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1 Introduction

This paper 1s devoted to the development of an apparatus for the study of
the multipole synchrotron oscillations stability. We follow here a method
developed in [1], where this problem was considered on two models: a model
of macroparticles and a continuum model. The model of macroparticles does
not allow to take into account the real particles distribution and the spread
of synchrotron frequencies along the bunch. The second model gives more
correct, but more complicated results, using the Vlasov equation, leading
to the integral equation for a distribution function. This equation and the
stability conditions for a distribution function of one bunch were considered
in [1]. The stability conditions were obtained using the Nyquist criterion. But
the application of this criterion in the case of the asymmetrical multibunch
beam is rather difficult, if not impossible.

We develop here a method for calculating the growth rates of the multipole
longitudinal oscillations of the arbitrary multibunch beam interacting with
the RF structure cavities, under the same restrictions as in [1]:

e sinusoidal oscillations in the absence of excitation;

e small multipole perturbations due to the interaction (compared with
the undisturbed distribution);

e the interaction only with the cavity modes with the wavelength greater
than the bunch length;

e the amplitude dependence of the synchrotron frequency is taken into
account in approach of small amplitudes, keeping only zero and first
order terms of this dependence.

We assume also that the undisturbed distribution functions of all bunches
are identical (in particular, all bunches have the same length), but their
currents can be different. We have got the matrix equation, which contains
the eigen values under the sign of integral. When the assumptions made
above are valid, we can transform this equation to the linear eigen value
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problem (where the eigen value is a complex frequency shift if we neglect the
amplitude dependence of the frequency, or a rather smooth integral function
of the frequency shift in the other case, which can be used to find the shift
itself for all unstable modes).

2 Development of a method for a multibunch
beam

2.1 Vlasov equation

We start, following to [1], from the linearized Vlasov equation, subjected to
the Laplace transform (assuming that the multipole oscillations are small as
compared with the undisturbed distribution function):
= oF . Jfo
F(,Jd, s) — 00+ Q—+ L[J]=— =0. 1
SF(6,J,5) = (1, 1,0) + Q50 + LS (1
We use the next denotations: s — the Laplace variable; Q — the syn-
chrotron frequency; J and ¢ — the action and synchrotron phase variables;
fo — the undisturbed distribution function, not depending on the time in
the rotating reference frame; f(v, J,t) — the disturbance of the distribution
function; F (¢, J, s) — its Laplace transform: F (v, J, s) = L[f (¢, J,1)].

A forcing term in (1) L[.J] is determined from the equation

. O0H
J = —%,
H = —e/Ezodz,

E. 18 the longitudinal component of the electric field on the equilibrium
orbit in the reference system rotating with the equilibrium particle.

2.2 Separating distribution functions for all bunches

A distribution function in eq. (1) describes the whole multibunch beam. For
our purposes, we rewrite the whole beam distribution function as a sum of
separate distribution functions for all ng bunches in the beam:

F= iF’.
=1
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As each bunch oscillates in it’s own separatrix, we can further use the
space orthogonality of the distribution functions of different bunches.

Thus, instead of one equation (1) we get a system of equations for bunches
distribution functions:

5 or! . Of}
sFU (Y, J,s) — (0, J,0) + Q% + L[J]ﬁ =0,l=1,.. ng (2)

Note that in L[J] the currents of all bunches are summarized, therefore
(2) does not split into ng independent equations.

Following to [1], we can calculate the forcing term for the particle in the
[-th separatrix with the longitudinal coordinate

2wl
2= 0 R+ 2(J)sin(y) = n—OR'i‘ZO(J)Si”W) (3)
as
Euo(z) = — Z MR o 7 (s — imwo) e (),
k,m
hence,
H(z)=e Z %eimz/REzkak(s — imwo) lm (8) =
k,m
. R . .
=e Z 6mwAmn(J)%elm€lEzkak (5 - meO)Ikm(S)’
kmn
and
. oOH . n . .
L] = To0 —eRY emwAmn(J)gelmelEzkak(S—WWO)fkm(S), (4)
kmn
where

ethmi/ R — gimf Z e A (J),

Tim(s) = ecN/Ezk,_me,J, s)e” i Bayd g,
Iim(s) = > _I,.(5) = > ech; /Ezk,_m > e EI( s)e Ry d ) =
j=1 j=1 q

