sg-independent Born contribution to the impact factor, @ff}fg ), and the
unprojected part of the non-forward BFKL kernel, connected with real gluon

production, at the Born level

c’lc’ RN 1 G(B *
(ICTB)clc (Q1,Q2a(D = W Z”/g(CB)(QM@) (76153’ )(qllﬂbl)) ; (2-10)
Aa

being ~/§£B)(k1, ¢1) the Born effective amplitude for the production of one
gluon G with helicity A\g in the collision of two Reggeized gluons carrying
color indices ¢1, ¢ and momenta ¢, —@a, respectively. The definitions (2.6)
and (2.7) apply also in the case of colorless particle as well as in the case
of charged QCD particles. Of course, the impact factor in the octet color
representation, entering the bootstrap condition (2.5), makes sense only for
colored particles.

In this paper we consider the non-forward quark impact factors. At the
NLA the only intermediate states {f} which can contribute to the quark

impact factor (2.7) are one-quark and a quark-gluon system. The second

10



term in the R.H.S of Eq. (2.7), which is a counterterm for the LLA part of
the first term, will be attributed to the quark-gluon intermediate state. In the
following, we will determine the integral representation of the non-forward
quark impact factors in arbitrary space-time dimension D = 4 + 2¢ and
keeping the quark massive. Then, after checking that the bootstrap condition
(2.5) is satisfied, we perform the integrations for the case of massless quarks,

using the expansion in € when necessary.

3 One-quark contribution

In the case of the one-quark contribution, the squared invariant mass s4p is
equal to the m?, the squared mass of the colliding quark flavor. From the
definition (2.7) one easily gets
w(=a,%)/2 w(=q{?)/2 *
c'{Q} /> = S0 So . o
CI)AA{’ }(QIaQ;SO) = (Tz> (Tz) ZFQA< QA’) ;
qy qd1 o

(3.1)
where I'() 4 is the quark-quark-Reggeon (QQR) effective vertex, which was
obtained in Refs. [21, 22] and has the form

o = 9904 [Brg s (14 TRV@D) + 010 0 TP @)] - 62)

Here FE;Q)(I) represent the radiative corrections to the helicity conserving
and to the helicity non-conserving parts of the QQR effective interaction
vertex, t¢, 4 is the (Q, A) matrix element of the color group generator ¢ in
the fundamental representation and the J-symbols on the helicities Ag and
A4 of the quarks A and @ are defined as

N ﬂ(pQ)%U(pA) ; (3.3)

Org.—ra = %U(}?Q)(pA_ PQ)@U@A)
—(pa —pq) 5
= L _7(pg) (12mA%)1L(pA). (3.4)

—(pa — pq)?

11



The convolution in Eq. (3.1) can be easily calculated and gives

’ 1 . s
@ZCA{,Q} (ql’ 4 80) g2(tc tc)A’A |:5>\A/,>\A <1 + Ew(l) (_q12) In (q%)
1

1 . S o
R0 (22) T Cad) + TR0 )
1

_ i
+F£2(3(1)(—q12) — W(par) /leS /ﬁBu(pA)
1
- - i bs fn,
+FEQQ)3(1)(_(I1I2) §/2U(pA') : ! u(pA)] . (3.5)
! s

Here the one-loop contribution to the Reggeized gluon trajectory w(M)(—v2)

is given by [23]

T(1—e)

) 2N dD 2/€ ,17'2 g2N
@m)PtE2(k — 1)2 (47)2+e

The radiative corrections F(+ Y have the form [22]:
TSN (—52) = a{P (—52) + P (=52, m%) +a{P (—52) + 6§ (—52,m?) |
with

2 1
dP g2 2y = I I'(—¢) / dx
Q ( v 7mA) - IN (47r)2+e Jo [m?4+$(1 71,)1—)'2]1_6
1 € 2m>2 2
_ 72 =) A 2 \e
x[ ’ (1+26+2> 1+2J+1+2e(m1“)}’ (3.9)

e LE B Lo -0 - 200 + o)

alP(—7%) = N

+1-|:}26 {4(3i2€) B % - ﬂ} ’ (3.10)

12



(+) 2 2 9°N ' .
0y (—U%,m3%) = (47T)2+€]_"(1 —€) {/0 dxy /0 dxo 0(1 — x1 — x2)

721 — 1) 14¢ 1
w | LT (g 2T
{ 1 < ntT xl) ([miﬁ +a2(1 — 21 — a2) %] ¢

B 1 B 2m? a1 + (m%)¢
[22(1 — 21 — z2)T2]1 ¢ (M4 a2 + 29(1 — 21 —22)02)1 €| e(1+2€) )
(3.11)
The expression for I’(Q_Cg(l) can be found in Ref. [21]:
o0 (%) = af) (- 72) + 0l (7%, md) (3.12)

with
2
() (_=2\ — /72 g_Flfe 1—26/
ag " (=77) e mAZN( Yite 14 2¢ [mA-i—xl—"c) 21—
(3.13)

and

VT m gy DO / / oy P01~ )l — (14 e

(4 [ Axl + 1'2(1 — 1 — 1'2) 2]175 )
(3.14)

In the above equations, I'(x) is the Euler I'-function and v (x) its logarithmic

() (=)

derivative. We observe, moreover, that 5§+) ag ' and ag vanish in the zero

quark mass limit.

