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1 Introduction

The BFKL equation [1] is widely discussed now, because it can enlighten
an important question of elementary particle physics such as the theoretical
description of QCD semi-hard processes. It gets a special importance due to
the present experimental investigation of the deep inelastic electron-proton
scattering at HERA (see, for example, [2]) in the region of small values of the
Bjorken variable z. This equation was derived more than twenty years ago
in the leading logarithmic approximation (LLA) [1], where all the terms of
the type a”In"(1/x) are summed up. Recently, the radiative corrections to
the equation were calculated [3]-[8] and the explicit form of the kernel of the
equation in the next-to-leading approximation (NLA) became known [9, 10]
for the case of forward scattering. The large size of the corrections induced
a number of subsequent publications (see, for instance, [11]).

In the BFKL approach the high energy scattering amplitudes are given as
the convolution (see Eq.(2.5) below) of the Green function for two interacting
Reggeized gluons with the impact factors of the colliding particles [1, 9, 12,
13, 14]. While the Green function is determined by the kernel of the BFKL
equation, the impact factors must be evaluated separately. In some cases
such as, for instance, the impact factors of strongly-virtual photons or hard
mesons, this can be done in perturbation theory, while in the general non-
perturbative case there is need of new ideas for the evaluation.

This paper is devoted to the calculation of the NLA non-forward gluon



impact factors with arbitrary color state in the t-channel. Although they are
not directly connected with observable cross sections, their knowledge is very
important for the BFKL theory for two reasons. Firstly, these impact factors
can be used for the NLA calculation of scattering amplitudes of partons in the
BFKL approach. The second reason, on which we mainly concentrate here, is
the necessity to check the so-called "bootstrap” conditions [14]. The matter
is the following: the base of the BFKL equation approach is the property
of the “gluon Reggeization”, whose exact meaning was explained in details
in Ref. [14]. This property was proved only in the LLA [15], while beyond
the LLA it was checked only in the first three orders of the perturbation
theory. The ”bootstrap” conditions, obtained in Ref. [14], are just appealed
to demonstrate the self-consistency of the BFKL approach in the NLA, al-
though (if satisfied) they cannot be considered a proof of the Reggeization
in a mathematical sense. The fulfillment of these conditions, however, would
confirm so strongly the Reggeization that there would be no doubts that it is
correct. Moreover, the check of the "bootstrap” equations is extremely im-
portant since they involve almost all the values appearing in the NLA BFKL
kernel, so that the check provides a global test of the calculations [3]-[8] of the
NLA corrections, which only in a small part were independently performed [8]
or checked [16, 17].

The first bootstrap equation derived in [14] connects the kernel of the non-
forward BFKL equation for the color octet in the ¢-channel with the gluon
trajectory. In Ref. [18] it was shown that this equation is satisfied in the
part concerning the quark contribution for arbitrary space-time dimension.
The second bootstrap condition involves the impact factors of the scattered
particles with color octet in the ¢-channel. The case of colliding gluons is the
object of the present paper, while quarks have been considered in a related
paper [19].

The paper is organized as follows. In the next Section we explain the
method of calculation, Sections 3, 4 and 5 are devoted to the calculation of

one-gluon, quark-antiquark and two-gluon contributions to the gluon impact



factors, respectively, for arbitrary color group representation in the ¢-channel.
Section 6 contains details of the check of the second bootstrap condition,
which involves the octet gluon impact factors in the NLA. The NLA gluon
impact factors for the case of QCD with massless quark flavors are considered
in the Section 7. The results obtained are briefly discussed in Section 8. Some

integrations are carried out in the Appendix A.

2 Method of calculation

Let us remind that the impact factors were introduced in the BFKL approach
for the description of the elastic scattering amplitudes A+ B — A’ + B’ in

the Regge kinematical region

s=(pa+pp)’ = @Ws+pp)? = o0, t=(pa—ph)®= s ps)’ fixed,
(2.1)
where pa, pp and p/y, p/z are the momenta of the initial and final particles,

respectively. We use for all vectors the Sudakov decomposition

p=Bp1+ap: +pi, L =-p", (2:2)

the vectors (p1, p2) being the light-cone basis of the initial particle momenta
plane (pa, pg), so that we can put
2 2
pa=p1+ %pa ; pB=p2+ %pl : (2.3)

Here m4 and mp are the masses of the colliding particles A and B and the
vector notation is used throughout this paper for the transverse components
of the momenta, since all vectors in the transverse subspace are evidently
space-like.

The basis of the BFKL approach is the gluon Reggeization. In the case
of the elastic scattering, it means that the amplitude with gluon quantum
numbers and negative signature in the ¢-channel has the Regge form

() i(t)
— 2% — +
A = Zml(_—i) (%) ] e o 24)

—t



Here cis a color index, I'%:,  are the particle-particle-Reggeon (PPR) vertices
which do not depend on s and j(t) = 1 + w(¢) is the Reggeized gluon tra-
jectory. In the derivation of the BFKL equation in the NLA it was assumed
that this form, as well as the multi-Regge form of production amplitudes (see,
for instance, [14] and references therein) is valid also in the NLA. Then, the

s-channel unitarity of the scattering matrix leads to

> (I)A'A(ql ; ff) >

>

PB

Figure 1: Diagrammatic representation of the elastic scattering amplitude
A+B— A+ B.

g s dP2q [ dP2g,
Tm, ((Ar)A7F) = [t [
’ en”2) @q? ) &d?

N 04100 du.) s w 5 . .
XZ(I)EZ/{A) (JI’J;SO)A ] % |:<%> GSJR) (515@27®:| Q(B@’B) (_an_q;SO) )
(2.5)



where the momenta are defined in Fig. 1. For convenience we have introduced
the notation (which will be used also in the following) ¢} = ¢; — ¢, where
q ~ ¢, is the momentum transfer in the process A+ B — A’ + B’ . We
emphasize that the wavy intermediate lines in Fig. 1 denote Reggeons and
not gluons — the Reggeons would only become gluons in absence of interaction.
The space-time dimension, D, is taken to be D = 4+ 2¢ in order to regularize
the infrared divergences. In the above equation Ax stands for the scattering
amplitude with the irreducible representation R of the color group in the ¢-
channel, the index v enumerates the states in this representation, <I>§37,21’§' ) are
the impact factors and GSJR) is the Mellin transform of the Green function for
the Reggeon-Reggeon scattering [14]. Here and below we do not indicate the
signature, since it is defined by the symmetry of the representation R in the
product of the two octet representations. The parameter sg is an arbitrary
energy scale introduced in order to define the partial wave expansion of the
scattering amplitudes. The dependence on this parameter disappears in the
full expressions for the amplitudes. The Green function obeys the generalized
BFKL equation

WG (G, @, 7) = G236 (@ — @)
dP—2q, (R) (= = (R) (» =~
+ W’C (qluqru _)Gw (QNQZaCD s (2-6)
q'r qr

where K(R) is the kernel in the NLA [14].

The bootstrap conditions appear from the requirement that the imaginary
part of the amplitude (2.4) must coincide with the R.H.S. of Eq. (2.5) in the
case of gluon quantum numbers in the ¢-channel. The second bootstrap
condition in the NLA reads [14]

a° 2 8,a) (1)~ -
_/WWW\/N@;;A)( )(QhQ;SO)
1%

— a g 1 a)(B i, . 2 s



Figure 2: Schematic description of the intermediate states contributions to

the impact factors.