= ZechEzky_mZQﬂ'/Fg(J/’S)Afnq(t]/)dt]/e—im%.
Jj=1 q

5



The distribution functions can be spread into the Fourier series over the
synchrotron phase :

F($,J,s) =Y ™ F(J,s), Jo(w,]) = [(,,00 =Y ™ fon(J). (5)

Substituting (4) and (5) into (2), we finally get a system of integral equa-
tions for n-th harmonic of the multipole oscillations:

(s +nQ)FL(J,s)—

8f0 ZAmn ””G’E skm Zi (5 = imwo) Lem (5) = fo, (J),
or
5_60 ( ,8) _(S_i_an)a ()
j=1 q
where

KS.(J, 7 5) =

_ 8f(l) Ij/[() n . . , im(&l—ej)
- oJ (8 + an) mZm(S - meO)Am”(‘])Amq(‘] )6 ’ (7)

Zim (s — imwy) = Z T (s — imw0)|Ezkm|2.
k
For small amplitudes of the synchrotron oscillations, we can consider them
approximately as sinusoidal, thus the coefficients Ay, (J) are

Apm(J) = Iy (% %) . 8)

Near the resonance we can keep in (6) in a sum over ¢ only the resonant
term with ¢ = n:

fon(J)

{ 1 ! (7! r_
FL(J,s) /\Z/A (J,J', (J,s)dJ—(8+inQ), (9)

= 1, ...y, N, A= 6[0.

We have got a system of integral equations (9) for ng distribution functions
F!(J,s). Further we shall drop the multipole number n - the index of F\ and

Af{n, keeping it only at f (J).



2.3 System of equations for counterrotating electron and
positron beams

The system of equations obtained in previous section for multibunch electron
beam can be generalized on the case of counterrotating electron-positron
beams as it was made in [2] for the model of macroparticles: substitution
of positron bunches with equivalent counterrotating electron bunches which
pass the resonant cavity at the same time moment as the primary positron
bunch. If the cavity i1s placed at the angular distance 8y from one of the
points of beams interaction, the longitudinal coordinates (3) for particles in
k-th equivalent bunch are

. 2wk .
z = (6 — 200) R+ zo(J)sin(y) = (n— —200) R+ zo(J)sin(). (10)
0
Thus, the final system of equations for ng electron and ny positron bunches
is the same system (9), but for { = 1, ...,ng,n0 + 1, ..., 2ny and with account
of By in terms of (7) describing interaction of counterrotating beams:

2r(l - j)

ng

el,pos el,pos __
677 — g

bl

2r(l - j)

el,pos pos,el __
0, —0; =
o

=+ 26,.
The upper indexes el,pos refer to electron and positron bunches corre-
spondingly.

2.4 The number of eigen modes

Remember that in the model of macroparticles, the number of eigen modes
of bunches oscillations is equal to the number of bunches, i.e. in the simplest
case of one bunch there exists only one mode. But, if we consider the kernel
of our integral equation, we shall see that it consists of a number of terms, to
which, in general case, should be equal the number of independent solutions.

Now, we shall solve this contradiction.

Let’s consider the degenerated kernel (7) for the simplest case of one
bunch (ng = 1,1 =j = 1). We want to show that in this case only one eigen
function and its eigen value exists in reality. Dropping the subscripts [ and
j, we have

Fo(J,s) —/\/KM(J, J' 8)Fa(J' s)dJ =0, (11)
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dfo N

- n .
Kon(J,J',s) = % Z EZm(S — zmwo)Jn(ma\/j)Jn(moz\/T),
m=—N

B 2
*=Vmar>

Here we consider the homogeneous equation in order to find the eigen
values and eigen functions. The number of terms is limited by the maximum
harmonic number N (due to finite frequency band of the impedance, for
example). Replacing (near the resonance) s with —inQ in Z,,, and denoting
Zni1 = Zm (Fin — imwy), we have

ofs N
Kon(J,J') == % > E(Z;g — (7)) Jn(ma/T) I (mar/J7). (12)

For a degenerated kernel with finite number of terms the solution can be
searched in the form
N
afo 1
Fn ) = AT Bm n . 1
(J,s) 37 (s + i) xn; Jn(mav/'J) (13)

Using orthogonality of Bessel functions Jy, (maw) for different m, we can
write the matrix equation equivalent to the eq. (11):

N

n

Bm_/\_ Z+_ Z) mm’Bm’: 5 14
RUL = Z5)) 3 G =0 (14
dfo 1

G Jn(maN/J) T, (m' o/ T)d.J.