4 Quark-gluon contribution

In this Section we calculate the NLA contribution to the quark impact factor

from the quark-gluon production in the fragmentation region

oM g, )

dSAR ¢ o *
= E /—(%) dpiqay 0(sa — sar)T{gayala) (F{QG}A’((A)) ;o (41)
)‘Q’)‘G

Q.9
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where the summation is performed over the helicities A\¢ and \g and over
the color indices g and @ of the produced gluon and quark, having momenta
k1 and ko, respectively (although we use the notation g also for the coupling
constant, this can not be misleading here). We remind that the above expres-
sion must be completed including the counterterm, i.e. the second term in
the R.H.S. of Eq. (2.7). We will consider this term at the end of the Section.

Introducing the Sudakov representation for the momenta of the produced

particles,
ki 2
ki =Bipr + —pa+ki, , k=0, (4.2)
s
my + k2
ky = Pop1 + —2—2ps+ ko, , k3 =m . (4.3)
53,
we have
+ Bo)ym? + (k12 — kaBr)?
sar = (k1 + /€2)2 = 'Bl(ﬁl BQ)mA ( 172 2ﬁ1) , (4.4)
5152
dsar dB1ds dD72k1 dP—2 ko

dpoay = 6(1—B1—B2)0 P~ ((ky + ks + 1) 1)

27 B152 2(2m)P—1

(4.5)

In the last of these equations we have used also Eq. (2.8).
The amplitude for quark-gluon production in the quark-Reggeon collision
I'{0Gya Was obtained in Ref. [22] using for convenience the the gauge (ep2) =
0, although all the calculations could be performed in a gauge invariant way.

It can be written in the following form:

T{ocia = g2 |:(tctg)QAA1 — (tgtc)QAA2:| , (4.6)

with
Ay =) | (b1, — (k)| £ 0(0) (47)

and
Ay = (k) [L(ﬂm ik, L(ku)} L2y, )

14



where

Y (maBi — By ko) + 2k,
wEE

L(ki) = Lu(ki)et” . LF(k)) = (4.9)

being e/ the gluon polarization vector and +/ the transverse component of
the Dirac v*, defined as

Iz Iz
g = PaPe T PAPE | (4.10)

Y=9"n, (pars) .

The amplitude I‘?QG} 4 has the same form of the amplitude I“{’QG} A
except that the Sudakov basis (p1,p2) must be replaced by the primed one
(p1/, par), i.e. by the light-cone basis of the final particle momenta plane (p4-,
pp’). This leads to

Cfaaar = o | qudi ~ (" Jqu | (4.11)

with
Al = (k) {L(kh + b1q1) — L(=ka, — ﬁmu)]] %u(pm) (4.12)

and
Ay = (k) {L(&kh — Biks, ) — L(~ks, — ﬁqu)} %u(m) . (413)

We can now calculate the convolution appearing in the integrand of
Eq. (4.1):

>~ Tiqcia (F?QG}A') =

AQAG
Q.9

gt {(tgtc'tctg)A,A S AADT - () aa Y Ar(AD)T
Ao Aa Ao Aa

—(t ) aa Y Aa(ADT A+ () aa Y Az(A;)*}

AQ:AG AQ.Aa

15



4

4

_9 cc’ * g c ye 2 AL

= Z(SArAé E A (A + ﬂ(t tVara E {N Aa(A3)
Q. a AQ e

P+ ) - A )|
In the last equality the following relations have been used:

NZ -1
2N

1
dara, (@t aa=—=(%Ya14,

t919) 41 4 =
(t99) ar 4 5N

/ ]. ’ ]_ ’
I ra = ~ 04 40% — —(tt) a4 - 4.15
( )ara 1044 2N( )arA (4.15)

Using the definitions of the quantities A; » and A} , given in Egs. (4.7), (4.8),
(4.12) and (4.13) and recalling that

D ek, Ner (kA = =g, (4.16)
A

it is easy to find
bB

S

S As(A)T = Ag = u(pa)

AQ.Aa

{Zu(ﬂzle —Bika, )—Lyu(—ka, —f2q1)