Here g is the gauge coupling constant (¢ = 4may), N is the number of colors,
w® and w® are the one- and two-loop contributions to the Reggeized gluon
trajectory, ng),gB) and I‘Ef,)xgl) are the Born and one-loop parts of the particle-
particle-Reggeon (PPR) effective vertex. The definition of the non-forward
impact factors with color state v of the irreducible representation R was given

in Ref. [14] and can be presented as

851 (@1, G 50) = (' [PrIV) @K (1. G s0) (2:8)
where P is the projector of two-gluon color states in the ¢-channel on the
irreducible representation R. The value &<, determines completely the
impact factors of the particle A with any possible color structure. We will
consider mainly just this object and call it unprojected impact factor. The
definition of such impact factors in the NLA can be reconstructed from the
one of Ref. [14]:

/ J
Car(@1s T s0)

lw(*‘ﬁg) lw(*‘ﬁﬂ)
S0\ 2 so \ 2 dsardpy ..
= <—q2> <—4,2> > /9(8A —8141%)7(2 ) Tipa
u N I m



<(Ta) 5 [ S @ o @ (A )
2) &d° s0(¢2 — q1)*

(2.9)
In this expression it is enough to take the Reggeized gluon trajectory w(t) in
the one-loop approximation. For brevity, we do not perform here and below
an explicit expansion in ay; evidently, this expansion is assumed and only the
leading and the next-to-leading terms should be kept. I‘? 1A is the effective
vertex for production of the system {f} (see Fig. 2) in the collision of the

particle A and the Reggeized gluon with color index ¢ and momentum
—qp=ap2—q | , am (sap—m4y+q7) /s <1, (2.10)

and s4r is the particle-Reggeon squared invariant mass. In the fragmentation
region of the particles A and A’, where all transverse momenta as well as the
invariant mass \/s4g are not growing with s, we have for both Reggeons the
relations

@ =-a, @’=-G"=—(@-" (2.11)
Summation in Eq. (2.9) is carried out over all systems {f} which can be
produced in the NLA and the integration is performed over the phase space
volume of the produced system, which for a n-particle system (if there are
identical particles in this system, corresponding factors should also be intro-

duced) reads

n n D—1

dpy = (2m)PsD) (pA —q— nz_:l km> ml__[l % , (2.12)
as well as over the particle-Reggeon invariant mass. The parameter sa, lim-
iting the integration region over the invariant mass in the first term in the
R.H.S. of Eq. (2.9), is introduced for the separation of the contributions
of multi-Regge and quasi-multi-Regge kinematics (MRK and QMRK) and
should be considered as tending to infinity. The dependence of the impact
factors on this parameter disappears [14] due to the cancellation between the
first and the second term in the R.H.S. of Eq. (2.9). In the second term,



QXX,B) is the Born contribution to the impact factor, which does not depend

on sq (for this reason we omitted this argument there), while (X2 )éi' is the
part of the unprojected non-forward BFKL kernel in the Born approximation
connected with real particle production:
. 2 22512 | 22572

(D @) = s Tl (B 2IE 7). @y
being T the color group generator in the adjoint representation. Let us note
that the definitions in Eqgs. (2.8) and (2.9) imply a suitable normalization of
the amplitudes Ff £1a0 namely that applied in Eq. (11) of Ref. [14] (see also
there the text after Eq. (27)). We should also note, that the definitions (2.8)
and (2.9) are applicable for the case of colorless particles as well as for the
case of charged QCD particles, while the octet impact factors @ff,’;?, entering
the bootstrap condition (2.7), have sense, of course, only for colored particles.

Considering the impact factors of the particle A, we can without loss
of generality assume the particle B to be massless, because the impact fac-
tors <I>f§:4, are properties of the particle A only and cannot depend on the
properties of the other scattered particle. So, everywhere below the initial
particle momenta p4 and pp are taken as the light-cone basis. For any gluon

polarization vector we will use the light-cone gauge
e(kypg =0 (2.14)

and from the transversality of this vector to the gluon momentum k it is easy

to get the following Sudakov representation:

_ (ke (k)
e(k) = —ﬁ pp +ei(k). (2.15)

The transverse polarization vectors have the properties
(ej(ka /\l)eL(ka )‘2)) = (e*(kv Al)e(ka /\2)) = *6/\1, A2

> etk Ne (k) = gt (2.16)
A

10



where the index A enumerates the independent polarizations of gluon, g*”
is the metrical tensor in the full space and ¢"] the one in the transverse

subspace,

o Papp + PP
(papB)

With the NLA accuracy the intermediate states {f}, which can contribute

g =y (2.17)

to the impact factors (2.9) in the gluon case, are one-gluon, two-gluon and
quark-antiquark-pair states. In the case of the two-gluon contribution, we
include the second term in the R.H.S. of Eq. (2.9), which is a counterterm for
the LLA part contained in the first term. In the Born and quark-antiquark
contributions to the gluon impact factors we will omit the argument sg, be-
cause of their evident independence on it. Firstly, we will consider the general
case of arbitrary e = (D — 4)/2 and arbitrary mass my for the quark flavor
f- Under these general conditions, we will determine integral representations
for the gluon impact factors. These general integral representations are nec-
essary for the check of the bootstrap condition (2.7). Then we will perform
the integration in the expansion in ¢ for the practically important case of

QCD with ny massless quark flavors.

3 One-gluon contribution

In the case of the one-gluon contribution, the invariant mass /sag is fixed
to be zero, because of the masslessness of the intermediate gluon G, and one

easily gets from the definition (2.9)

3 (—512) lw(—‘jl,z)

c{GY, o o S0 2¥ S0 2 4 *

oS (@, G s0) = <—q2> (—ﬂ) > Téa (FZ‘A’) , (3.1)
ql ql A

where the gluon-gluon-Reggeon (GGR) effective vertex I'G ,, obtained in
Refs. [6, 20] and [21], has the form

Tes = 9T6a [rna (14 TV @) +0, TV @] - 62)

11



Here F(Gicg(l) represent the radiative corrections to the helicity conserving and
non-conserving parts of the vertex, the é’s on the helicities A4 and A of the

gluons A and G, respectively, are determined by their form in the tensor

representation
Oxtxa = €peana0y iy s
s _ (QW Py +p%“‘pi> ( o P'PE +p‘ép”>
= 17
AAa (papB) (rpB) 8
I (g;mp ey +p’1§Apf)4)
AAa (papB)
oV + Mo v
" (g’“’ _ pM'pp +pp ) (gpy (-2 q1p(2]1u> 7 (3.3)

(rpB) ai

where p is the momentum of the intermediate gluon G. Using the Egs. (2.15)

and (3.3), it is easy to obtain the following relations:

6>\7>\A = *eiﬂeiLgiul s 5>\7ka = PJ_ PALT (QIL) )
MDAy = —e*fei/lgif ; Or,-ay = —c¢f eA’LTL (a1,) . (3.4)
with
1L 1L kikul
T,uu (k )_ gpl/ (D o 2) k2 (35)
1
From these relations one can get without any difficulty
* * 11
Z PWW 5A,AA, = _eAlfleZqu
* * 11
Z(s)\:*)\A&A)\A/ = _eA;’AJ_ng_Tp,u (QIL) ;
* * 11
Z5A,AA5,\,—AA, = —eA‘fLeZLTW (d11) (3.6)
A

which gives for the convolution in Eq. (3.1):
G ¢ e o
(I)A " }(qla a;s ) 92 (T T >A1A eA’LeAJ- |:gﬁ“’ (1 + F(+)(1)( q12)

12



+I"(G+G)(1)(—_"2)+ i (—g)—}— —wM(=g/?)In <;TO2>>
1
LT (@ )TSOD (-a2) + T, OTS (— @'2)}. (3.7)

We need now the expressions for the radiative corrections I‘gg(l), which
can be found in Ref. [20]. We present these expressions in a form slightly
different from the one used there:

(1) oy _ 2 LA=e)T?(1+e) 1/ 2 9(1+€)2 42
Too ™ (=79 = N am F(1+2e)€(__ 21+ )(1 +26)(3 + 2¢)

T'(1—¢)

+2¢(1+€) — (1 —€) — 1/)(1)) (%) + QZW

M 1:1:x —2)(m%+z —xﬁ’ze—l (+)172
[ij £ [ e - a) (420 97) - GEOE)|,
T(1— ) T2(1+¢)
(4m)2+e T(1 4 2¢)
1 Love o I(1—c¢)
“A+ o +20B+20) (7))~ (1 + ¢)(am)2+e
with

2 . 1 1 PN
AN = S5 )+ [ [ st ) (o )
f

PO =

2F @), (38)

(21 4+ 22) (L+ € = 2(21 + 22) (1 — 21 — 22)) — 4m3(1 — 21 — 22)

(m? + 212202)

F( ) Z/ / dm1d120 1758171‘2)

—o

. vex122(1 — 21 — 2

x(mf+x1:v2v2)€ 122( ! 5 2)
(mf+x1x2v)

X

b

(3.9)

In these equations I'(z) and 1 (z) are the Euler gamma-function and its log-

arithmic derivative, respectively. In order to pass from the representation of

13



Ref. [20] for the radiative corrections I‘(Gicg(l) to our expressions, we have used
the identity

_—F(+) _,2 +z|: ].+€ 2)6

1 1
. 1
_ 01 — 2y — 7 ) e
/0 /0 dx1da20( Ty — T3) (mf+x1mv ) (m?”+1?1$2172)
(tx2

. (2— 1 — x2) (m? +(1+ 26)272m1:r2) — 20 %wy29(1 — 19 — :m))]

