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1 Introduction: exponential vs.
power—law PR

As 1s well known any trajectory of a bounded in phase space motion of
Hamiltonian system recurs infinitely many times to some neighborhood of its
initial position, for both regular (with discrete spectrum) as well as chaotic
(with continuous spectrum) motion. These Poincaré recurrences (PR) do not
imply a quasiperiodic motion which is still a widespread delusion (see, e.g.,
[1]). The difference between regular and chaotic motions lies in the statistics
of recurrences which is usually described by the integral distribution P(r)
that is by the probability for a recurrence time to be larger than 7. In a
regular motion such a survival probability P(7) < Times has a strict upper
bound while for a chaotic motion 7 can be arbitrarily long. In both cases
PR characterize some fluctuations including arbitrarily large ones in chaotic
motion. The PR statistics proved to be a very powerful and reliable method
in the studies of chaotic dynamics due to its statistical stability.

To my knowledge, such a method was first used (implicitly) in Ref.[2]
for the study of a narrow chaotic layer along the separatrix of a nonlinear
resonance. The result (7 > 1)

P(r) ~ 7 (1)

was a surprise as it contradicted the bounded motion in chaotic layer. Indeed,
the total sojourn time 7 - P(r) of a trajectory, which is prportional to the

measure of the chaotic component of the motion, diverges as 7 — oo. Later
[3], this apparent contradiction has been resolved simply by increasing 7
which showed that the exponent of the power—law decay also increased from
the initial v = 1/2 to v & 3/2.

It is instructive to mention that the origin of a short-time computation
in Ref.[2] was in apparently reasonable decision to avoid any rounding—off
errors by enormous increase of the computation accuracy. As a result, the
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computation speed, and the available motion time, dropped by several orders
of magnitude. Generally, for exponentially unstable (chaotic) motion such
an approach is prohibited whatever the computer power. Fortunately, it is
also unnecessary for calculating statistical characteristics of the motion like
P(r) since most of the latter are robust. True, the corresponding Anosov
theorem [4] was (and can be so far) proved for the very simple Anosov systems
only. Moreover, such a theorem is even wrong for discontinuous (discrete)
perturbations like rounding—off ones (see, e.g., Refs.[5]). Nevertheless, all
the numerical experience confirms a sort of robustness of the statistical
behavior of chaotic systems, at least with some minimal precautions (see, e.g.,
Refs.[6] for discussion). Notice that without such an ’empirical’ robustness
the numerical experiments with always approrimate models would lose any
physical meaning!

A power—law decay P(r) ~ 7%, whatever the exponent v, found in [2, 3]
for a bounded motion, was at variance with the exponential decay believed
to be a generic case. In Ref.[3] the former was interpreted as a characteristic
of a qualitatively new structure of the motion near the chaos border in phase
space. Later, it was termed the critical structure, which was described by a
renormalization group [7] (see also review [8] and references therein).

Since then, the exponential decay has been considered as a property
of ergodic chaotic motion without any chaos borders. However, in recent
numerical experiments [9] with an asteroid motion a fairly long transient
exponential decay was found. Moreover, 1t persists in the separatrix map
also used, just the same map which seemed to have been well studied in
many previous works [3] (see also [8] and references therein).

The main purpose of this paper is to reconsider various regimes of PR,
and to formulate the conditions for their realization using two relatively
simple models: separatrix and standard maps. Only bounded motion will
be considered, with or without chaos borders. First, a classical problem of
PR in an ergodic system will be discussed in some details in Section 2. Then,
in Section 3, the analysis of various PR regimes in the separatrix map will
be presented aimed to resolution of the apparent contradiction mentioned
above. In Section 4, PR in the standard map in accelerator (microtron)
regime will be described. The latter model presents a unique possibility for
quantitative study of the global critical structure. Particularly, a new part
of this structure has been found which size was surprisingly large. Finally, in
Section 5, the main results of the present study are summarized. In addition,
the first preliminary empirical evidence is presented for a new regime of
Poincaré recurrences including the transition from exponential to exponential
statistics.
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2 PR in ergodic system: standard map

Consider, first, an elementary example of 1D homogeneous diffusion in momen-
tum p. It can be described by a Gaussian distribution function

exp (— 2’;—D)
V2ntD

where D =< (Ap)? > /t is the diffusion rate. Derivative fp(p,t) = dfg/dp
with boundary condition fp(0,%) = 0 which obeys the same diffusion equation

Ja(p,t) = (2)

of _ D o
o2 e )

describes, then, PR to p = 0. The distribution of recurrence times (1) is
simply related to an auxiliary function fg by

A o 70
V21D T+ 7o

Here A is normalizing factor, and parameter 7y provides a necessary truncation

Pir) = A [ felpr)dy = Afal0.7) = )

of the preceding diverging expression at small 7. It characterizes the dynamical
time scale of the diffusion (cf., e.g., free path in molecular diffusion). If the
motion in p is actually bounded (see below), Eq.(4) describes initial free
diffusion.