=) 9T s+ inQ(J))

For a Gauss distribution

L
S 0 1
fO(J) 27TJ06 ) ( 5)

neglecting for a moment the amplitude dependence Q(.J), we can write,

following to the formula (2.12.39(3)) of [3]:

1 2 2
— e~ WD ey (he/2a),

—ar® 1 (bx)J, (ca)dx =
/0 ze (bx)J, (cx)dx 5
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with denotations

?=J a=1/Jy, b=ma, c=ma,

-1
Gm m!

- T —mP(m))?)e o /4 / 2
™= (s + inQ(0)) I (m'ma® Jo/2).

The equation (14) can be rewritten as

N
> Mot Bs — ABy, = 0,

m'=1

Moy = C’me_(m2+(ml)2)“/21n (m'mk),

1 n
— + _ —\*
Cm 47Tm( m (Zm) )a
Jo ) s + in(0)
— A2 _ _ _
K=a J0/2—7R2MQ, A_(s—i—mQ(O))//\_T,

Using expressions for Jy (Jo = ¢?MQQ) and for synchrotron frequency
(Q% = (eqVsin(¢s))/(2rR?|M])), where ¢ and V are the RF harmonic num-
ber and voltage amplitude and o is the r.m.s. length of the bunch, we can
write

_2n| L2 o
 eqVsin(os)  R?

In approach of small bunch length, if N2k < 1, one can use approximation

I (m'mk) ~ _((m’mﬁ)

3 5 ). (16)

In this case all columns of the matrix M,,,,,» are proportional to the first
column. With the transformation matrix

Mo Mis My
B T My Mn _lej
pa_) 0 E 0
0 E

we have



where

= 3 Cemrr B
My, = Myy;
e = Mug, — Mm%—i;
My, = My — M11% + i My Mlk - Mp %ﬁ)

In approach of small bunch length, only first column contains nonzero
elements, thus, the characteristic equation is

Mi,—A 0 .. 0
M}, A0,
MY, 0 .. —A

Its solutions are
Al =M, Ap=0,k=2 .. M.

Ay corresponds to the solution analogous to the solution with the model
of macroparticles and all other zero solutions correspond to 1/Ax = co and
to the zero terms in solution of the equation (6) (for the case of one bunch).

From another hand, in approach of small bunch length, the kernel (12)
does not contain a set of independent functions, but all terms are proportional
to one function (JJ')*/%. As a result, there should be in fact one term in
(13) and we get the matrix equation of order 1, with one eigen value. And
when the terms of the kernel (12) become different at the bunch length, only
then the matrix equation of order N will have another nontrivial solutions.

Increasing the bunch length, so that approximation (16) becomes not
sufficient, we get nonzero elements of M’ in 2-nd, 3-rd, ..., N-th columns.
Keeping the first nonzero term in power series of these elements, we find
them to be of order

Mue  In(8)In(lkk) — In(Ik)In (ki) (1= k*)(1-17) ,
M7y I2(x) 4n+1)

As a result, all eigenvalues (zero and nonzero) have a correction of or-

der (NTQ’“)Z.Thus, there arise additional modes with nonzero A, whereas the
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first solution A; corresponding to the model of macroparticles only slightly
changes (at small bunch length).

Thus, we have shown, that at small bunch length, we get the solutions
corresponding to the model of macroparticles and increasing the bunch length
leads to arising additional modes.

Obviously, in general case of ng bunches in the beam the whole set of
ng - N eigen values should contain ny nonzero eigen values and all others
eigen values in approach of small amplitudes should be equal to zero.

In the next section, we will consider the case of multibunch beam.

2.5 Transformation of the system of integral equations
into one integral equation.

A system of integral equations of kind (9)
Flla) =2 / KY9 (¢, &) F7(&")dz' = f'(2),
j=1

I=1,..,ny 2 €la,b]

can be rewritten as one equation (see [4]):
F'(x) — /\/K/(x, VP (2"Yd2' = f(x), (17)

v, ¥ €a,a+nAl, A=b—a,
F'(z) = F'(z — (I = 1)A), when z € [a+ (I — 1)A a+[A];
K'(x,2') = K¥(x = (1= 1)A, 2’ — (j — 1)A),
when z €la+ (I — 1)A a+ 1A, 2 € [a+ (j — 1)A,a+ jA].