(3.10)
that can be found also in Ref. [20]. We need also the expression for the

one-loop Reggeized gluon trajectory w(® [1]

wW(=72)
B 2N/ dP—2f _/(?‘2 z_gzNF(]_—G) F2(1+6)2(172)6
2m)P 1 g2k - )2 (4m)2+e T(1 + 2¢) €
(3.11)
Using Egs. (3.7)-(3.11), we obtain finally the Born impact factor,
A @D = —o? (T97°) | et ehgt (3.12)

and the NLA correction to the impact factors due to the one-gluon contribu-

tion,

/ / I'(1-¢I?1 1
CI)ZC,cx(/l){G}((Tl-,(T;SO):_N<TCTC> A I( €)1 +¢) x v [{ 11

aa? [m)re T 1 20) ALAL I €

. (m (2) 24, ; +9€()1(1+ :);)*(i 26)+2w(1+e)w<1e)w(1)) (72)°
vi=qy, " { ‘ } UL:(I1L:|

¢’ e F(l — 6)
B (T T )A’A g (14 ¢)(4m)2te

1 —2\€ |
+(1+e)(1+2e)(3+2e) (v%) T (w)}

14



xed 1 qu; <Z A /1 dza(l - 2) (m? + o(1 — 2)72)°

f 0
VL=

_1F1(+)(,l—}»2)> . QT;L(UL)Fl()(ﬁQ)}
4 Quark-antiquark-pair contribution

] | 6
V1=q1.1

In this section we calculate the pure NLA contribution to the gluon impact
factors defined in Eq. (2.9), coming from a quark-antiquark-pair production

in the fragmentation region:

dsar d *
cc (1){ } AR p{qq} /
D= 3 [ () @)

foAe
11,12

where the summation is performed over the quark flavors f, over the helic-

ities A\; and Ay and over the color indices i; and iy of the produced quark

and antiquark with momenta k; and ko, respectively. Integration over the

invariant mass here is convergent and we do not need to introduce the cutoff

sA- As usual, we use the Sudakov representation

mfc + Efa
551,2

where my is the quark mass. Then we have the relations

k12 =012pa + pB+ k121, ko =m} (4.2)

+ (k132 — kaf31)?
B152 ’
dﬁldﬁQ dD72k1 dD72k2

B2 2(2m)P-t
(4.4)

To obtain the last of these relations we have used also Eqgs. (2.10) and (2.12).
The amplitude of ¢g pair production in the gluon-Reggeon collision I'{ -, ,

sap = (k1 +k2)? =

(4.3)

dsar dpieqy _

27) 5(1 ﬂl*@) ((k1 + ko4 q1)L)

was obtained in Ref. [20], but we will use a more convenient, slightly different

form for it, which can be easily obtained from the expression presented there:

15



F?qq}A - 92 [(tAtc) i1%2 -Aqq B (tctA)iu',Q Aqq(l A 2):| )

Dl =9° {(tA t )

Zliz

A (1Y) a0 Hz)} , (4.5)
1112
where t* are the color group generators in the fundamental representation.
The amplitude Ay will be defined below.
Using the symmetry (1 < 2) of the phase space volume (4.4) and the

expressions (4.5), we get for the ¢g contribution (4.1) to the impact factors

D—2
e (MHaz) _ 4 d” "k
M =S [ [ st

x| Cia Y Awhyy = Coin D Al =2)| . (46)

A1,A2 A17A2
where 3 = 1 and
Cyy = tr (tAtCtC’tA' + tAtA’tC'tC> . Oy =tr (tAtCtA'tC' + tAtC'tA'tC) .
(4.7)
The amplitudes A, and A}, have the forms

Agg = ﬁB (¢AL‘$12L —2(1—-p)(earSi21) — éAmeSH)Uz ’

Al Iﬁ_ <¢A’L5'1u —2(1—p)(ear1S121) — ¢A/me5{2)vz , (4.8)

B
with
Spt = ( ki (ki +Ba) )
Bt Gatoal )

g = (kitBg) (bt Baq)
124 (k1 + Bq)% — m?« (k1 + Bq1)% — m? ’
Spy = 1 1

kfj_—m?c a (kl-}-ﬁql)i—m? ’

16



1 1
(k1 +B9)3 —m% (ki +Bq)d —m3

In these relations u; and vs are the spin wave functions of the final quark

Sip = (4.9)

and antiquark, respectively. The other amplitude which enters the expression

(4.6) for the ¢g contribution to the impact factors is

Al 2) = =022 (s =20 9) (earsS3u.) + farsmns S Joa
(4.10)
with

élL = {ZL(lﬁ — kz) = ( (kl Tt ﬁQ) + (kl + ﬁ(h) ) ,
iR

(k1 + a1+ 893 —m7 (k1 + Bar)? —m
1 1

(k1 +a + Bt —mi (k1 + Bar)t —mf

The amplitude A};(1 < 2) is obtained from the amplitude A}, by the re-

placement (1 < 2), as it can be seen using the charge conjugation. An

Sy1 = Sia(k1 < k2) = (4.11)

analogous expression can be written also for the amplitude Ay z(1 « 2), but
we do not give it here, because it does not enter Eq. (4.6). Then convolutions

in Eq. (4.6) are calculated immediately and give

S Al = 25(1 - f)eiheh, [gﬁ ((smslu)

A1,A2
—mch{QSu) 515187, + (1 =481 - 3)) 512J_512L:| )

LS A A (1 2) = 2501 - Bepch, [gﬁ ((Sgusm)

A1,A2

+m§«sglsu) 831 Sy, + (1 4B(1— ) smsm] L (12)

This result allows us to present the quark-antiquark contribution (4.1) to the

impact factors in the following form:

3 ') {q3} (@, ) = CL%y Iy + Coy s (4.13)

17



with

4 x1 1 dD Zkl /
Il =g eA’ueAu glL dﬁ SI2L512L)
f

D—2
m?“/ dﬁ/ d kl 512512>

472 P2
/ a3 / LSy st /0 4B (1 — 46(1 - B)) / G S St
(4.14)

and Do
) dP2k
IQ = g4eA+ eju |:glL (/ ﬂ/ D 11 SZlLSIQL)

dP- 2k
o / 45 [ GrypreSsi)

dD 2]€ dD72k. , .
s [ s st [ asa-asa- o) [ S sttt
(4.15)

Let us consider first ;. Using the relations

dD 2]‘61 dD72k1 v € v m?
/WSHLS{EL:/WS{&SHL =3 [th qgﬁ

m% m2 m?
+J1 (‘hvﬁ) J{“’( ., ﬁ2> e (QM,?N , (4.16)
m3 dP—2; k! (k — )Y
J{W <UL7 _f> = — 2 L N
1) [t

% {gu/o dz (m% + B?z(1 — 2)52)°

1+ 2¢ my
e (m% + (1 — x)v2)

! 2 2 2)\¢€ m?
_TL¢(WL)/O de (m} + Fa(1 —2)7%) (1 — (2 + (1 —1‘)172))] "
(4.17)

/6726
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dP—2k, o . m2 m2
/W%Sm:ﬁz 2[111 (qz,—ff + 21 5_:{
m?2 m>

-1 (%’27 ﬂ—2f> - (@12, ﬂ—2f>

L, aP-2k -
i < @—f> = | G (4 ) (G )

52

} : (4.18)

|**='°

5. (1 —¢) ! Love
2ﬁ2 2 e /0 dx (m?@ + 52;{;(1 — ) 2) (m% TP ) , (4.19)

together with Egs. (3.5), (3.9) and (4.14), performing also the following
change of the integration variables in Eqs. (4.14) and (4.16)-(4.19):

x1 = fr, xo=03(1—1x), (4.20)

we can set I; in the form

Fl—¢ 0 o, [ 1 +) (- (> ) (a
I = —94W€A‘ﬁ€fu [gwl <F1( Na?)+F (@) - (@)

AT (@) B (@) +4T5 (a) B (@) 4T, @) B (3)
(4.21)
To calculate I we use the following relations which can be obtained start-
ing from Eqgs. (4.9) and (4.11):

dDizkl v dD72k1 v F(l — 6) v 1 €
/Wséﬁslu = / @npT 3715151 = W{ {QL (“ (m?)

1 1
+%/ dz (m?c+x(1—x)172)6) +2/ dz (m5 + 2(1 — 2)7?)"
0 0

(1 —2)7? vﬁvi}

(3 + 20— mi2) 1
+{} M_ﬁm_{.}
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(4.22)
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[t = OO gy [ o -y

2
el
(3 + 20— 2)72) He=a-m5
Then we get from Eq. (4.15)

F(l — 6) « 2 €
— 94 G 11 2
I, =2g W@fﬁ@u zf:{ {QW (—i (mf)

X

v=(1-P)d/+Ba }

1,1
2 o\=2)€
+/0 /0 dﬁdm(mf+x(1 x)T )

142 -28(1-p) 2m7 >
€ (m? +xz(1— J:)172>

(1l —2)v?

mfc + (1 - 1)172)

o[ [ it

u=(15)qh+{ ] vi=BqL { } vi=((1-B)¢j+Ba1) |
Finally, the quark-antiquark contribution to the gluon impact factors is given
by Eq. (4.13) with the color factors Clyzf&, defined in Eq. (4.7), I; and I
expressed in Eqs. (4.21) and (4.24), respectively, the functions Fl(i) being

'UL,u'ULu:|
2
v

} . (4.24)

the same as in the previous section (see Eq. (3.9)).