2.1 A little of theory

Now, consider in more details another simple model — the kicked rotator —
described by the so—called standard map:

p=p+ Ksine (mod )
x

(5)

onatorus (0<az<2r, 0<p< ).
We seek a solution f(p,t) of diffusion equation (3) with the boudary
condition

f0,5) =0 (6)

which provides a loss of probability because of PR to p = 0 (and to p = L).
The orthogonal and normalized eigenfunctions of the diffusion equation for



this problem have the form (k > 1 is integer)

o) = /2 sn () )

with the corresponding eigenvalues

w=(2)2 )

which describe the decay rate of the eigenmodes (7). In Eq.(8) the diffusion

rate is
D(K) = %~C(K) )

with the dynamical correlation function [10]
C(K) ~ 1 — 205(K) + 2J2(K) (10)

where J2(K) is the Bessel function.

The set of eigenfunctions (7) and eigenvalues (8) provides a general solution
of the diffusion equation with boundary condition (6) for an arbitrary initial
distribution fy(p) = f(p,0). Peculiarity of PR statistics P(r) is just in a very
particular initial condition. Specifically, for a single trajectory in numerical
experiments the recurrence time 7 is determined by the two successive cross-
ings of the exit line which is, in the model under consideration, p = 0 mod L.
Hence, the initial distribution is concentrated right here: [p| < K. The
condition for a trajectory with initial p > 0 to cross the exit line reads:
p+ K -sinz < 0. Whence, the probability of crossing is proportional to
arccos (p/K), and the normalized initial distribution can be taken in the
form:

fo (%) = arccos (%), 0<p<K <L (11)

An example of fy is shown in the insert to Fig.1. It is convenient to chose
fo(p) on the one side of the exit line which is possible due to the symmetry
of eigenfunctions (7).

The difficulty with such an initial condition is in its narrow width which
is always comparable with the dynamical scale (both are ~ K, a single kick).
This violates the diffusion approximation for the exact integro—differential
kinetic equation. A simple remedy is well known, for example, from the
theory of neutron diffusion where the dynamical scale is the transport free
path I, (see, e.g., Refs.[11] and [1], p.689). A simple correction improving the
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diffusion approximation amounts to a relatively small shift of the boundary
condition (6) from p, = 0 to py = —al where [ is the dynamical scale in
our problem, and a ~ 1 is unknown numerical factor to be determined
below from the numerical experiments. This implies an increase of the global
scale: L = Ly 4 2al while the initial distribution remains unchanged as it is
obtained directly from the dynamics (5). Notice the corresponding change in
eigenfunctions (7).
The general solution of the diffusion problem is given by

) =" figrlp) e (12)

where the expansion coefficients fi are determined by the initial condition

(11):
fo= [T i (P (L)) e () =

m cos(skA) - (1 — Jo(sk)) + sin (skA) - Ho(sk) N

2L sk -
sk 8A 2,9
m<1+?).(1+0(51¢)) (13)

Here Hy is the Struve function, A = al/K ~ 1 (see below), and s = 7K/L <
1 is a small diffusion parameter. The latter approximate expression in (13)
holds true for sk < 1.

Now, the PR statistics i1s described by

1 [t -2 -

2 o o _
= V2L e kT 14
—V mZ:jk (14)

with k& = 2m — 1 because only odd modes contribute to the integral.
Asymptotically, as 7 — oo, PR decay exponentially (Poincare statistics)

A
R e R (15)



with the characteristic time

1 2 IL?
7’1—71—71_2'D (16)
which is determined by the first (most slow) mode m = k = 1, and which is
of the order of the global diffusion time.

The factor Fy in Eq.(15) characterizes the share of asymptotic exponential
decay which is small in the diffusive regime due to s <« 1. The main, initial,
decay is a power—law one. Again, due to small s, the sum in Eq.(14) can be
approximately replaced by the integral over m to obtain:

P(r) ~ w;o ~ fTO (17)

T = #(K)(ur%)z (18)

function C'(K) is given by Eq.(10), and the approximate expression for f
in Eq.(13) is used. The latter is not applicable for 7 — 0, so that the final
expression in Eq.(17) is an approximate truncation of the preceding diverging
relation (cf. Eq.(4)).