X (K2 +my) {L“(@kh — Brk2, ) — L”(kh)} %U(PA) ) (4.17)

3 [A(A@* A — Ay (A — A2<A;)*} = By =

AQ, e
_ bs |+ -
u(par) S [Lu(kh + f1q1) — Lu(Bak1, — ﬁlk2L)}
< ) | D) = DGk, = ouke) | 220), (a)

> A4 = ~Co = —Tlpa) 22

{Zu(le + HIQJ_) - Zu(_k2L - ﬁzCIJ_)
Q. g

< (o +ma) [Lﬂ(/m) - LN(—Jm)} 250 (4.19)

16



where ) b o
' (k1) = (mafi —2/31 2/kJ_)ZL + 2K .
m4 0 — k9

The above expressions for Ag, Bg and Cg can be put in the following form

(4.20)

Ag =AY +457 (4.21)

A = ﬁ%{[2(1—61)2+<1+e>ﬁ%<1—ﬁ1)1d<ku)d(/m+ﬁ2qud<@2ku—mm

=2 —2 12
q a1 q1

x [d(ﬁzku — Bika,)  d(k2, + faqr) d(ks,)

} a2 5

X |:d(/62k1L - ﬁl kQL) - d(k2¢ + 62QL)} {d(ﬁ2 le - ﬁl k2¢) - d(k2¢)} }6/\,4/ A

A = 2map B2(1— ) [(1+€) B —a(par) {md%u)d(kn +h2q1) (4.22)

— [, d(ke, )d(Bok1, —Prke, )+ Ay, d(ka, +B2q1)d(B2ki . —51k2L)} %U(Im) ;

Bq =BY) + B, (4.23)

B = {2+ 1+ RV Al Yl + Sran )k, — )

q? s il 2
x - - +4
|:d(ﬁ2k1L — Oika,) d(ki, + fiqr) d(ku)} mabe

X {d(ﬁzku — Bikz, ) —d(k1, + £1q1)

|:d(ﬂ2k:1L - ﬁ1k2L) - d(kll):| }6>\A/,)\A7

BS) =2maBpl(1 + €)1 — a(par) [— g d(ks, )d(ks, + Bran)  (4.24)

+ A1, d(ky, )d(Boky, —Bike, )— Ay, d(k1, +51q1)d(B2ky, —ﬁlku)} %U(pA) ;

17



Co=C5 +c57, (4.25)
i = 62{[262 +(1+ B2 | 272 d(ky, )d(kr, + Brqu)
+35G° d(ka, )d(ka, + B2q1)

(i = o dlls, bk, + 52a) = = i) Yk, + Fra )
AR Ak, 1) Ak, + 5200) | [dC0) — )| P
€5 = AR al(1 4 O~ o) |51 A dlln, Yl + ) (420

+B2 A1 d(ka, )d(k2, + B2q1) — (M1, — B go) d(ke, )d(k1, + Brqr)

FUb. — B ) Al Yk, + )| 22000

where we have used d(l) = 1/(m%3? — 12) and have explicitly separated
the helicity conserving terms (labeled by (+)) from the terms which, after
integration, give the helicity non-conserving contribution to the bootstrap
condition (2.5) (labeled by (—)).

Putting together the above results and using Eq. (4.5), the quark-gluon
production contribution to the impact factor can be written as

(I),sz/;(/l){QG}((Tla (j) —

dP—2k, (1 4B C, 1, .
4 1 cc’ ~Q ¢ e 2
—Sa A 'a|—N*Ag + B .
s gt {0 G Ot .
(4.27)
where now 3 = 3; and in the expressions for Ag, Bg and Cg the variables

B2 and ko, are replaced with (1— ) and —¢1, — k1, , respectively. The lower

18



limit in the integration over (3 is By = /%2 /sa and follows from the cut in the
integration over s4r given by the f-function in the Eq. (4.1).
Let us consider first the integral

W m o [ dPPhe Y dB
Iy (611,61“)—/(270,3_1 /BO 26(1—ﬂ)AQ : (4.28)

It is convenient to split this integral into If)((ji ,4,ma = 0) and the remain-
ing part, which we call 5]2“ (q1,9)- Then, we can use Eq. (93) of Ref. [22]
to write

o dD—Zk —2 —2
9@, ,mA=0)=/ S P
(2m) (ky — @) (k1 — @)?  ki(ki—@)?