5 Two-gluon contribution

The two-gluon contribution to the gluon impact factors defined in Eq. (2.9)

can be presented as

’ dS d ’ *
cc GG} /> = AR AP{GGCY} tre c
G NN, Gs0) = D /H(SA*SAR)i(%r){ 'Taoya (F{GG}A/> ;
A1,A2

11,12

(5.1)
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where A1, A2 and 41, is are helicities and color indices of the produced gluons
with momenta k; and ks. The expressions for the Sudakov representation
of the produced gluon momenta and their invariant mass are the same as in
the quark-antiquark case (see Egs. (4.2) and (4.3)), but with ms = 0. As for
the integration volume element, we should introduce in Eq. (4.4) the factors
O(sn — sar) and 1/2! due to the gluons identity. The two-gluon production

effective amplitude has the form [3]
Tloaya =49°q; [T T Ace + (1 < 2)] (5.2)

while the other amplitude F‘E’GG} 4 in Eq. (5.1) can be obtained from this
relation by the evident substitutions A — A’, ¢ — ¢’. The gauge invariant
expression for the amplitude Ag¢ is rather complicated [3], but in our gauge
(2.14) it becomes very simple [20] (see below). Just as in the quark-antiquark

case, we can use the (1 « 2) symmetry of the integration volume element to

obtain
' (DV{GG} )~ = dﬂ dD_zkl
oMY@, ¢ s0) —894qfqi2/ /9 — SAR) 30— 7 @n)pT
x |Cs%y Y AccAGe + Cia Y AccAGa(l < 2)| | (5.3)

A1,A2 A1,A2

where 3 = $; and
C cc’/ _ (TC’ITCI) (Tc'chl) ) C cc’ = (Tc’l Tc1> (TC’ITq) )
344 A’A e’ 1A4 c’A Alc

The amplitudes Acq, Anq and Ao (1 < 2) in the gauge (2.14, 2.15) have

the forms .

Ace = =5
2q?

500 ) (€55 (e Tas)
w(eiean) (chufns) + (0= 9 Grea) (.7 ) |
, 1

66 = g2 {—5(1 —B)(e1rer)) <€A’i§/1u>
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GO CH A R RO I GO (eﬁéiuﬂ ,

1 !
o1 =) = g | =301 = 8) (ci.65.) (ears P )

#(eiien) (G Bhu) + 0= D) (e ()| . 69)

where e; and ez are the polarization vectors of the produced gluons and

i :<£ (k1+ﬁfh)>
PR )i/,

B < (k1 +B8q) (k1 +Paqr) )
1 (k1 + 897 (k1 + Bar)

ki+a+ 691 (k4 Ba)t

Egs. (5.5) leads to the following expressions for the convolutions in the rela-

Elzu = ﬁiu(l —2)= (_(

tion (5.3) for the two-gluon contribution to the impact factors:

> Aocds = s | (P + (- 67) (Cheas) i

A1,A2
1280 Heheh 280 A A+ 0B0- B) e eﬂ Ry R,

* 1 *
Z AccAGa(l+ 2) = 1202 {(52 (1-08)%) (el 1ear) g
Mo qlq
+2001 = B)ek e, — 2001 = 5) (1= 1+ 801 = B) ety |t
(5.7)
which allow us to get through Egs. (5.3) the relation

H< (1){GG}(

AA’ 7q750)

_ g dP- k1 sy \
=20t | f oo =) 5 s 7+ 0 97)
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x (e 1eas) gp +2B8(1-B)en, e, —281-6) (1 — (1 +€)B(1 — B)) el e,
X |CaCu RIE RYy | + Co5u RO RYy | (5.8)

It seems to be convenient now to change the integration momentum k; in the

following way:
ky — —fky , dP 2k — p22eqP 2, | (5.9)

which states the substitutions

—

(ki —@1)? = 1 _ 1/ k (k1 —q1)
SAR — 7(1*5 ) R12¢—>—ER12¢ =75 (E_i(klﬁ)i)l ;
R 4}71 ’ :l< (k1 —q) o (k1 — @) )
121 ﬁ 121 /8 (kl — Q)i (kl — qﬂi N )
1 1, 1 ﬁ(ﬁkl - ‘ﬁ - BQ) (kl - (h) )
R, ——=R, =—=(= . (510
S A ( Ok — ¢, — B2 (-2 ), (5.10)

Consequently, the representation for the two-gluon part of the impact factors

reads

1 I - \2 2e—1 D—2
e (MV{GGY =~ ~ N o4 _ Bk — 1) BPTHdB A7k
YWY (@1, 50) = 29 A /0 (1 (1— B)sa ) (1—-73) (2m)P—1

X |(B+ (1= B)?) (e ear) g+ 2B(1 — B)ex, e, — 28(1 — B)

(= U+ 30 = D) ek | | Cotfh B, Riy. o+ Cuf B R |
(5.11)
The lower limit of integration over 3 is not affected by the 6-function in the
integrand of the R.H.S. of this equation and can be put equal to zero. The
integral over (3 is convergent in this lower limit when the parameter sy goes
to infinity (there is, however, the usual infrared divergence at 3 = 0, e = 0,
but it is irrelevant for the separation of the QMRK and MRK contributions
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determined by the parameter sp). As for the upper limit of the integration,

we easily get

(ky —q1)*
SA ’

Brmaz =1 — (5.12)

There are two factors I3 and I, in front of the two color structures 0325;,,

and C45,, respectively, in Eq. (5.11). The first is

Bmaw 32e— ld dD 2k
b=t [ [ e e | (P + (= B7) (hea) g

128(1 = A)ed, et — 26(1— B) (1= (1 + OB(1 - B)) e eA,,}Risu "
(5.13)

while the second can be obtained from I5 by the replacement

RIIZL - RIQIL ; 6maz —1. (514)

Notice that the second of the substitutions (5.14) is possible because the
integration over 3 in the expression for I is convergent. Let us firstly consider
the factor I~3 In this case the integration over 3 can be carried out without
any difficulties (see Egs. (5.10) and (5.13)) and leads to

= 4 dP—2p, 0 SA (1 —2¢) B .
B=at [ | ((1&—@)2) * o A0 v+ 20)

2 (5 + 2¢)
* 11 * 1 *1 1
x(eyeal) g, + At2 )eApeA’ T AT 20(B 420 A eAu} Rib Ry,

(5.15)

Now we should also include the counterterm given by the second term in the

R.H.S. of Eq. (2.9) into the two-gluon contribution to the impact factors, as
it was already mentioned in Section 2. Using Eqgs. (2.13) and (3.12), it is easy
to check the following relation for the counterterm, taken with the minus sign

which appears in Eq. (2.9):

, dP 2k, 1 s
counterterm = C3¢,,2¢* / —_— [— In | —2A
ad @mPtL 2 \so(kr — @1)2
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< (¢ 1eas) g,ﬂ R R, | (5.16)

Therefore, we can make the redefinition I~3 — I3 in order to include the

counterterm contribution:

~ dP2k 1 s
o b (1 0
I3 — I3 = 2g / 27D 1 |:<21n<(];,1§1)2>

1-2 i
ﬁ + (1) — (1 + 26)) (e iear) g
2 1ol (5 4 2¢) oL

+

(1+2¢) T o o Gy | Biyy R - 1
(1 + 2¢) Caucary (1 +2€)(3 + 2¢) €4 MeAV} 12140121 (5.17)

Then the full expression for the two-gluon contribution to the gluon impact
factors (2.9) does not depend on the artificial parameter sy and takes the

form
oG (G Gt sg) = Ca’Ca I + CyCar Ly - (5.18)

The next step to do is the calculation of I3. With help of Egs. (5.10) and
(5.17) we obtain