The power—law /exponential crossover time 7., is obtained from the compa-
rison of Egs. (15) and (17), and is given approximately by the relation:

where

LZ

S 1
8tD’ (19)

Tero N Y1 Tero =

T
16
Again, in the diffusive regime (L? > D) the intermediate power-law decay
may be very long until the exponential asymptotics is reached.

2.2 Numerical experiments

An example of PR in ergodic case is shown in Fig.1. We use the standard
map (5) on a torus of sufficiently large circumference I > K to provide
a diffusive relaxation (s < 1, for the opposite limit of ballistic relaxation
s2 1 see Section 4 below). How strange it may seem, the conditions for
ergodicity even in such an apparently ’simple’ model are still unknown !
However, numerical experiments (see, e.g., Ref.[12] indicate that, at least, for
a particular value of the parameter K = 7 the share of the regular domains, if
any, is negligible ( £ 107?) besides the two small islets (per map’s period, see
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Section 4 below). Fortunately, their effect on PR is also negligible because
they are related to the accelerator mode in which the momentum p quickly
moves around the torus, so that a trajectory immediately crosses the exit
line p = 0 mod L (cf. Section 4).

Poincare recurrences in ergodic motion
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Puc. 1: Poincaré recurrences in standard map (5) on a torus with exit line
p=0mod L = 50m: K =7 ("quasiergodic’ motion, see text), pp = 0, a single
trajectory of ¢ = 107 iterations. Solid line represents numerical data; dashed
lines show two asymptotics: a power law (17) (straight line), and exponential
(15). Insert: the initial distribution (11), just prior to crossing the exit line.
Logarithms here and below are decimal.

In Fig.1 empirical data for a particular value of L = 50 7w are shown which
corresponds to 25 periods of map (5) in p. All the data were obtained from
the run of a single trajectory over 107 iterations. Transition from a power
law (straight dashed line) to an exponential (dashed curve) is clearly seen.

For a quantitative comparison with the theory above (Section 2.1) we fix
the dynamical parameter | = K/C(K) = 12.1 where the value C(7) ~ 3
is used which has been obtained from a special numerical experiment. It
considerably differs from the value C(7) & 1.78 according to approximate
relation (10) just because of accelerator islets mentioned above. Since our
model is a map, the minimal empirical recurrence time is 7., = 1 instead of
T, = 0 in a continuous theory (for example, in numerical data P(1) = 1).
The corresponding corrections are negligible except the initial dependence
for 7 ~ 1 (see below).

Numerical data in Fig.1 were fitted to Eq.(15) in the interval 7 = 500 —
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Asymptotic exponentia in ergodic diffusive motion

Puc. 2: Asymptotic exponential in ergodic diffusive case: numerical values
of characteristic decay time 7 (16) (circles), and of the factor Fy in Eq.(15)
(crosses) vs. the torus size n = Lg/2m. Uncorrected dependence is shown by
solid straight lines which are transformed into dashed lines by the correction
with the same average < a >= 1.22. Two dotted lines represent the
theoretical dependence (without any corrections) for the opposite, ballistic,
limit, Eqs.(28,29)

1000 iterations, and the empirical values of the characteristic time 7 = 125,
and of the factor F; = 0.26 were obtained. The corresponding values of
the correction parameter are o, = 2.3, and ap = 0.71. The difference in
these two values of « characterizes the accuracy of the correction which is
rather poor because of a very narrow initial distribution (see Eq.(11), and
discussion around). Without correction (o = 0) the theoretical values would
be: 7 = 69, and F; = 0.07 which both are substantially underestimated.

For a more systematic study the similar numerical data were computed
for a number of L values specified by the integer n = Lo /27, The results are
shown in Fig.2.
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Dependence 11 (n) is well described by the uncorrected relation (16) for
large n as expected. In intermediate region (n ~ 3) the agreement is father
improved by the correction which provides a smooth transition to the ballistic
limit (see Eqs.(28) and (29) in Section 4). In other words, the correction is
not very important for the asymptotic decay rate because it 1s determined
by the first eigenfunction which is only slightly disturbed, for large n, by the
shift of the boundary. This is no longer the case for the amplitude £y which
strongly depends just on the distorted region near the boundary p = 0. As a
result the correction is most important for large n. The dependence Fy(n) in
the intermediate region remains unclear. For n 2 10, s < 1/3 both relations,
Eqgs.(15) and (16), are in a reasonable agreement with the numerical data for
the same average value of the correction parameter < o >= 1.22.