4’ SA 3
_m] [ln (E—12> + (1) — (1 + 2¢) — m] ON A s
(4.29)
where we recall that ¢ = ¢1 — ¢.
In the calculation of 6]£‘+)(q"’1,cj) we can put the lower limit in the inte-
gration over 3 equal to zero, since there is no divergence for sy — oo. The

result is

— € 1 — 2 1
512+’(51,®=6AA,,M%/0 s %/0 dz {[2(1 = §) + (1 + 9]

q—'2 B 6*2 B (712
c(maB,(1—PB)gr) (0,1 —B)qr)  c(map, (1 - B)a,)
N q*12 B (Tl/Z 4 q—'1/2 :|
c0.1=PB)qr.) c(maB,(1=Pg,) (0,(1-Bay,)
+4m> g !

A1 =B [e(maf,0)

B 1 - 1 N 1 } }
c(maB, (1= B)ay,) c(maB (1=PB)ar.)  clmaB,(1—-B)qr)])
(4.30)

where we have used c(m,l) = [m? — [?z(1 — x)]' <.
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We consider now the integral

1 D—2
(o ap A"k ()
IA (qla(D = /0 2B(1 _ 6) / (27T)D_1 AQ ) (431)

where we have put again 3y = 0 since there is no divergence for infinite s4.

The result of the integration over ki is

2m

1@ = a0 =0 [ d350- 0 +95-1] [ detoa)

X [ AL _ A,
c(mafB,(1—0)qr) clmaf,(1—B3)aq,)
/éiL @U
T elmap, (1 - B)qi)} 5 uPa) (4.32)

The next integrals we consider are
1 D—2

()7 7 = B /d k1 p() 4

Iy (q1.q) —/0 250 5 ) @opite (4.33)
for which again (3 can be put equal to zero. We have
1
#)~ »~_ (=€) / € 1
I57(q1,9) = (4m)2+e |, dx 9 + 1+ 2

q—*2 ‘f12 q—»ll 2
x |- + + -
c(ma,qr)  c(ma,qi,)  clma,qq,)

2m?, 1 1 1 1
- - . + OX 0 Aa
1+ 2¢ [c(ma,0) c(ma,q,) clma,q,)  c(ma,qr)

(4.34)
e (1-g2c-1 [ 4
_ I'l—¢€)2e—1 — AL
]( (G = / dx u(pa
5@ =g f, 4 T0n [l
A1, A } bB
+ - L —u . 4.35
lmaa)  mad )] s Y (43
Finally, we consider the integrals involving Cg, i.e.
dP2k, [ dB
C ( 1 _) (271_)[),1 P 2B(1 _ﬁ) Q ( )
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and

1 D—2
(V(z 7 — df d7 "k (-)
I, (Qh(D—/O 26(17ﬂ)/(27r)D—ICQ , (4.37)

where only in the latter integration Jy can be put equal to zero. The integral

I é+) (1, Q) can be expressed in the following form:

Ié+)(ilaq) = ]( )(QIaq_) + I( )(qlaq_)+

T(l—¢) [t (1 [201=0)+(1+¢p?
R Y dI{ 3
o {_ (L — (1= p)q)? _ (1 — B7)? + Ty
cmaB,qi, — (1 —=0)qr) c(maB,qi, —Pqr)  c(maB, fai,)
4 (l_ﬁ)2q*12 N (1_6)2@1/2 N ﬁ2q—*1/2
c(mafB,(1=PB)a1,) c(maB,(1-0)q1,) c(maB,Bq )

+4m‘iﬁ{ 1 . 1 B 1
c(mAﬁ7 ﬁQIL) C(TTLAB, (1 - B)qlL) c(mAﬁv q1, — BQL)
- 1 . 1
c(maB,qi, —(1—=03)q1)  c(mapB,(1-75)q,)
1 1
T B B, clmab, 5} (438)

while for the integral I (Cf)((j'l, q) we have

() (a,. &) = 2ma LA =6 . o | B AL
1) =2y [ assieos) [[asmon [l
-84 . —BA
C(mAﬁ,(l _6)ql) c(mAﬁaqlL _ﬁq_L)
i, —1-=0) 40 B
(maboa, — (- ﬁ)ql)} = upa)- (4.39)

As anticipated at the beginning of this Section, we take now into account

the contribution to the impact factors from the second term in the R.H.S. of
Eq. (2.7), i.e
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1 dDiZQT chc;(B) o KB cicf o o 1 5?\
9 q’r2q'r/2 AA (QTaq_)( r )616 (QMQI,(D n W

= counterterm .