1 N . . AT(1 — )T2(1 + €
b= 30" @sea) [ B + 2@ - o e 1

(47)2+eD(1 + 2¢)

ot | (1 (33) + Sah + 2000 - 200429 ) (Shesean) g

q e(1 + 2¢)
2 , ) )
+7(3 T30 6A+ueju:| {JQN (g1) + 5" (1) — 3 (qL)} , (5.19)
with
1(62)—/Mln a7 v? _2F(1—e)1‘2(1+e) 2, 7
) emP N Rk — g2 T (m)PeT(1+2¢) e \ 02

x (7%) + % (% +2¢(1 — €) + 29 (1 +2€) — 29(1) — 2¢(1 + e)> (172)6} , (5.20)
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_ (Am)*T(1 + 2¢) dP—2k . ﬁ 72
K, = 4F(1 — €)F2(1 + 6) / (27T)D*1 1 <EQ> (E - (j”)Z(E - 51)2, (521)

m; I(1—¢€) 21
Iy (v) = g1 ’UL7—f ‘ = 1-9T*(1+e)
mf 0

32 (4m)2te T(1 + 2¢)
s ) - e OO ] e
e(1+¢) (I+¢e)(1+2¢)
While the integrals J> and J{" (the second given in Eq. (4.17)) have been
calculated exactly, K7 is more complicated and we can calculate it only in
the form of an expansion in e. We do it in the Appendix. Substituting the
exact results for J> and J§", I3 becomes

T(1—¢)T?(1 +¢)
Iy = —2g* ek 9 | Fa@ ) + Fa(d?
3 g (471_)24_E F(]. ¥ 26) CA €AV YL 1 2((]1 ) + 2(q1 )

_1 In 8_0 +1_L
€ q? e (142

1 LoNE 1
T+ oGtz TW 2"“”26)) (7°) Kl} 01001206 +29
<@ T + @) T - @) ] e
where
. 1 S 3 4 1
B(0%) = E(ln ()5~ T+20 TT10B+20

+(1) + (1 —€) — (1 +¢€) — (1 + 2e)> (172)5 ) (5.24)

The calculation of I4 is quite straightforward and can be performed starting
from its definition through Eqs. (5.13) and (5.14). We obtain

2€
1o / Bﬂ - {62+(1—6)2)(6*A¢€A¢)95+25(1_ﬁ)eAﬂe*i

*1 1 dDizkl / v
=281 -83)(1—-(1+e)B(1 - B)) ek eAu:| /WRzuRlu . (5.25)
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This equation, using Egs. (5.10) and (5.22), leads to

g
I = 24" / B(l—fﬁ) [(ﬂ2 + (1= B)?) (1 ear) gt

12014 0) (B(1 - ))? efmem]

g {(1 = B2y (ay 1) + B3 (@) — I3 (1~ Bayy + 5(119} » (5:26)
which can be put in the form

JLA-9T49) L, [ (11 +8¢) ((ﬂ)ewz)e)

Iy = =2 ’
4 9 @m)2re T(1 + 2¢) A |91l (1 1 263+ 26) \\ N1 @
_ 2 ((—»1/2)6 o at + (512)6 qﬁqﬁ)
(1 +2¢)(3 + 2¢) 11 @
2 4 2(1 +¢) A(1+€)
A ZKy — - K — K e 5.27
+gJ‘L(6 2T + e(1+ 2¢) 4) (1+ 2¢) 4Ll ( )

The integrals

Ko= [ s (((- o+ 507) - = @) -5 @)')
Ko= [ s (o +omr)
= | “as - ) (- P+ 63)°)
kit = [ ass -9 (- it + o))
(=0 + )" (0= D)} +Bon), 6529

(1= B)gi + Bar)’ ’

which appear in Eq. (5.27), cannot be calculated at arbitrary e. We evaluate

them in the Appendix in form of an expansion in e. Let us note that the

evident relation
Ky = KT, (5.29)
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is not very useful for us, because these two integrals should be calculated
with different accuracy (see factors in front of these integrals in Eq. (5.27)),
so that we are forced to consider them separately.

At this point the calculation of the two-gluon contribution to the gluon
impact factors defined in Eq. (2.9) is completed. The two-gluon contribution
is given by the relation (5.18) with the color structures C’3CACA, and C’4f40:4,
shown in Eq. (5.4) and the coefficients I3 and Iy presented in Eqgs. (5.23) and
(5.27), respectively.

To obtain the impact factors @547,%;,”) (q1, @; S0) with the t-channel state v
of the irreducible representation R of the color group SU(N), it is enough to

perform the convolution in Eq. (2.8).

6 The check of the bootstrap

We have now all the contributions needed to check the bootstrap condition
given in Eq. (2.7). First of all, we must consider the gluon non-forward
impact factors in a generic state a of the octet color representation in the
t-channel. According to Eq. (2.8), this means that the four one-loop order
contributions to the unprojected gluon impact factors, due to one-gluon,
quark-antiquark and two-gluon intermediate states given in Egs. (3.13), (4.6)
and (5.11) respectively, and to the counterterm given in Eq. (5.16) must be

contracted with

A iTe,

cc' | Pgla) = Pec 6.1

Since the projection on the octet color state a gives

\/_ "D ¢’ e _Ea \/_ avs cc'_ﬁa

iVN(cc'|Pgla) (T¢T e T4a, VN{(cd|Psla)Ci%a = 1 T3 4,

. 11 cc’ N? a

Z\/N<CC |P8|a>C3AA’ = TTA/A y

iVN (e |Psla) oy = iVN{ed | Psla)Caia = 0., (6.2)
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we obtain for the octet gluon impact factors

VNS @@ s0) = VN (ee [Pol) 5L (7. @ 50)

1 N o S
= —ZTZ/A!J?N(eAueAi)W(l)(—q2) In <q_,—‘;>

1—¢) T2(1 +¢) 1/1 4 1
T ’ 4N2 ( *_]/_ -+ e - -
tlaag 2(4m)2+e T(1 + 26) AnAv|T1LC\ ¢ (1+26)+(1+e)(3+2e)

1+6)(1 +126)(3 +20) T (q1) (7?) }LTA,AQ N

+2¢(1)—2¢(1+2e)) ()~

F(l_e) * v =)/ =
XWBAJ’_ eAV|:glLF(+)( )+4Tfl(q_L)F1( )(q2):|

Iy
+T% 49" N? ((4 )2+)e

2(1+¢)

T+ 2¢) (Crreas) EE (% + % +20(1 4 2€¢) — 26:(1 + e))

= 49\ € F ]. — € * ].
((ql/2) + (qf) > "‘ K1:| — TX’A94N# (eAzieAL) ;

Xzf:/o drx(1 — ) {(m?—{—x(l—x)(jim)e—{— (mf—{—:v(l—a:) 2)} , (6.3)

the one-loop Reggeized gluon trajectory w(!) being given in Eq. (3.11), the
tensor 71" in Eq. (3.5), the functions Fl(i) in Eq. (3.9) and the integral K;
in Eq. (5.21). Using the integral representation (3.11) for the one-loop gluon
Regge trajectory, we get for the L.H.S. of the bootstrap condition (2.7)

1 a * N 2 S
L.H.S. = 7§TA/Ag (eA/leAL) (w(l)(7q2)) ln <q_,_(;>

1T +e)

T4, . *N
Haad N et T+ 20
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1/1 4 1
e =
xeA, ez, (=g ){QJ_J_ (6 (1+ 2¢) + (1+€)(3+ 2¢)

+20(0) - 200420 ()~ Ty gsaga a0 @)

1 —e)

a 3 (1)
+TA’A9 2(1+6)(47T)2+6 A’ eAI/ ( )

[QLLF(H( ) 44T (0, ) PO (G )}

T(1—¢) I'2(1+e)
-7, 5N2 *
Aa9 N S e T 1 2¢) (CArL€at)

X/ dD—2q1 q’z {1(14_ (11+76)
@Cm)P1 GG —9? e \e  (1+2€)(3+2)

+2¢0(1 + 2€) — 20(1 + e)) (@) + K1:|

F(]. — 6) dD72 q (72
275 49° N———= (el
+ A’AY (47-[-)2-{-6 (eA LeAL) / (27T)D 1 q (q1 _ q_)2

1
X Z/ dxx(l — x) (m? +z(1 - x)cj’f)e . (6.4)
7 Jo
The analogous expression for the R.H.S. of Eq. (2.7) takes the form

1 . .
RHS. = —5Th 49 (e ear) w®(=q?)

1 a * R 2 S
_ETA’AQ (e 1eal) (w(l)(—q2)) In <q_'_(;)

a (1_€)F2(1+6) * 1 1 l/l 2
7TA’A N(4 )2+€ F(1+2‘)€A’[L6Al/w( )( ) giL; 72

N 9(1+€)? +2
2(1+ €)(1 + 2¢)(3 + 2¢)
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+2h(14¢€) — (1 —¢) —1/1(1)) (@) + 1+ +126)(3 + 2¢)

T (q1) (7%)°

r1—e)
a 3 «L 1 (1 =2 v (+) =2
549" 51 e CAneane D () |1 AT (@)

v (7 a F(]' B 6) * ]' —
+4T1" (g1) F )(q2)} - 2TA/A93W (€areal) gw(l)(—QQ)
1
X Z/ drz(l—x) (m} + (1 — 2)q?) (6.5)
7 Jo

where w(® is the two-loop correction to the Reggeized gluon trajectory and
we have used Egs. (3.2)-(3.5), (3.8) and (3.9) which give the gluon-gluon-
Reggeon effective vertex with one-loop accuracy.