A solution of eq. (17) can be written [4] via a resolvent T'(z, ', A, s):
F'(z) = f’(m)—|—/\/F(x,x/,/\,5)f/(x/)dx/. (18)

The poles of T'(z,z’, A, s) are the zeroes of its denominator, an integral func-
tion D(A, s), each pole Ag(s) corresponds to the addentum of the solution
with the time dependence exp(sit), where Ag(s;) = ely. Note that the real
part of si defines the growth rate of this addentum and Ay (sg) = el defines
its amplitude. Therefore, our purpose is to find the zeroes s of the function

D(A,s) at A = ely.
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This function can be written as a power series of A (see [4], p.87) with
the coefficients depending on s :

A k
') C’k(s), (19)

D(A,s) = 1+§: (_k

at+ngl
Ci(s) = / Dety|K' (v o, xp)|dey...dey, o, B=1,..k,

a+ngA | K'(zy,21) ... K'(x1,2p)

Cr(s)= [...f dey...dzy =
a K'(xg,21) ... K'(wg,zp)

no no atri A atriA
= > [ e [ dnDen] e, ) =

ri=1 re=1 +(ri-1)A at+(re—1)A
no b [(Tlrl(l‘l,l‘l) e KTTE (l‘l,l‘k)
= Z [ dey..dzg. (20)
r =1 a K™z, 21) o K7™ (g, 2p)
e = 1

In [1], a single bunch beam case was considered. Further, we shall calcu-
late Cj(s) for the kernel (7) describing the multibunch case.

2.6 Derivation of the equation kernel in the approach of
small bunch length

For small amplitudes of the synchrotron oscillations, (i. e. for the harmonics
with the wavelength much more than the bunch length), then the Bessel
functions in (8) can keep only first term of their power series:

() = O (o) - () e

If this approximation is valid, then the determinant in (20), with account
(8) and (21), can be written as

K7 o) = (n’ﬁ)z)k ()"

Detk
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k
1, afg’/ﬁjl -
L 20 P Dety|(J; i)Y D
XH_H1<IQS+ZTLQ(JZ) 6k|( ]) l]|’

where R '
Zy; = Z mzn_lelm(el_ej)Z(s — {mwy)

is the matrix of impedances. (Note that if the impedance has a resonant
form, the summation over m can be fulfilled with the Watson-Zommerfeld
transformation (see App.1) and Z can be presented as a sum over cavity
resonant modes.)

The factors (J;)*/? and (Jj)"/2 can be removed from the determinant,
thus all the factors depending on the action, which must be integrated in
(20), are removed from the determinant:

k
s Ir, afrl/at]z n
Dety | ”(l‘i’%ﬂ:{H(I mj)}
i1 N0 :

k
n K .
——(=—)"| Detp|Z...].
X((n!)z(QJO) ) elilZrir,]

Calculating Cj(s), we must integrate only the term in first braces.
Denoting

L ofyjoJ N
N = | =—Y " _(J/J)"dJ, Ny = N6 29
! /Ios—I—inQ(J)(/o) s N 101k 5 (22)
n K
A= -\
(n])2(2) )
S=ZN,
we get:
Cr(s) = A" > Dety]Sy,,| = A*K! > Det| Sy, |-
ry = 1 1<ri<r2<..<rp <k
e = 1

The determinants Dety, |§mrj| represent the main minors of the order k& of
the matrix S of the order ng:
R S11 o Sing
S=| ... .
Snel -+ Snone
13



It can be easily shown [5] that the sum (19) with these coefficients being
the sums of the main minors of one matrix S, has a form of a characteristic
equation of matrix S:

. 1 .

In this approach we get automatically C, = 0 for k > nyg.

We have not still used the assumption of distribution functions identity for
all bunches. If we do not take into account a dependence of the synchrotron
frequency on the amplitude in (22) , we can factor the denominator depending
on s outside the integral sign and calculate the matrix elements in (22) for
different shapes of bunches. But the dependence of the synchrotron frequency
can influence significantly on the multipole oscillations stability. To analyze
this influence, we use the mentioned above assumption, that the undisturbed
distribution functions of all bunches are identical, thus we can deal with a
single integral function of s, instead of ny different functions for all bunches.