Coming back to Fig.1, we see that the initial power—law decay is well
described by a simple relation (17) with 7o = 1 which is shown by the dashed
straight line, and which would correspond to ay = 0.66 &~ ap.

3 PR with a chaos border: separatrix map

Now we consider an opposite limit of essentially nonergodic system with a
large chaos border and the critical structure. As an example we take the
separatrix map which was studied in many papers (see, e.g., Refs.[2, 3, 8]),
and for which a new regime of PR has been recently observed [9]. The latter
was the main motivation for the present studies. We take the separatrix map
in the form [9]:

P =p-+sinx

T =2 -\ - po (20
Here the motion is always strictly confined to the so—called chaotic layer:
|p| < pu(). Previously, the most studied case corresponded to big parameter
A > 1. In this limit p, & A, so that the width of the layer (2A) is much
larger than the dynamical scale of the diffusion (a single ’kick’) which, for
map (20), is unity (cf. Eq.(5)). Besides a relatively narrow region along the
two borders with the critical structure, the average diffusion rate within the
layer is nearly constant:

<CWlph> 1

<D>n ST a o (21)

[\]

Hence, the initial decay of PR is a simple power law (1) which was observed,
indeed, from the beginning [2, 3] (Section 1). The crossover time to a diferent
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law 1s given by a simple diffusion estimate:

2

Py 2
o ~ 2~ A 99
K D (22)

Unlike the ergodic case, the asymptotics of PR in the presence of chaos border
is also a power law but with a different exponent v & 1.5. This 1s explained
by a very specific critical structure near the border where the diffusion rate
rapidly drops. As a result no trajectory can ever reach the exact border, even
though it is approaching, from time to time, the border arbitrarily close (see

Refs. [3, 8, 13] for details).

Poincare recurrences in separatrix map
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Puc. 3: Poincaré recurrences in separatrix map (20): solid lines represent
numerical data; straight dashed lines show the power law with the exponents
v indicated nearby; the values of parameter A = 10 and 1 are shown at the
right; pp = 0. Two cases with the same A = 1 differ by the exit line (see
text). Insert: the same in semi-log scale.

An example of this well known behavior is shown in Fig.3 (upper solid
curve). A transition between the two different power laws (dashed straight
lines) at 7 ~ 100 is clearly seen in agreement with estimate (22). There is no
sign of any exponential decay. Now, how does it appear in a similar model
[9]7

The first observation is that in application to celestial mechanics (dynamics
of asteroids) the parameter A of map (20) is typically rather small: A ~ 1
[9]. This drastically changes the structure of the layer. First of all, the layer
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width is reduced down to the size of a single kick. An example is shown in
Fig.4. Hence, the diffusion approximation becomes inapplicable. Instead, the
so—called ballistic relaxation comes into play which is much quicker. In other
words, a slow diffusive motion from the exit line to a critical structure is
replaced now by rapid jumps of a trajectory over the whole layer with some
probability to get into the critical structure. Since those jumps are very
irregular in a chaotic layer the PR are expected to decay exponentially. This
is the case indeed as an example in Fig.3 demonstrates (lower solid curve,
A =1). The exponential decay can be intermediate only as the trajectory is
evetually captured into the critical structure, and the decay turns to a power
law. Generally, the initial part of the power law i1s an approximate relation
in that its exponent is not universal, and is even varying with 7. In the latter
example v & 1.1 which is rather different from v & 1.5 for the upper curve
in Fig.3.

Another interesting and important question is how long is the intermediate
exponential? For the lower curve in Fig.3 it is rather long: 7., &~ 150 which
corresponds to the PR crossover as low as P.., ~ 10~%" However, under
different conditions with the same A = 1 the exponential is much shorter:
Tero & 50, and P.., ~ 1072, The difference is in the exit line as shown in
Fig.4.

