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Abstract

The structure of magnetosonic perturbations around a pair of X-lines of a toroidal
magnetic configuration is analyzed in the framework of ideal MHD, by means of
a WKB technique. The conditions for the wave trapping are investigated. It 1s
shown that the wave equation for the displacement is separable in the vicinity of
the X-lines. The relevant eigenvalues and the different types of ray trajectories are
discussed. :
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s 1. Introduction

When a magnetic configuration is modified by localized currents flowing into the
plasma or in external coils, singular magnetic field lines may arise in the system,
and affect the propagation of MHD waves. In particular, wave trapping inside the
plasma can occur, giving rise to eigenmodes. We refer here to fast magnetoacoustic
perturbations in the ideal MHD limit, in a uniform, currentless, zero 3, unperturbed
plasma.

We shall consider configurations with one cyclic coordinate (z), i.e., magnetic
field of the form B(x,y) = B,e; + B,(x,y), with constant B; and B, = Vy(x,y) x
e,, with quf = 0. An X-line is characterized by B, = 0. From V % B, =0, it
then follows that in its closest neighborhood the field lines are hyperbolic, when
projected onto the x,y plane. Trapping of fast waves around an X-line has been
considered in Ref. [1]. Here we extend the investigation to include the case of two
close X-lines, which can be produced in various systems. This case is of relevance
to the problem of magnetic reconnection (see e.g., the review in Ref. [2] and the
recent investigation in Ref. [3]).

Different topologies of regular ray trajectories, and also stochastic trajectories
are found. The analysis is made in the framework of the WKB method. The present
model can be applied, e. g. to the case of divertor geometry. More generally, the
present investigation is of interest for the problem of the hamiltonian motion of a
single particle trapped in a 2D potential.

The paper is organized as follows. The WKB method of analysis is introduced
in Sec.2. The case of a single X-line is presented in Sec. 3.1. The case of two close

X-lines is analyzed in Sec. 3.2. Conclusions are given in Sec. 4,




2. Formulation of the problem

In the framework of ideal MHD the displacement vector &(x, y,z) for a stationary
perturbation with frequency o satisfies the wave equation

dmpw’é + B x {Vx [Vx (Bx§)|} =0, (1)

where p is the plasma density.
In the WKB approximation characterized by a formal smallness parameter €, we
look for asymptotic solutions in €, superposition of functions of the form

¢ =A(z)exp(iS(x)/e) T, (2)

where S is the eikonal, A the amplitude, and the unit vector 7(z) the polarization of
the mode. The function S satisfies the Hamilton—Jacobi equation, which, introducing
k = VS, can be written in the form

e, k) =0, 3)

where A plays the role of a ray Hamiltonian, and the ray trajectories are given by the
Hamilton equations

g S R, L
o % o8
For fast waves, we have [1,4]
A= «41'cpmz +k°B*, (4)
and the polarization T reads
B x (B x k)

TEIBX(Bxk) ©)

The amplitude A satisfies the transport equation
- e
— A= | =0.
ox ( ok )

1n the case of trapping, the eigenfrequencies are determined from the semiclas-
sical quantization rule for the action

1 1 :
Ji=— ¢ k-de=n;i+ zm;, 6
£ 2 r=n Zm:, (6)

where C; are independent circuits on the invariant torus, #; the quantum numbers,
and m; the Maslov indexes.

In the configuration under consideration, A does not depend on z, and k; 1s a
constant of motion. Since the system is periodic in z, k; = 2nn/L;, where n is
integer, and L, is the z—periodicity length.

To analyze the ray trajectories, it is convenient to use the following 2D Hamilto-
nian [4]

H(x,3,kerk) = 5 (B +) +V(x3) =0 ™

where V (x,y) = [k2 — 4mpw? /B*]/2. At the surface H = 0, 1t has the same trajecto-
ries as (4). This Hamiltonian corresponds to that of a 2D motion of a particle with
kinetic energy (k2 + fc%} /2, and potential energy V (x,y).

3. Magnetic field configuration and ray trajectories
3.1. Single X-line

Let us consider first the case of a single X-line. Referring to a divertor con figuration,
the magnetic field B, around the separatrix can be described as that due to two equal
currents flowing in two wires parallel to the z axis, located at x = =L on the x axis.
The corresponding flux function reads

“ul Bngl 3~ e —-L2)2—|—4x2}!2
N = "_'2— n 74 1 (8)

and the magnetic field amplitude B = (B2 + B})!/* where

24y
02— —[2)? +4xy?

B2 = 4Bl 9)

In the following, dimensionless variables are used (without change of notation).
In this section, length, magnetic field, and time are measured respectively in units
of L, B,, and t4 = L/cao, being cao = B./\/3mp the Alfvén speed in the field B;.
The field lines (contour plots of ), projected onto the x,y plane, and the contour
plot of B? are shown in Figs. 1, 2. To analyze the ray trajectories, it is convenient to
introduce elliptic coordinates y, Vv, so that

x = coshusiny , y = sinhucosv, (10)
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Figure 1. Contours of the flux function y, defined  Figure 2. Contours of constant magnetic ampli-
by Eq. (8) with L = 1, in the x, y plane. The X_ tude B2, defined by Eq. (9) with L =1, in the x, ¥
point is located at x =0, y = 0. plane. Note that B2 =0 at the point x =0, y =0.

and
B?' 3 SE_" 52

p=ﬂ“m, (11)

where o2 = 4B%)/B2, § = sinhy, C =coshy, 5= sinv, and ¢ = cosV.