Using the expression for the unprojected quark impact factor at the Born
level (see Eq. (3.5))

(1,2121,(3) (k1,q) = gz(tCQtCI)A/ACS,\A,,,\A , (4.40)

and recalling that [1]

2 7222 72 212
BNCIE (o o g d d v (G- + 4] =2
(’Cr )c}c (qT‘a qu (j) - W chlc(Tc;c’) (4T (JT — q_,1)2_r - q > Y

(4.41)
where T are color group generators in the adjoint representation, it is easy

to obtain the following expression for the counterterm:

]. ’ N ’ dD72]1' 82
_ 4 cc c e 1 A
counterterm = —g (ZdA/Ad + E(t t )A/A> / 32D In (Ef 5@)

q* 7 7’
X = N2 == 2 - == 2T —N2 6>‘A’7>‘A (442)
ki (k1 — qy) ki (k1 — q1) (k1 — q1)? (k1 — ¢{)

This counterterm leads to the cancellation of the sy-dependence in Eq. (4.27),

which comes from the integrals II(:)(q‘i, ¢,ma =0) and I((;r) (q1,9), as it can
be easily checked comparing Egs. (4.27), (4.29), (4.38) and (4.42).

5 The check of the bootstrap condition

We have now all the contributions needed to check the bootstrap condition
given in Eq. (2.5). First of all, we must consider the quark impact factors
in the octet color representation in the t-channel. According to Eq. (2.6),
this means that the contributions to the unprojected quark impact factors

from one-quark intermediate state, Eq. (3.1), from quark-gluon intermediate
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state, Eq. (4.27), and from the counterterm, Eq. (4.42), must be contracted

with
_ facc’

o |Psla) = , 5.1
where fu. are the SU(N) structure constants. Since
A ’ A ’ N
<CC/|P8|CL> 0 =0, <CCI"P8|CL> (tc tc)A/A = —ii(ta)A/A , (5.2)

2

we have for the octet quark impact factor at 1-loop order the following ex-

pression:
a N \/N a 1 _ S
‘I>(:’7A)(1)(QI7(]§ s0) = —ZT(t )ara {92 {5/\%&4 (§W(1)(—Q12)1n (%)

1 - S0 o -
g0 a M (2 ) + o (=a2) + ol (a2 )
1
+aft (=) + 657 (=qi m?)

FaSPCa?) + a7 m?) + P (%) + 6§+>(—cff2,mi)>

(o0 + ) a2 ) ) L EB )

\/(]12
N2y (V22 i b A
(o )+ ) ) ) o) 2B

N Lol . s
94—(1,(4”( 1, ,mA=0)+5I£x+)(QIa@+I£1 )(917@>

4 D—2 2
g . I N d k s
+—(Ij(9+)(q1,@+11(3)(q17q_))—945 Q(QW)D111H< A)

2N k2 5o
=72 —2 -2
X7 "ql e T T2 "QI -2 (T —'/q2 7 2 Onprda o (5:3)
ki (ky — @) kP (ki — G1) (ky — @) (k1 — @)
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where agﬁgg and 5§+) are given in Eqgs. (3.8), (3.9), (3.10) and (3.11), re-

spectively, a} J in Eqs. (3.13) and (3.14), I7(@1,,ma = 0), 6157 (a1, 9),
IX)((j'l,(j) and Ij(Bi) (¢1,q) are given in Egs. (4.29), (4.30), (4.32), (4.34) and
(4.35), respectively. We can now proceed to check the fulfillment of the boot-
strap condition (2.5), whose L.H.S. and the R.H.S. read

N dP2q  q? S0
LHS. = —g— (Y44 | ———= 25y, O(—g)HIn [ ==
g 2 ( )A A/ (271_)1)71 q—»12q—al/2 {g AA 7)\A (w ( ql ) n q—»2

#2(aP (a2 + o (-2, 8) + o a2 + 0 (a2 ) )

- ) (. [, pB
Lo (a< (—a?) + ’(—qz,mi)) _(par) D 5.
o e VaE s
a N (@ o (+) /= (=) /=~
95 (G, @ma=0)4+ 01" (q1,9) + I ' (¢1,9)

4 D—2 2
g (+) /=~ (=) (=~ 4 N d ]{71 SA
— I 1 =
+2N<B (¢1,9) +1p (%v@) / (2m) D rl k2 so

32 s q?
X | 5—= + == — —= O /A s (5.4)
Kk — @) kR(ki—@)? (k- @)k — @) ]

and

R-H-szg(tam%{%m,m{g @@ (—q )+2w<2><G>< 7?)
5O ) (25
2 q2
£ () (=77 + o) (= ) 4 D) + 80 (<0 )|

#r ) (o ) D) ) b 69)

In the last equation, w(?(@) (—7?) and w*(%) (—7?) are the quark and gluon

contributions to the two-loop gluon trajectory [6]:

T(1—e) dP—2q
W@ (—g?) =24 4N(47r)2+€_/(27r FoR _,2_,/22/ dez(1—z)
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X {(mﬁ +2(l-2)§?) = 2(m} + (1l - x)q*f)f} (5.6)

and

w(2)(G)(_q—»2): 94N2/ dD72q1 dD72q2 (72 (TZ In (72
2 2m)P~t 2m)Pt ¢fd 24/ %67 \(@ — &)?