In the latter case the exit line is usual: p = 0. The critical structure is
determined by the two big islands comparable in size with that of the whole
layer. This entails a rapid capture of a trajectory into the critical structure,
and a fast transition to a final power law (with the local exponent v & 1.65).
The lower curve in Fig.3 corresponds to the same A = 1 but to a different
exit line:

Pex = cOs (1) (23)

It is chosen in such a way to cut through both stability islands and, thus, to
suppress any sticking to their critical structure. g6 Then, the final power law
is determined by the critical structure at the layer borders which is apparently
very narrow and cannot be discern by eye’ in Fig.4. Nevertheless, it does
exist as the asymptotic power law of PR in Fig.3 proves. Moreover, the
latter even allows us to estimate the size of the critical structure: its relative
area (with respect to that of the layer) is A., ~ 4 x 1074 or the width
(Ap)er ~ 1073 (see Section 4). This exponential transient is well fitted by
the relation similar to (15) (up to 7 & Tero) with 7 & 12, and F; &~ 0.32.
Both values are in a surprisingly well agreement with the uncorrected theory
(a =0, K =1, L ~ 4.5, see Fig.4) which gives  ~ 8.2, and F; ~ 0.35.
Apparently, this is because the diffusion parameter s &~ 0.7 ~ 1 1s still not
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Separatrix map

pl2r

X2

Puc. 4: The phase space portrait of separatrix map (20) for A = 1, pg = 0. All
points belong to a single trajectory of 10% iterations. The straight solid line
is the usial exit line p = 0 while another one is the special exit line (23) which
cuts through the two stability domains and thus blocks the contribution of
their big critical structure to PR.

large enough.

Now, we can summarize the conditions for the transient exponential in
PR for a nonergodic motion: (i) fast, ballistic, relaxation, and (ii) a small
measure of the regular domains. Besides, 1t turns out that the exponential
PR allow for, at least, some estimates of that measure. A more quantitative
study of this interesting relation is convenient to continue with the standard
map again. This is because the latter has an infinite series of the special
values of parameter K = K,, &~ 2mn for which there are well studied islands
of regular motion with a simple scaling and of rapidly decreasing area.

4 PR in microtron: the standard map again

The main advantage of this microtron model is in that it is very simple,
especially for numerical experiments, and well studied already. Here we are
interested primarily in the domains of regular motion which exist for an
infinite series of the special values of parameter K = K,, & 27n where n > 01s
any integer. Within these domains (islands) |p| grows indefinitly proportional
to time which is the so—called microtron acceleration. It was well studied since
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the celebrated paper due to Veksler in 1944 (see, e.g., [14] and references
therein). However, in the present paper, as well as in Ref.[14], the main
object for study is not the regular acceleration itself but rather the chaotic
motion outside the microtron islands which 1s generally affected by the critical
structure at the island borders. A picture of this scale-invariant border is
shown in Fig.5a in dimensionless variables

s = ( —x9) - K, ps=(p—po) K (24)

where pg is a parameter of map (5), and

K -sinzg = 2mn, K =o0? + (2mn)?, o = K -coszg, —4 <o <0
(25)

The latter inequalities determine the stability region around a fixed point

+x9, po mod 27. In Fig.ba and below ¢ = —2 (the center of stability).

For each integer n there are two islets per phase space bin 27 x 27 one of
which is presented in Fig.ba. The picture shows a single trajectory of 5000
iterations. During this time interval the trajectory is sticking to the critical
structure very close to the exact chaos border which results, under particular
conditions (see below), in an asymptotic power—law decay of PR (cf. Fig.3
above). The island relative area (with respect to that of the phase-space bin)
is given also by a dimensionless relation [14]:

Ap - K2 = Ag(o) ~ 0.17 (26)

where the latter value corresponds to ¢ = —2. This area rapidly decreases as
island’s number n grows. Yet, for any n — oo it determines the asymptotic
PR decay, as we shall see below.

In Fig.5b another, much smaller, microtron island is shown for comparison.
In this case an outside, and much longer, trajectory was used which cannot
ever cross the chaos border and enter the island. Its area is given by the same
estimate (26) with Ag(—3.1) ~ 0.0038.

The main difficulty with the microtron model for our purposes here is
the rapid growth in |p| within and around the chaos border. This destroys
any long sticking of a trajectory whatever the exit line for PR (cf. Section
3, Fig.4). To overcome this difficulty we used the following method. First,
we have chosen the exit line in such a way not to cut any island. It was
done simply by fixing parameter py = 7(# 0 mod 27) in map (5) without
any change in the configuration of map’s torus. Second, we compensated
acceleration by adding the term 27n to the first Eq.(5). This helps, of course,
for one 1sland of each pair only.
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Puc. 5: Universal border of microtron islets in scaled variables (24): (a) — in
the center of stability interval, ¢ = —2, single trajectory of 5000 iterations
stuck to the chaos border; (b) — near the edge of stability, o & —3.1, revealed
by an outside trajectory of 107 iterations, K = 7.