Separability of the Hamiltonian can be easily obtained in the limit B2 < B} in
the neighborhood of the X-line, sinh’u <« 1, and sin”v < 1. The potential V then
reads
—(@? —R2)(C* - %) + o2w?(8% + 52 — 5% +5%)

2(C? —5?) :

Vigv) =

By means of a canonical transformation with generatrix function F(kyx, Ky i, V) =
—kex(p,V) — kyy(p1, V) , the Hamiltonian takes the form

2 2 2 2 2 by 2 ol 2 4 4
41— (0 — ) (C* —s) +a 2 (S2 4 52 — §* +5%) _

) = 12)

Separability gives the following conditions
R+ (0 —I2)s +o?a’ (s +5*) =B. (13a)
kﬁ—{mzmkfjczqtmzmz(f-s“) =B, (13b)

where B is a constant. .

Trapped trajectories exist provided that 3 > 0 and ke < w? < k2/(1- %), of.
Ref. [1]. The caustics which bound the trajectories are determined by the conditions
ky = 0, k, = 0, and coincide with the coordinate lines v = const, u = const. An €X-
ample of ray trajectory is shown in Fig. 3. From Egs. (13a, 13b) and the quantization
rule (6) the eigenfrequencies are easily determined.
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Figure 3. Example of a ray trajectory, projected in the (x,y) plane, rapped near the single X—point, for
o — 0.05, B/i2 = 0.01, and @*/kZ = 1.01. The trapping region is almost rectangular in the elliptic
coordinates defined by Eq. (10).

3.2. Two close X-lines

We consider now a configuration characterized by two close X-lines. It can be
realized in a divertor geometry by means of two external toroidal coils. In our model,
we refer to a poloidal field B, made by the superposition of a uniform field —Box€x,
simulating the contribution of the plasma core in the divertor region, and a field By,

similar to that of previous section, produced by two equal currents, flowing in two

parallel coils, along z, located at x = +L, y = 0. At the midplane x = 0, B has
only the x component which is equal to B +(0,y) = 2BpoLy/ (L? +y*). The function
B1;(0,y) has two extrema Bpo at y = +L. We are interested in the conditions,
where Bpg is such that Bo, almost balances the field By, at the extremum y = L
(Box =~ Bpo), so that By in a small vicinity of this point is small, |Box — Bpo| €
Bpo. In this region, instead of exact formulae for the magnetic field, we can use its
expansion into the Taylor series. Then the flux function y reads

y = (Bpo— Box)y + (Byo/6L*) 3%y ~¥") (14)

where the coordinate y is now and henceforth counted from the former point y = L.
Neglected terms here are provided that x* + y? < L2. In what follows we shall use
B = |Bpo— Boy| as the unit of measure of the magnetic field and ! = y/2{Box/Bpo — 1|
as the unit length, and assume | < L. The unit time is [ /c4g. In dimensionless units,
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: . Figure 5. Contours of constant magnetic am li-
Figure 4. Contours of , defined by Eq. (13), 40 B2 defined by Eq. (17), in thge X, ¥ plaf]e
X—points are located at x = %1,y =0. .E:'E —0atth i ,,'_j: __’ﬂ :

5= e points x=x1,y=0.

Eq. (14) reads
1
y=+y+303xy-y), (15)

where the plus and minus signs stand for the cases where Bpg > Box, and Bpo < Box,
respectively. |

The poloidal magnetic field derived from the flux function (15) has the following
components:

et o g B S S (16)

This configuration has two magnetic field nulls in x = 0, y = %1 (in the case of the
upper sign), and in x = *+1, y = 0 (in the the case of the lower sign) The poloidal
magnetic field amplitude Bi is given by

B2 = £2(2 -+ (@ +y") +1. (17

The corresponding field lines (contour plots of ), projected onto the x,y plane,
and the contour plot of Bf? are shown in Figs. 4, 5 for the case with minus sign in
Egs. (15) and (17). It is easy to see that the map of the configuration with the plus
sign can be produced from that with the minus sign simply rotating the system of
coordinates by a right angle. Therefore, below we concentrate on one configuration
only, and choose the minus signs in Egs. (15) and (17). All the obtained results can
be translated to the other configuration with minor, and obvious changes.
The relevant potential energy, for B% X B%, then reads

% [~ (@ — k) + 0?1 - 22 = ") + (& +¥")]]

where now o = B/B; < 1.