1 — +—. 2 _ =2 1
B 21n((ql ~2q2) )+( 4,34,2+ 1 .
(+3—9 I 24)°qs (G+3—9

<5 (a1 1) F 20+ v -9 209 v |
(5.7)

The check of the bootstrap condition is now a matter of recognizing similar

terms in the L.H.S. and the R.H.S. written above and performing cancella-
tions. We can separate this task into two parts, namely we can concentrate
separately on helicity conserving and on helicity non-conserving terms. The
first part is not quite independent of the calculation of the two-loop correction
to the gluon trajectory [6], since it was performed assuming that the gluon
Reggeization holds, by comparison of the s-channel discontinuity dictated by
the Regge form (2.2) with that calculated from the unitarity. Therefore, it
represents more a test of correctness of all the calculations involved in the
determination of the trajectory and of the impact factors. The part related to
the helicity non-conserving terms is a quite new check of the gluon Reggeiza-
tion, for the spin structure which is absent in the LLA. It is worthwhile
to mention that the Reggeization in this structure is not necessary for the
derivation of the BFKL equation. Nevertheless, it is straightforward to verify
that it holds, by considering that the following cancellations occur between
a set of terms in the L.H.S. and a set of terms in the R.H.S.:

e L.HS.: terms with Ij(B_) and ag_);
R.H.S.: term with ag_);

e L.H.S.: terms with Ij([) and ag);
R.H.S.: term with ag).
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The check of the bootstrap for the helicity conserving part is not less straight-

forward, although the list of cancellations to perform is longer:

e L.H.S.: term with a(+)
R.H.S.: terms with a ) and w®(@);

e L.H.S.: term with a(+) and I](3+);
R.H.S.: term with a(+)

e L.H.S.: terms with 5§+) and 511(44_);
R.H.S.: term with 5§+);

o L.H.S.: terms with In(so/q2), a\”, IE;F) and In(s% /k2so) (countert-
erm);
R.H.S.: terms with a7, w®( and In(so/q?).

In the second cancellation for the helicity non-conserving part and in the

third cancellation for the helicity conserving part, it has been used that

/dml/ dxo0(1 — x1 — x2) —>/dﬂ/ de (1-0

under the change of variables z1 = 3, 2 = (1 — ().
This completes the check of the bootstrap condition for quark impact

factors.

6 Quark impact factors in massless QCD

In this Section we will calculate explicitly the integrals which contribute
to the quark impact factors, restricting ourselves to the case of massless
quark, which is acceptable for all practical applications. In this case, only
the helicity conserving part of the quark impact factor survives and most
of the remaining integrals can be calculated for arbitrary e. We will always
consider the unprojected impact factor @‘X;‘,((j’l, q; so) defined in Eq. (2.7).

In order to obtain the quark impact factor in a definite (octet or singlet)
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color representation in the ¢-channel, it is sufficient to use Eq. (2.6), with the
help of Egs. (5.1) and (5.2), for the octet case, and of

500’

(e 1Pol0) = 22 6.1
and
N o VNT—1
(cc|Pol0) 0 = /N2 =1, {(cc'|Pol0) (t°t)ara = TC;A'A , (6.2)

for the singlet case.
We start for completeness from the quark impact factors at the Born level,

which was already given in Eq. (4.40) and reads
‘I)ffA(fB) (k1,q) = gz(tc/tc)A'Ats,\A,,/\A . (6.3)

At one-loop level, we must consider the contribution from one-quark and
quark-gluon intermediate states and from the counterterm — Eqs. (3.5), (4.27)
and (4.42), respectively. Let’s start from the one-quark contribution to the
color unprojected quark impact factor which was given in Eq. (3.5). In the

massless quark case it becomes

cc’ JE c e 1 . S
N (G, Es0) = P ) ara |:6)\A/,)\A (gw(l)(—%z)ln (;‘3)
1

1 3} s ) )
+5¢0 (=) In (—) +I0=a| AT a) )] ,
4 m ;=0 =0
(6.4)
where
F(Q+Q)(l)(752) = a(+)(71‘;’2) + a(Q—H(fT)'z,O) + a§+)(71—)‘2) . (6.5)

mf:0 mf:0

and m; stands for the mass of any quark flavor. The integral expressions for
a(f+) and a(Q+) were given in Egs. (3.8) and (3.9), respectively, while agﬂ was

already given in explicit form in Eq. (3.10). The explicit forms for aS?L) and
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a,(QJr) can be easily calculated in the massless quark case giving