We see that the helicity non-conserving parts (the terms with the tensor
T!") are completely cancelled in both L.H.S. and R.H.S. of the bootstrap
condition. This fact is very important, because up to now the possibility
to present in the Regge form the helicity non-conserving part of the elastic
scattering amplitude with gluon color quantum numbers in the ¢-channel was
not checked anywhere.

As for the helicity conserving part, the bootstrap condition for it is not
quite independent from the calculation of the two-loop correction to the gluon
trajectory [4], since it was performed assuming that the gluon Reggeization
holds, by comparison of the s-channel discontinuity dictated by the Regge
form (2.4) with that calculated from the unitarity. Therefore, the check of
the bootstrap condition for the helicity conserving part gives more a test
of correctness of all the calculations involved in the determination of the
trajectory and of the impact factors.

We notice that there are cancellations between the terms in Eq. (6.4)
and (6.5) containing the factors In(s¢/¢?) and the functions Fl(j[)7 respec-
tively. Then we arrive at the following equality, which must be valid for the

bootstrap:
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w(Z)(ﬂjZ’) - u)(2)(6‘)(*52’) + w@)(@)(,qﬂ)

_ a2 PA = (A +¢) [ dP2q
=g'N 242+ T(1 + 2¢) / (2r)D1

q F(l (11 + 7¢)
@@ — @2 Le\e  (1+26)(3+2¢)

+20:(1 4 26) — 20(1 + f)) (2 (@)~ (‘TQ)E)

X

f% (% +2¢(1+2¢) — 2¢p(1+¢€) +2¢(1 —€) — 21/;(1)> (%) + 2K1}

+2¢*N

rl-q1 [d”?%q ¢ !
e ¢ | @ G ;/ dea(l - a)

X {(m? +a(l—2)®) —2(m7 +a(l - x)cj’f)e} . (6.6)

Here w®(&) and w®(@) are the gluon and quark contributions to the two-
loop correction to the gluon Regge trajectory w(?; they are known and can be
found, for example, in Ref. [20]. The cancellation of the quark contribution
in both sides of Eq. (6.6) is evident if one compares this equation with the
expression (71) of Ref. [20] for w®)(®@), TLet us check the cancellation of
the gluon contribution. To do this, consider the integral representation of
Ref. [20] for the gluon part w(?(%) of the two-loop correction to the gluon
trajectory:

u)(2)(6)(_52)294]\72/ dP2q dP g P
2 (27T)D71 (27T)D71 q“l2q—‘22

q? q?
X|: — 2/ = 2ln( — — 2)
2( — D*a2 — Q) (@ — @)
1

1 (@ — 9? g2 1
‘(q-a+q-a—q->21“( 72 >+(2(cfl—®2(§z—®2 +<cfl+qa—q-’)2>

1 (11 + 7€)
X<z+2(1+26)(3+26)+2’(/}(1+26)—21/)(1+€)+1/)(1—6)—1/}(1)>:| . (6.7)
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It can be written in the form

4 n72 D—2 —2
W@ (g2 = SN / a4
2 (2m)P=t (¢, — 9)°

1 dD72k q'2 (72
13 | @op i\ 5 ) T
2J (2n) k2/ (k—q()*(k—q)?
/ dD72k <CT12> (jlz
i\ ) e
(2m) k2) k2(k — q1)?

+1 (2/ dD72k q—'12 7/ dezk q'Z )
2 @mP1 g2k — @)? @m)P1 g2k — q)2
1 (11 + 7€)
X —
e 2(142€)(3+ 2¢)

Let us now express the first integral into square brackets of this equation

+2¢(142¢) —2¢p(1+€)+ (1 —¢) —1&(1))} . (6.8)

through K, given in Eq. (5.21), and calculate exactly the other integrals,
making use of the relations (3.11) and (5.20). So doing, we get just the first
term in the R.H.S. of Eq. (6.6), what proves that the bootstrap condition
(2.7) is satisfied as far as the gluon NLA impact factors are concerned.

To summarize, we have verified the fulfillment of the bootstrap condi-
tions for the helicity non-conserving and conserving parts, separately. We
stress that, while for the helicity non-conserving part of Eq. (2.7) it gives the
first check of the possibility to present it in the Regge form, for the helicity
conserving part it represents also a check of the previous result of Ref. [4]
for the two-loop Reggeized gluon trajectory w(?. So, at least the integral
representation for w(?) obtained there is correct. But since there is also an
independent check [16] of the integrated result of Ref. [5] for w(?), the final
result of that paper is fully verified.

7 Gluon impact factors in massless QCD

In this section we calculate explicitly the gluon NLA non-forward impact

factors (2.9), restricting ourselves to the case of massless quarks. In this
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case most integrations can be carried out exactly at arbitrary ¢ and there are
only few integrals which we are forced to calculate as expansion in e. The
Born contribution to the impact factor, which we present here for the sake

of completeness, is not changed, of course; it is (see Eq. (3.12))
"(B) = ¢’ e * v
(I)CACA(’ )(QhQ_) =9 (T T )A,A eAlfleALg,ff - (7.1)

The integration in Eq. (3.13), as well as the integrations in Eqs. (3.9), which

give the functions Fl(i) can be easily done, leading to
2(1 ! e
Z A+e / drxx(l — x) (m? +z(1—2)v?)
T
nT2(1+€) (1+¢)?

mf=0

T T +20) e(1+20)(3+20) @), (7.2)
() (572 _nyP’A+92( (146 1 22
R7(57%) mmo  T(1+26) € ((1+2e) (1+€)(3+2€)> @) .
) (52 _ (1 +¢) 1 e
S m =0 T(1+2¢) 2(1+€)(1426¢)(3 4+ 2¢) (@), (7.3)

where ny is the number of light quark flavors. Then from Eq. (3.13), with the
help of last three relations and of Eq. (3.5), we get the one-gluon contribution
to the one-loop correction for the gluon impact factors (2.9) in the massless

quark case:

’ 1
! (W{GY - a2 PA =20+ )\ 7~ _ 1 (e el L
Taw @ ’8°)<g N r39) =W (T ek

1 S0 N € So L9\ € 1/2 (11+9€)
pro= 1 20 12 1 el 2 L
X{g“e<“(q1'2> (@) “(q*f) (@) )+m€(€ 2(1+26)(3+2)

ng (1+e2+e -1 S2\€ | (=€

s g o+ — 9 —200+9 ) (@) + @)
2 npN (G rave , BOdTL ane

+(1+€)(1+26)(3—|—26) (1+€7 W) < qLﬁL (@) + quLL (@) )} '

(7.4)
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For the case of the quark-antiquark intermediate state contribution, all
integrations in Eq. (4.21) (see for instance Egs. (7.3)) and the integration
over the variable = in Eq. (4.24) can be easily performed in exact form. As
for integration over the variable /3 in (4.24), it cannot be completely carried
out for arbitrary e. With help of the Egs. (3.5), (4.7), (4.13), (4.21), (4.24)
and (7.3) we obtain

-1
ee' (1) {ad} 12 L1 - T?(1+¢)
Pax (q“@(g N e T 20

2 Agcypc’ A A A e «1L 1 Nf
:Ntr<t tere' 4" 4 1A tt)eA,#eAuﬁ

v 2(1+€)2+5 72\ € 2\ € 2\ €
X{_gue(1+e)(1+2€)(3+2e) <(ql @) - (a )>

2 GUAY ave | BUdEL aave 4l o
+ x + AL -4
(1+€)(1+26)(3 + 2¢) ( 13 (@) 4, (@) 7t (7°)

2 ’ ’ ’ ’
+tr (tAtCtA £ 4 ¢4 A tC) ek,

N (67 @)

_ 2 (qﬂqﬁ (—»/2)6 + @9l (q—»z)ﬁ)
(T+e)(1 4 2€)(3 + 2¢) a2 ! @, 1
1 2 4
—g"" | K3 — —K — K 7.5
gJ‘J‘(e 5T (1 +20) 4> Tt 4M] ’ (7.5)

with the integrals K3, K, and K} | presented in the Eqgs. (5.28).
As for the NLA two-gluon contribution to the gluon impact factors for the
non-forward scattering, found in Section 5, it does not change in the massless

quark case. For completeness we write down its expression below with help
of Egs. (3.5), (5.4), (5.18), (5.23), (5.24) and (5.27):
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5D 6D AN EA 9+ o) -
A4 (47)2+e T'(1 + 2¢)