If the undisturbed distribution functions of all bunches are equal, 1. e.

fh = fo (see (19)), then, denoting

N;j:f—;(sij,
) = { [ 22 oy} | [ Lonrar. e

dfo n /o2 \"! QI
Ag = AX - "dJy = — | —= _—
0 { 57 /%) J} n! (232 2V sin(¢,)’
we can write the dispersion equation D(A,s) = 0 as
Det|AgZN' — g(s)E| = 0. (24)

Note that usually we assume that the zeroes of this function s; are close
to —in§2, which we substitute in 7 to simplify the equation.

2.7 Complex frequency shift calculation

We have got the dispersion equation (24) in a form resembling the equation
gotten via the model of macroparticles for the dipole oscillations. A variable
to be found from this equation, a Laplace variable s, is included into 1t in a
non-linear way. We deal with the nonlinearity in the matrix of impedances in
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usual way, substituting the zero approach s = —inf2 into its elements. Our
main interest is a function g(s), nonlinearly depending on the value to be
found.

Denote as As the complex shift of the multipole oscillation frequency
(multiplied by 7) for particles in the center of bunch (at J = 0):

As = s+ inf2(0).

In the case of small amplitudes of oscillations we can neglect the amplitude
dependence of the synchrotron frequency in (23) and hence

ASZ' = 4, (25)

that corresponds to the model of macroparticles.
When it is necessary to take into account the amplitude dependence of

the frequency

J
() = 20)(1 - £ )
0
(Jo determines the size of the bunch, the derivations for £ are given in App.2,
see eq. (31)), we see that a problem breakes down into two steps:

1) calculating the eigen values g; of the equation

Det|AgZN' — ¢;E| =0 (26)

and

2) calculating the values s; as ¢~!(g;), using iteration technique, for ex-
ample.

Note that the Laplace transform of all functions was made for Re(s) > 0.
Hense, the expression for g(s) and the dispersional equation are obtained
also for Re(s) > 0. In order to deal with a function depending on only one
parameter, we define

s +1inQ(0)
T i,

and, for gaussian distribution,

00—z ..n -1 00 00—z ..n -1
G(z) = {/ £ dx} {/ e_xx"dx} =n! {/ £’ dx} =
0o Z+x 0 0o Ztx
_g(z - (=inQ€Jo) 4 infd)
- —inQQ€J0 ’
G(z) is defined for I'm(z) > 0, which corresponds to Re(s) > 0.
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The function G(z) reflects the upper semiplane of the variable z, (i.e. the
right semiplane of the variable s) on the region V; at the fig.1. The maps on
fig.1 correspond to lines with Re(z) = const and I'm(z) = const, for cases
with n=1,2,3. Note that G(0) = n and for 2| > 1 G(z) m z+n+ 1.

The function g(s) (G(z)) is defined, analytical and has the inverse func-
tion for Re(s) > 0 (Im(z) > 0). The poles si in this semiplane give the
exponential growth of the distribution function exp(sit). Therefore, for all
dangerous modes the growth rates can be found as sy = g7 (gx). With other
words, if G = #’EUD € V1, then the mode is unstable and its growth rate
can be found with help of inverse function.

In the code, the growth rates can be found in two ways:

1) in approach of macroparticles, i.e. supposing the frequency spread
along the bunch much smaller than As = s 4 in2(0), in this case As, = gy,
and

2) for all unstable modes - with the continuum model - the correction to
gk, taking into account the finite bunch length and the frequency spread on
this length, can be found as As, = ¢~ 1(gx), for G € V4, Re(Asy) > 0.

Note that in the case of |g;| < [£€2(0)| (i.e. for small current I or for big
r.m.s.length of the bunch &) the solution can differ essentially from the model
of macroparticles. In particular, the unstable modes for which g¢; are in the
region Va (see fig.1) become stable with account of synchrotron frequencies
spread.

One can consider the value of frequency spread |£Q2(0)] as a character
boundary between two models ( the model of macroparticles and the con-
tinuum modes): if |g;| > [€2(0)], the model of macroparticles describes
the system very well and the iterations taking into account nonzero bunch
length give negligibly small corrections and are redundant; in opposite case,
if |g;] < |€92(0)], the frequency spread decreases essentially the growth rate
(or even eliminates instability at all) and changes the synchrotron shift.

3 A code for longitudinal multipole oscillations
instabilities simulations

A code was written for computation of the growth rates and shifts of the syn-
chrotron frequency of multipole oscillations, in resonant approach, i.e. when
the obtained solutions are close to corresponding harmonic of the synchrotron
frequency.