() (=2 _ g9’ [C(1+e)? (1+¢ ~2ve
o) T T T T2 G r 9@ 20 )
(6.6)
and
), - _ 92 1 [F(l + 6)]2 1 1] o
CLQ+ (=7%,0) =  (4m)2te NI‘(_G) T(1 + 2¢) L(l + 2¢) + 5} (@) 67)

Using Eq. (3.6) for the one-loop gluon trajectory and summing up all the
terms in the R.H.S. of Eq. (6.4), we obtain

94 [F(l + 6)]2 Lo e
(47T)2+E ]__‘(*6) F(]. + 26) (ql )

B G 50) = (0 acab o
S50 (1+¢) 1 1 1

Nh(Z ) -np—-o 2 — |~ 4=

X{ n(tﬂ") a+20B+20 N e(1+2e)+2

TN (1 =€) = 2¢(e) + (1)

i 25(3 +26) €1 Jlr 2) 401 i 26)} }) + (‘71 — 51’)- (6.8)

Next, we consider the contributions to the quark impact factors from
quark-gluon intermediate state, Eq. (4.27), and from the counterterm, Eq. (4.42).

In the massless quark case, we have

1@,

@Z:;,(,l){QG}((ji, 7 s0) + counterterm = g* [—6,4/,45“, 4

1 ' o o
+_(tc tC)A’A <_N2Ig+) (QIv qg,ma = 0) + I(B+) (qla ®>:|

2N
1 , N dP—2k s%
4 cc c ;e 1 A
—g* [ 504740% + =t )A’A)/ Tin| =

(4 2 2(2m) D1 2 50

—/2 —2 —2
o A L5\ (69)
k(R —q)?  ki(kr —@)? (k1 — @)*(k— ¢f)?



where II(4+)((j'1 cq,ma =0), I](;)((ji, q) and Iéﬂ((ji , ) were given in Eqs. (4.29),
(4.34) and (4.38), respectively. Now, let us consider the sum of the term with
I}L;r) (q1,7,ma = 0) with the part of the counterterm having the same color

structure. Leaving out the overall factor —g*N/2 (t¢'1€) 4/ 4, we have

~ 1D72k 52
G, 0 =15, §ma =0 /( LA
A (QIa q_) A (QIa q,ma ) + 2(27T)D71 n ]{12 o

KR — g2 kgl —q)?  (a—q@)2( — @)

It is easy to show that

—12 —2 —2
xl i + 24 - a ]5/\,4/,)\/1- (6.10)

o 1 T(14 )
6.0 = (9 { g T R

+(q2)* (% - % +2¢(1 —€) —2¢p(1 + 2¢) + 2¢p(1) — 21/)(6))

+2(72)°In (q‘i—l‘;> - eKl} }) + (g"l — qq’) : (6.11)

where the cancellation of the sjp-dependence occurred as anticipated in Sec-

tion 4. The term K; in the R.H.S. of the above expression stands for

_ @m0 T(42) [ dP%k (T 7’
K=—r—ra—q [1“(1+e)]2/(27r)’311 <E2> (k—q)2(k — /)2

(6.12)

The integral K; can be calculated only in the e-expansion. Its explicit form

up to the order € has been determined in the Appendix of Ref. [20]. Here we
simply quote the result

1 e 1 q—*1/2 € (j'12 € q—'1/2 q—*12
K1:§(q ) |:€—2<2—(q,2 7 + 49" (1)e +1n 7 In 72
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Similarly, we consider now the sum of the term with I(C+)((j’1, q) with the
part of the counterterm having the same color structure. Leaving out the

overall factor —g*/4 8445, we have

~ . . dD_2]<Z 82
I((J+)(Q1MD = ]é+)(quli) +/ 2(27r)Di1 In <E2AS >
1 °0

612 62 (1'2
% = 1 — + = 1 — = = — = 5>‘A’1)‘A' (6.14)
k(R — @) kE(k — @) (k— @)% (ks — @))?

This expression can be put in the following form:

I'(—e) LA+oP

(+) _ i)
NG, = ]+(Q1,_)+( dm)Pe T(1 4 2¢)

8 {— (ﬁ 4 %) @) + Kg} By (6.15)

where K is the integral analogous to K> from Ref. [20]:

Sea-morom {[ (0 +a-mar) - (0-ora0)

K! =
> Jo B

+ [éi — q'i'} } (6.16)
This integral can be easily calculated in the e-expansion up to the order ¢

and the result is the following:

1 -2 3 -2 =12 -2
K= {1 + 5’ (;2) - 57@1 q_,z‘h ) in (;ﬁ)
1 1

|G llgy'|
(j’Q

-6

Osin 6 + 8’ (1) — 292} , (6.17)

being 6 the angle between ¢} and ¢ defined so that |0| < .
The last integral we need to calculate is I (h (¢1,q)- In the massless quark

case, it can be easily found that

) 2 C(1+6)? 1 1
I57(@.0) = @ LT a2 L(l 20t 5}

<[ @) - @) - @ ]mm . (6.18)