= (1) (197°) it o (n ()
+1n (%) (@) ~In (;—‘;> (@) ) + 9 1(% - %
o2 o1+ 40—+ ) (@) + @) - @)

+gJ_J_21 <1+2w(1+2e)2¢(1+6)+21/)(16) 21/1(1)) (q"2)5 " Ky

2 Qiiq{i oave | D) e dUdL o )}
+ G°) +—5— (@) ——5 (g
(1+2e)(3+2e)< a2 (@) @, (@) I (7°)

2 , (11 + 8¢)
_ = (71 Tcl> (Tcl Tcl) - 1 l“’
N? ( oA e A |91 Le(T+2)(3 + 20)

72 S2\€) 2 (qﬁqﬂ Love , BudiL
(@) +@)) - rragmray (M @)+

€ 2 4 2(1+e) 4(1 +¢)
72 W 2Ky — Ky + ~—2LK K™ )
X(ql) >+9LL(6 2 € 3+€(1+2€) 4)+(1+2€) 411 » (76)
with the integrals K; and K, defined by Egs. (5.21) and (5.28), respectively.

So we see that, to obtain the gluon impact factors (2.9) in the massless quark

case, we should calculate the integrals Ky - K4 and K} . This calculation
can be done only in the form of an expansion in ¢, as it was already mentioned
above, and we perform it in the Appendix. In order to understand what is the
accuracy according to which the integrals must be calculated, we notice that
further applications of the non-forward impact factors imply a subsequent
integration over ¢ in the form like that in the bootstrap condition (2.7) (see
Ref. [14]). In this subsequent integration the integrand is singular in the

regions of ¢ — 0 and ¢ = ¢ — ¢ — 0, so that in these limits one must

36



have exact expressions for the impact factors (or, at least, expressions which
lead to an accuracy up to finite terms in the physical limit ¢ — 0 after the
integration over ¢;). An analogous situation was observed in the calculation
of the forward BFKL equation kernel in Ref. [7] and detailed explanations
can be found there. In the regions where the integrand is non-singular, it is
enough to know impact factors with accuracy up to terms of the type €°. The
above discussion, taking also into account the coefficients in the integrals K3
- K4 and K} | given by the expressions (7.5) and (7.6) for the corresponding
contributions to the impact factors, make clear what terms we should keep
in the expansion in € for each of these integrals.

For the case of the forward scattering, being
7=0, @ =a, (7.7)

we have further simplifications, which lead to the possibility to calculate the

integrals K; - K4 and K}/ | in exact form without expansion in ¢; we find
1 e
K, =0, K> = - +2¢(1+2¢) — 2¢(1) | (¢2)

K _(—o2€ K _1 2 € KM _lqﬁ_ql’l N 78
3—QI)5 4—6(Q1)a 4Ll_6 q%L (ql) . ()

Let us stress that the results for these integrals shown in the Appendix for the

non-forward case do not have the correct asymptotics as in the forward one
and can be used only for 7 # 0. We did not care in the Appendix about it,
because these two cases are well separated and also because the integrals for
the forward scattering are calculated exactly. For example, we consider here
the expression for the forward gluon impact factor with the singlet color state
in the t-channel, putting also the helicity A4 to be equal to A4 and taking
an average over this quantum number. Consequently, the Born contribution

reads

N2
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and the one-loop one takes the form

11 2¢
OM (. oy = OB Mgy ()2 L
¢ (@iso) = 2w (=4r) | ~In @) "6 r206+29 YW
g+ (22 31+9 | ny 2439 (7.10)
3 3N)21+2)(8+2) N36(1+¢)]’ ‘

where the one-loop Reggeized gluon trajectory w(!) is defined by Eq. (3.11).
In these two last equations we also have used the relation (see Eq. (2.8))
5cc’

cd [Po0) = ——==—
(e [Pol0) = e

(7.11)

and have omitted the common color factor d44-.

The gluon impact factor in the forward case (f = 0 and color singlet in
the t-channel) was considered in Refs. [22, 23]. In Ref. [23] it was calculated
for massless quarks with accuracy up to terms finite in the ¢ — 0 limit.
Unfortunately, the comparison of our result (7.10) for this particular case
with the corresponding result of Ref. [23] is not straightforward because of
the different definitions adopted. First of all, we have used up to now a fixed
energy scale so independent of the virtualities of the Reggeized gluons. The
transition to the general case of any factorizable scale so = /f1(¢1, @) f2(32, Q)
in Eq. (2.5) can be made to the NLA accuracy without changing the Green
function by the substitution [13]

RV s = RV > =
<I)(A’Au)(q1aQ§ 80) — ‘1’54/,4”) (Qh q; 50)

1 [dP2g, » . Lo 7,
+_/ (fz(f'(i QQRA)(B)(QMCDK(R)(B) (@ q159) In <M> , (7.12)

2 4y S0

where K(®)(B) is the non-forward BFKL kernel in the LLA [1, 12, 14]

KC(R)(B) (G, @ @) = T2 25(D—-2) (@ — B@) (w(l)(—(j’f) +w(1)(—(j‘1’2)>

+

2 =2 =12 12 22
g (q1 &>+ %0 _(Tz> ‘ (7.13)

& — —
CnPT R\ (@ @)
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The coefficient ¢ is equal to N for the singlet and to N/2 for the octet rep-
resentation. In the particular case of the forward helicity conserving impact
factor and Regge-motivated scale so = |¢1||¢2| used in Ref. [9], it changes our
result (7.10) to the expression

23 (@1 50) @y -2y (11 ng
e — (5 5%)

11 (2+e)nf Can 2 €
+<6+ GN) M (373

€ 67 w2 Sy 1 dP—2q ’

Y (5 VY A B 2N g2 / L P
N( (18 6) 9 ﬂ TN P 42(¢r — @1)? n(tff")’
(7.14)

where Cp = (N? — 1)/(2N) and we have also made an expansion in € in

the integrated part with accuracy up to terms finite in the limit ¢ — 0.
The scale so = |71]|¢2| was adopted also in [23], but the impact factors were
defined there on the basis of their infrared properties, so that additional
operator factors Hy, and Hp were introduced [10, 23] in the Green function.
Therefore, one has to compare our result with changed scale (7.14) not simply
with the expression (5.11) of Ref. [23], but with this expression plus the piece
connected with the operator H. To our opinion, there is misprint in the
expression (3.12) of Ref. [23] for this operator, which should contain the
additional factor 1/T'(1 — €). If so, one can easily obtain from Ref. [23], that

the account of operator H leads to

rY () W, [l ny 11 (2+6n;\ Crng (2 €
Oy T[T ey e T ey ) v 373
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where hgo)

and hgl) are notations of Ref. [23] for Born and one-loop parts
of the forward helicity-conserving color singlet gluon impact factor. Note,
@(GO)(B) and hgo) have different normalization, but comparing Eq. (2.5) of the
present paper and Eq. (2.1) of Ref. [23], it is quite easy to see that the R.H.S.
in (7.14) and (7.15) must coincide. Therefore we should check the equality

T (%) o (7)o
= |n({= | | —5)¢ q_'(quﬁ)}:
/(L?(qrm)2 s (G — @1)? @ = @) 4

dD—2 - —;2 . . .
2/ (@ —qqa)Z‘ . <Z2) 9(‘“2 ~ _‘“)2> =0 (@9
T T 1

which must be satisfied with accuracy up to terms non-vanishing in the limit
e = 0. As it is evident from second line of Eq. (7.16), the expression there

has no poles in ¢, therefore it is enough to check that

dz(]r @2 9 - \2
I:/mln<§)9<%_(%—%) =

1 P2k BT
4—2/#1111@29 (k2—(k—ﬁ)2) -0, (7.17)
@ ) k2=

where k is a dimensionless vector and n an arbitrary vector with 772 = 1.