Vix,y) =

Let’s transform the Cartesian coordinates x, y to the elliptical coordinates u, V
by means of the following generatrix function F (ky, ky; i, V) = —2ky coshusinv —
2k, sinhu cosv. The new coordinates and momenta are related to the old ones by
means of

x = —— =2coshusinv,
oy 2
aF =
. - ~--a—k~}-’=251nhpcosv,
oF - Wy
ky, = 354 — 2k, sinhy sinv + 2ky coshu cosv
oF ; :
kv = e 2k, coshu cosv — 2ky sinhy sinv .

The coordinate u takes values from 0 to e, and V varies from O to 2n. The new
Hamiltonian reads

K+k2+UMm)—U(g)
8(E2 —n?) ;

where § = coshy (§ > 1), =sinV (—1<hu<DUlg= 4q2 [mﬁ *kg —o2o?(4g*—
3)2]. The separability condition now reads

(18)

H(Fv""’:kmkv) e

K2 4+ 4n2[o? — k2 — 0w’ (4n* -3} =B, (19a)

i — 482 w? — k; - ot (48 -3 = —P. (19b)

As already noted, the boundary of a trapping region consists of pieces of coordi-
nate lines y = const, and v = const, since the ray motion is separable in the elliptic
coordinates. Hence, at any point at the boundary one of the conditions

ky(1,0,B) =0, (20a)

ku(6,0,0) =0 (20b)

must be met. These equations are cubic in £ and 1?, so that boundary values of
¢ and 1 can be expressed as functions of B. It is casier, however, to express the
boundary value T of 7 through the boundary value E of £. Indeed, since Eq. (20a)
actually coincides with Eq. (20b), we know that one of its three roots (with respect
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Figure 6. Example of a ray trajectory, projected in the (x,y) plane, for the case 0 < Q < 1/8. The

trajectories are trapped near the X-—points in one or another half-planes. The particular trajectory shown

here is obtained for the parameters o = 0.05, B = —1, Q = 0.1. The trapping region is rectangular in the
elliptic coordinates defined by Egs. (3.2).

ton?) is equal to E2. This allows us to reduce Eq. (20a) to a second order algebraic
equation in 1%:

2(n* 4+ 22+ B = 3(nP +E%) +(9/8—-Q) =0, (21)

where Q = [0” — k2] /802®?, while &2 can take values larger than 1. The roots of

Eg. (21)

= 1(e-2)xs0-38E-1), @

are real pmvided that Q > 0. This shows that magnetosonic waves can be trapped
when 0 > k“
As far as Q < 8, the trajectories are trapped either in one or in the uther half-

plane (bnth roots are less than 1 but larger then 0). The case 0 < Q < E is shown in
Fig. 6. Iir <fl< 9 two kinds of trajectories can exist. The § boundary may vary

fru::umc";2 = ! wE= 24—”’4—,“ 20. If 1 < &2 < 34/ 3Q trajectories reside in both
halves of the x, y plane. If % + lﬂ < Ei <i 3y .’3 + EQ the trajectories are still

trapped in ﬂne on the halves. The case 3 <Q 'fi 9 is shown in Fig. 7.
IfQ > 3 , also two Kinds of trajectories exist. The E boundary varies from E2=1

08 =3+./1Q. When } +,/1Q <& < 3 +,/1Q, trapped trajectories reside in
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Figure 7. Example of a ray trajectory, projected in the (x,¥) plane, for the case 1/8 < < 9/8. The
trajectories reside in both halves of x, y plane provided that the outer boundary & match the inequality

1 <E2 <} 4,/1Q, otherwise they are trapped around one of the X—points x = +1,y = = (), The particular
trajectory shown here is obtained for the parameters o = 0.05,p =35, Q= L.1.

both halves of the x-y plane (larger of two roots of Eq. (22) is smaller than 1 while

the smaller one is negative), When % s %-Hf 3 %ﬂ cER e ;11 + \/%-!5 the larger of
two roots (22) becomes greater than 1 so that the motion is unbounded in v. This root
gives another (inner) boundary in E? (which is in the range 1 < Ez " % + %1 1+ %Q)
so that trapped trajectories are separated from the minima of magnetic field thus
representing a sort of rotating trajectories. The latter case is shown in Fig. 8.

A similar classification of trajectories, referring to star orbits in galaxies, can be
found, e.g., in Ref. [3].

4. (Conclusions

We have investigated the trapping of fast magneto-acoustic perturbations in a mag-
netic configuration with z—periodicity, and exhibiting two close X lines. This type
of configuration occurs in laboratory and astrophysical plasmas, and is of particular
interest for the problem of magnetic reconnection.

We have shown the existence of well defined eigenmode system in the vicinity
of the X-lines and have computed the eigenfrequencies in the WKB limit. We have
identified different type of regular ray trajectories, and classified them according to
the values of the parameter € and the linear dimension of the caustic E. Stochastic

11
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Figure 8. Example of a ray trajectory, projected in the (x,y) plane, for the case Q > 9/8. The trajectories
always reside in both halves of x, y. If the outer boundary £ match the inequality % + % 1 14 %ﬂ ol

% + %ﬂ, the trajectories are separated from the X~points x = +1, y = 0. This particular trajectory is
obtained for the parameters o = 0.05, p =64, Q= 15.

trajectories have also been found, and will be discussed in a future paper.
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