30



Summarizing, we can write the contribution to the quark impact factors
from quark-gluon intermediate state in the compact form

QZCXII){QG}(ffh q, So) + counterterm =

_" 1 c e 7 = =
gt | —6a a6 # + o () a0 (—N%ﬁﬁ(ql,q) + I,(E”(ql,ci)ﬂ :

(6.19)
s 7 (= F(+) (= () ; :
with Iy’ (¢, q), I (¢1, @) and I3 (g1, ) given in Egs. (6.11), (6.15), (6.18),
respectively.
In the special case of forward scattering, the expression for the quark

impact factor at 1-loop order greatly simplifies. We have indeed
@ff,,g)((ji,o; s0) = @f}”“?’(ﬁ,o; 80)+@261;(,1){QG}(§1, 0, so)+counterterm|;—g .

The contribution from the one-quark intermediate state, @f},l)(@ (41,05 s0),
is given in the explicit form for arbitrary ¢ by the R.H.S. of Eq. (6.8) evalu-
ated at t = 0. In order to determine the contribution from the quark-gluon
intermediate state, @f;‘(,l){QG}((ji, 0, s9), and from the counterterm at ¢ = 0,
it is necessary to calculate the integrals in the R.H.S. of Eq. (6.19) at ¢t = 0..
This can be done for arbitrary e yielding the following results

I~j(4+) ((jla 0) — 5,\A/,)\A ﬁ F(E)%(d?)f [2 In (;_1(;)

+20(1 — €) — 20(1+ 2¢) + 20(1) — 205(e) — % - f%} . (6:20)

00 = o oy T g Sy @ 20 ()

F20(1 — €) + 20(1 + 2¢) — 2¢(1) — 24b(e) — % -3+ e} (6.21)

and

2 [T(1+¢))? 2

I§7(d1,0) = 65, 04 (am)e (—G)m(qﬁf)6 [1 + m} , (6:22)
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Let us present in the explicit form the color singlet impact factor. Per-
forming the projection on the color singlet with the help of the operator (6.1),
we obtain

a0 (,0; 50)

B 1 20(=¢) C1+ )], 5 VN2 -1 1+e€
= anadw g’ Gomr T2 (@) " an {_”f 1 +2)(3 +2¢)
s 3 15 1 ¢
+N<_1n (%) o) =Y -9+ 5+ ga 00 Ts@ 20 5)}

R A, A0N o aa I

s VN2 -1 2 I'(l—e¢) [F(G)]2 —2\e
2N [_9 N e @ (QI)}

S0 10 1ng 38 7w  bny
—In{ = — - —— =+ = . 6.23
x{ n(q_,12>+<3 3N>+€( ot e o (6-23)

The quark impact factor in the forward case (¢t = 0 and color singlet in
the t-channel) was considered in Refs. [11, 24, 25]. In Refs. [24, 25] it was
calculated for massless quarks with accuracy up to terms finite in the ¢ — 0
limit. In this particular case our result (6.23) is in agreement with the cor-
responding result of Ref. [25], though the comparison is not straightforward
because of the different definitions adopted. For details see Ref. [20].

7 Discussion

In this paper we have obtained an integral representation for the NLA non-
forward quark impact factors with singlet and octet representation in the
t-channel in QCD with massive quarks for arbitrary space-time dimension
D = 4 + 2e. Using this integral representation, we have explicitly verified
the fulfillment of the “second” bootstrap condition derived in Ref. [16] for
the gluon Reggeization at the NLA in perturbative QCD. This check is very
important since the gluon Reggeization plays the most relevant role in the

derivation of the BFKL equation at the NLA. Moreover, it represents a test
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of correctness of the calculations performed so far to determine the NLA cor-
rections to the BFKL equation. Subsequently, we have carried out explicitly
the integrations in the case of massless quarks, using the e-expansion when
necessary.

We finally note that throughout the paper we have used the unrenormal-
ized coupling constant g and the same parameter € to regularize both infrared
and ultraviolet divergences. The final result for the quark impact factors is
affected by both kind of divergences. The ultraviolet ones are easily removed
by introducing the renormalized charge in the M S scheme

2
o=ot [+ (-3%) S ™
The infrared divergences, however, are not canceled. This is expected for
the quark impact factor, since the quark is a colored object, whereas impact
factors of colorless particles only must be infrared safe. Recall that for the
colorless particles the infrared safety of the impact factors is guaranteed [26]

by their definition given in [16] and used in this paper.
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