Then one can make two changes of integration variables

EH%, k— —(k — ) (7.18)
to obtain
1 dzk R . 1 27 ldk‘
I:_,—/_,—lnk—ﬁ201—k2 =T/ d / — In(1 + k? — 2k cos ¢).
s kz( )y o )Q12o¢0k( ?)
(7.19)

As last step the integration by parts over k gives an expression which can be

easily integrated over ¢ with zero result:
2r [t dk (1— k%) (% do
I'=—= [ —-Ink —1|=0. (720
7 /0 Ko { 2m /0 (14 k%2 — 2k cos ¢) ] (7.20)

40




8 Discussion

In this paper we have obtained the NLA non-forward gluon impact factors
with any color structure in the ¢-channel in QCD with massive quarks at
arbitrary space-time dimension D = 4 4+ 2¢. Then we have used the integral
representation in the case of the octet impact factors to check the second
bootstrap condition [14] and have found that it is satisfied. As it was men-
tioned above, this fact is very important from the theoretical point of view
for the BFKL approach and demonstrates in very clear way the compatibility
of this approach with the s-channel unitarity in the NLA. After this check
we have carried out integrations in the form of an expansion in € in the ex-
pression for the impact factor (2.9) in the important case of QCD with nj
massless quark flavors. For this last case the forward impact factor can be
calculated exactly as a function of €. As an example we have presented in
Eq. (7.10) the singlet color helicity conserving impact factor. It was already
obtained in Ref. [23] as an expansion in e with the accuracy up to terms
finite at ¢ — 0. We notice that, expanding our exact result (7.10), leads to
an expression which is in agreement with the result of Ref. [23] when taking
into account the differences in the definitions of impact factors.

Let us note, that throughout this paper we have used the unrenormalized
coupling constant g, regularizing both ultraviolet and infrared divergences by
the same parameter €. The ultraviolet divergences are contained only in the
one-gluon contribution and come from the one-loop correction to the gluon-
gluon-Reggeon effective interaction vertex (see Section 3). This vertex was
defined in Refs. [6], [20] and [21] in such way that the ultraviolet divergences
can be removed by simple charge renormalization in the M S scheme

n 2 — €
g9=g(pp * {1 + (% - gﬁc) % - (8.1)

After this renormalization has been performed there are still divergences of
the infrared kind in the gluon impact factors because the gluon is not a

colorless object. Note, that the definition of impact factors given in [14] and
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used in this paper guarantees the infrared safety of the impact factors for

colorless particles [24].
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A Appendix

In this section we calculate the integrals K; (see Eq. (5.21)), K> - K4 and
K4 | (see Eq. (5.28)), appearing in the expressions (7.5) and (7.6) for quark-
antiquark and two-gluon contributions to the gluon NLA non-forward impact
factors (2.9) in completely massless QCD. Let us firstly consider K;. For the

non-forward case we can present K7 as follows:

Ky = (62)€f€1 )

. 24€ D—2
7 o m) F(1+26)/d kln<%) 1 E——

A1 —e)T?2(1+¢) ) (2m)P-1 (ki — k1)2(k — k)2
with _, .
Z q1 7 q1 7 7 N2 .
A N (R A 0. A2
L= 2 =17 (k1 — k2) q# (A.2)

We need for K; an expression having accuracy up to terms of the type °
and being exact in the regions ki — 0, ks — 0, according to the discussion
after Eq. (7.6). With the help of the equality

m(LYZ 4 (1)
r2/)  da \ g2

and of the generalized Feynman parametrization (see, for instance, Ref. [5])

(A.3)

a=0

the integration over k gives
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~ I'(1 4 2¢) L /Tl —e+0)
K1_2F(176)F2(1+6)/ dz( Tl+a) °

1 1 _ /
dex® (1 —z)s @
/ — — T—eta ) . (A4)
0 [m ((1 —2)k2 + zk22) +(1—2)z(1 - z)} a=0
It is not difficult now to obtain a linear term in « in the expression inside

the large brackets of the last relation in order to perform the differentiation.
Then the integral K 1 takes the form

K= 1(1 +20(142¢) — 201 +€) + (1 —¢) — ¢(1)>
(1 + 2¢) elnx (1-2)°
2F2 1+6) {// e (1-2) [ ((1—z)k2+zl_{ ) (1—913),2(1—2)}176

/ / 1 —a)(1—¢) ((1—z)k12+zz%’22—z(1—z))
dzdzx ln:L‘ — - 25} . (A.5)
((1 —)kZ+ zk22> F(1—a)z(1 - z)]

This expression is still exact and holds for any . We should now perform the

expansion in ¢ to carry out the integrations in Eq. (A.5) in an approximate
form. As for the first integral in the R.H.S. of this equation, we find that it
is order O(¢) and we neglect it in our calculation. In order to evaluate the
second integral, we divide the region of integration over x in two parts in the

following way:
1) 0<z<d, 2)d<z<l, 6—0. (A.6)

In the first region the integration becomes simpler and gives without any

difficulties the following contribution to the square brackets in the R.H.S. of

Eq. (A.5):
1 - € 5 €
-5 ((k2) + (E2)") +m?s, (A7)
with accuracy up to € type terms. In the second region, we can evidently

put € = 0, because the integration is convergent. The contribution of this

integration region, analogous to that of Eq. (A.7), is
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1 1
—1In? 6—In 8 In(0k2k3)+ / dz / dr
0 5 X

—

[x ((1 )k + 2 22) +(1—2)2(1— z)}

=—In®6+Ink’Ink} . (A.8)

As it must be, the dependence on ¢ is cancelled in the sum of the contributions
(A.7) and (A.8), so that the limit 6 — 0 does exist for this sum. Expanding
with the required accuracy the first term and the coefficient in front of the

square brackets in Eq. (A.5), we get
(G +20420 - 20049 4601 - 9 - v)) = 5 +0).

T(1+2¢) 1 .

— = =— (1 1)) . A.

T2(1 + ¢) p (L+w'() (4.9)
Using now Eqs. (A.7) and (A.8), for non-zero k; or ks (these vectors cannot

be both zero at the same time, because ¢ # 0, according the definitions (A.2))

- 1 o 1 k2
Ry= S (F2i2) — L2 (RO _
1= 5 n(kl k2) ;In (E;) (A.10)

we obtain

We should now include the correct asymptotics in the limits of small k1 or
ky. Tt is easy to check that the correct asymptotics of K in the limit, for

example, ki — 0, is given by the expression

~ /o 7)2te € S0\ € D=2
(i 0) = s () [ g (5) g

+/(C2l:)%ln (%) m] : (A.11)

where 71 is an arbitrary vector with 772 = 1, the omitted terms being at least

of order |ky| in the region under consideration. The integrals in the R.H.S.
of Eq. (A.11) can be easily calculated and, using also the symmetry of K,

under the replacement El — Ez, we arrive at the conclusion that the function
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1
2¢2

(2- (Ef)e - (E;’)E) +% (¢(1+2e)—¢(1+e)+w(1—e)—¢(1)) (A.12)

contains the correct asymptotics of K, in both limits El, ks — 0. To avoid
double counting when including this asymptotics into the intermediate result
(A.10), we should add the function (A.12) in its exact form there and subtract
it in the expression obtained by expanding in € up to terms non-vanishing
in the limit ¢ — 0. The final result for K7 defined by Eqs. (A.1) and (A.2)
takes the form

1, e[l 72\ (a2\" 7 i
=0 (4o ()~ () ) weon () ()]
(A.13)

where we did not expand in e the common factor ((j’ 2)5, because it would

produce an additional complication, although such an expansion is possible
in Eq. (A.13).
Our next step is the calculation of Ky, defined in Eq. (5.28). It can be

written in the following form:

o= (5o +29 v ) (@) + @)

+26/ dz nzl+2€ (_C'](QI +_’2q1)1)7€ . (A.14)
0 L+ )2 (@1 + 2q/)?)

In the region ¢1, q; # 0 (here and everywhere below k = |E|), when we can
restrict ourselves to consider K> with accuracy up to terms linear in ¢ (see
Eq. (7.6)), the integration in Eq. (A.14) is performed in a quite straightfor-

ward way and the final result takes the form

1
Ky = == —In{q}) + 4et/(1) = 2€Ing1 Ingf — c6?, (A.15)
with NG
cosf = (qlq})’ 0<O<m. (A.16)
9191
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Unfortunately, the correct asymptotics of the R.H.S. of Eq. (A.14) in the lim-
its ¢1 — 0 and ¢; — 0 cannot be expressed in terms of elementary functions
only, so that it seems to be better to leave the integral K5 in the exact form
of Eq. (A.14), which is convenient for subsequent applications of the gluon
impact factors (2.9).

The remaining integrations of K3, K4 and K}| (5.28) are easily per-
formed and the results we obtain for the non-forward case ¢ # 0, valid also

in the regions of small ¢; or ¢, are:

€
K3 =1-2c¢+eln(qiq)) + z ((qf —¢;*)In <Z—}) + 2q1q195in9>
1

+2¢* (2—2Ing + In® q) (A.17)
1 5 ¢ 2eq1 44 .
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%ea2al 2 2
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(A.18)
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(A.19)
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