The data necessary for calculation are:
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Figure 1: G(z) for Im(z) > 0, n=1,2,3.
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1. The parameters of a storage ring:

e the revolution frequency and the synchrotron frequency;
e the harmonic number;

e the accelerating voltage and synchronous RF phase;
2. The parameters of the beam:

e the average beam current;

e the particles energy;

e the number of bunches in the beam;
e the current of each bunch;

e the length of bunches;

3. RF system spectrum:

the resonant parameters (resonant frequencies, shunt resistances and qual-
ity factors) of all modes of all RF cavities to be taken into account or tab-
ulated values of real and imaginary parts of the impedance in necesary fre-
quency range, with sufficiently small frequency step;

4. The multipole number.

A code 1mplies the possibilities:

1. to calculate the eigen values of the equation (26) analytically for a
symmetrical beam, 1. e. for a beam with equal distances between neighbour
bunches and with equal charges of all bunches;

2. to solve numerically the eigenvalue problem for a beam with a gap;

3. to input different currents of all bunches (a most common case).

The growth rates and the shifts of the synchrotron frequency can be found
from the eigen values of (26) in two ways:

1. without iterations, which corresponds to the model of macroparticles,
when the amplitude dependence of the synchrotron frequency is neglected;

2. with iterations, taking into account the amplitude dependence of the
synchrotron frequency in the approach of small amplitudes, when the spread
of the synchrotron frequencies along the bunch is much less than the syn-
chrotron frequency itself.

Note once more that the limits of the code reliability are

1) the considered impedance frequency range and the bunch length such
that “’Z‘%U <1 and
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2) calculated frequency shifts should be much less than the synchrotron
frequency itself, in order to have the possibility to consider oscillations with
different multipole numbers independently and to linearize the matrix equa-
tion, using not shifted synchrotron frequency at calculating impedances at
side frequencies mwy & n2. But if obtained frequency shifts for a some eigen
mode appear to be too large, one can scan the solution in some range of
synchrotron frequencies and choose the solution at that frequency, at which
calculated frequency shift will be much less than the frequency itself.

Appendix 1

Applying the Watson-Sommerfeld trasformation to the kernel

The series

+oo
Sy =Y m ezt (27)
m=—0o0
in the expression for the kernel (7) can be summed up in the case of resonant
impedance having a form

/

_ ps
2(s) = (8" — s1)(s — s2)’ (28)

;8 — v, _ 1 _ i
§ =—, S12=xW2 — V1, N1 = 5, V2= vy
Wy 2Q)

The series includes Z(s — émwy) for s = —in{ (near the resonances
of longitudinal oscillations). Thus, we should take the impedance at s’ =
_”’“‘)57:”1”‘ = —imﬂr + v/, where m, = w, fwy, v = —infl, /w,.

In order to calculate the sum (27), we shall break the impedance (28) into
2 parts:

Z(s) = Z1(s) + Za(s), S(0) = S1(0) + $:(0),

where S1 () can be approximately substituted by the integral and [Z2(s)| — 0
at |s| = oo so that the Watson-Zommerfeld transformation [6] could be
applied to S3(f). Denoting so = s’ — v’ (sg is proportional to m), and
5’172 = 19—V = %ivy — 11 — V', we have:

2a(9) = L0507 by S
§) = —— —)" —(—=
! 51 — 82 s S0 S0 ’
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Zz(s):M((i)M 1 shy, 1 )

51 — 89 S0 55— 851 S0 8—82.

S1(8) can be calculated if we shall take into account the bunch angular

length 0y = o/ R:

S 9 _ = 2n—1 im€Z+ —m2€§_
1(0) = m e AT e =

m=—00

__°F lz(m%k 1 m%k 1 _1_2 2k — z—mgk_z)nqun_k(H) ’

517 %2 k=1
where, for 8y < 1,
242 d T ,
Sk(6) = ZmZke—m 63,imé (_d(92))k(\6{_(:6_(9/290) )~

m

E

( for 6 =0,
a (—) —(6/200°  for 0> .
(

=
=)
DMMDM

B
Al

mi o = imy(s1 0 — V') = imy(—v1 & ive) — n,.

Now, let’s calculate Sy(0) =5 f(m) =3, m*"~! ””9Z+

Considering m as continuous variable for f(m), we can see that the
only poles of the function f(m) are the poles m; 2 of the impedance Z,
in the upper semiplane (mj o are defined above). Besides, the function
f(z) in our case is such that the the integral over the upper semicircle C'*
Jou f(z)e=27HmGld; — 0 when the radius of this semicircle Re — oo,
if—2r < 8 < 2m.

According to Watson-Sommerfeld transformation [6], S2(6) can be calcu-
lated as

+oo
Zf(m) = P.V./_ f(2)dz — FZR@SLQ(Ctg(ﬂ'mLz) + 1),

o 1,2

with summing over both poles of all resonant modes of the impedance.
In this expression Res; » are the residuals of the function f(z) in the points
mi 2
tpm,

L1y ap—1
R651,2 = (1 + ZI/_) 1n2 Zml 20
2

Finally, we have:
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inpmy v n—1_im o
Sa(0) = — p2 Z(l + zy—l)miz Le 1’2€(ctg(7rm172) — 1 -sign(0)),
1.2

)

. 1, 0<0<2n,
sign(0) = ~1, —2r<0<0.

The infinite sum S is replaced by the finite sum with number of terms equal
to double number of cavity resonant modes.

Appendix 2
The amplitude dependence of the frequency of synchrotron oscillations

Consider the equation of synchrotron oscillations:

2

q}S.— (cos ¢ — cos ¢5) = 0, (29)

Sin @
¢ 18 RF phase of the particle, ¢, is the RF phase of the synchronous particle,
the accelerating voltage is V cos ¢p5, 2 is the frequency of the synchrotron
oscillations (Q? = (eqVsin(¢s))/(2rR?|M|)).

For small deviations off the synchronous phase ¢, the equation (29) can be
spread into Tailor series and, in first approach, describes harmonic oscillations
with frequency €2 independent on the amplitude of oscillations. In order to
find the amplitude dependence of the frequency, one should take into account
higher terms of Tailor series.

We shall search the solution of the equation (29) in a form

= s —|—€X(t),

where ¢ is a small parameter and X (¢) is a periodic function.
Spreading the equation (29) into Tailor series, we get the equation for

X (¢):

Sin @

L sin ¢ (eX)? +...) = 0.

1
(sin ¢geX + — cos ¢y (eX)? — a7

eX + 2

or

. 1 1
X +0°X = 692(—E cot s X2 + 5&(3 +..) (30)
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At € = 0 the period of the solution Xg(t) is Ty = Zﬁ At € #£ 0 we search
the solution X (¢) with a period

T = To(l + a(e)) = To(l + h1€ + h2€2 + h3€3 + ),

in a form

X(t) = Xo(t) + X1 (t) + X (t) + EXa3(t) + ...

Turning to the problems ”own time”

27 . Qt
To(1+ale))  1+ale)’

T =

we can write

de 2 = g -2
X=—50 (1+;ehi) :

Substituting this expression into the eq. (30), and denoting the derivative on
7 with a prime (X" = d?X/dr?), we shall search the 27-periodic solution of
the equation:

(XU +D) EX) + (Xo+ D X)L+ hy)? =
i=1 i=1 i=1

<. cot @ - i € - i
=e(1+ Y hi)* (- 2¢ (XO—I—ZEXi)z-I—E(Xo-l-ZGXZ’)S).
i=1 i=1 i=1

Comparing coefficients at different powers of €, with account of supposition
that the first harmonic of the solution is Xy and X; 5 . contain only higher
harmonics of the main period T', we can subsequently define the coefficients
h; and the functions X;:

Xo(r) = Asin(T — 1),

A? cot ¢, cos 2(r — mp)

Xl(T) =

2

hy = %(5(c0t¢8)2 +3)...
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The period of the solution with the firct amplitude-dependent correction
is
A 2
T = To(l + h2€2) = To(l + %(5(C0t ¢)5)2 + 3)
Note that €A is the amplitude of the synchrotron oscillations in units of
RF phase, hence

T =To(1 + (%)QW)’

where ¢ 1s the RF harmonic number, R is the radius of the storage ring, zg
is the amplitude of the longitudinal oscillations (in units of length):

2

For a Gaussian distribution (15) the r.m.s.length of the bunch is 0? = A‘/;”Q
Thus, we can write (in a form convenient for integrals of section 2.6):
J qo 5 (5(cot ¢ )% + 3)
QJ) =2(0)(1 —€é— = (=) ——=. 31
(1) = 200)(1 - €5), ¢ = (20 Ll (31)
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