Now, we need to provide the ballistic regime of relaxation that is a
sufficiently large parameter s = 7K /L (Section 2.1). It is convenient to
take L = 2mn, so that the parameter

N> (27)

is nearly independent of n except a few small values of the latter.

Neglecting any dynamical correlations of the motion (particularly, those
caused by the presence of small microtron islets including the compensation
of acceleration) it is straightforward to calculate the probability w, per map’s
iteration, for a trajectory to stay within the torus without crossing the exit
line. As is easily verified, it is given by the relation:

de d 2 [T 2
w:/ﬁzﬁ i dx(L—Ksinx):;(xm—%(l—cosxm)) —
2
1 — — &~ 0.363 (28)
T
where ( )
arcsin (£) | s>
Tm = { /2 , s<m (29)
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These general relations were used in Section 2.2 (Fig.2) to draw the ballistic
approximation.

The latter expression in Eq.(28) corresponds to the value s = 7 used in
numerical experiments. Without additional shift Ap = 27n discussed above
the average time of the exponential decay would be

1
<T>= —— — 0.988 (30)
Inw

For s = 7 the shift increases w and < 7 > up to

w 1 1
D= — —=1—- — ~ 0.682
w 2—1—2 - 0.68
<T> = L (31)
T = lan .

Now we can turn to numerical experiments with this microtron model.

4.1 PR in microtron: numerics

The main results of numerical experiments are presented in Fig.6, and in the
Table below. In Fig.6 the points show numerical data computed from a single
trajectory (for each n) up to 3 x 10! iterations (for the largest n = 5000).
The straight solid line is the fitted intermediate exponential with the decay
time < 7 >= 2.41 in a good agreement with the expected theoretical value
2.61 in Eq.(31). This justifies neglecting dynamical correlations assumed in
the above theory in ballistic regime.

The exponential /power—law crossover time systematically increases with
n that is with the decrease of the microtron island area (see Table). The
power—law tails of PR were fitted by the expression

(32)

Remarkably, all values of the exponent were found to be close: v & 2. The
relation of this expression to the size of the critical structure is based on
the following hypothesis: dependence (32), fitted to the tail of PR, can be
extrapolated back to 7 = 1. If true, it allows us to interpret the parameter
Aer(n) as the relative area of the whole (global) critical structure around the
corresponding microtron island of area A,.

One could expect that both areas are comparable: A..(n) ~ A,. Sur-
prisingly, this is not the case (see Table, third column; the data in fourth
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Poincare recurrences in microtron
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Puc. 6: Poincare recurrences in microtron (points) for the values of
the microtron parameter n given at the right. Straight line shows the
intermediate exponential with the fitted decay time < 7 >= 241 (cf.
Eq.(31)). Solid curves give the fit of asymptotic power law (32) with nearly
the same exponent v & 2 extrapolated back to 7 = 1 (see text).

column will be discussed below). Their ratio R = A./A, ~ 100 is not
only very large but also slowly increasing with n according to the following
approximate empirical relation

R(n) ~ 50n'/* (33)

The origin of this small correction to a simple scaling R & const remains
unclear.

In any event, the size of the whole critical structure seems to be much
larger than expected. This main outer part of the structure looks ergodic,
and forms a sort of halo around the usually narrow inner part with a typical
admixture of chaotic and regular components of motion. The former reminds
the ergodic critical structure around a parabolic fixed point, that is the
limiting case of an island of zero size, studied in Ref.[15]. In a sense, such
a halo 1s some "hidden’ critical structure, without internal chaos borders but
with apparently strong correlations in the motion which keep a trajectory
within this relatively small domain.

Now, the principal question to be aswered reads: is the observed halo a
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real physical structure or the result of a wrong interpretation of the empirical
data using the above extension hypothesis?

Table. Global critical structure around microtron islets

n An R Rex
islet number | islet area Fig.6 Fig.7
1 4.30 x 1073 36 25.0
5 1.71 x 1074 124 -
10 4.31 x 1073 65 13.9
100 4.31 x 1077 202 10.6
500 1.72 x 1078 291 -
1000 4.31 x 107° 176 9.8
5000 1.72 x 1071 | 461 -
104 4.31 x 10711 - 8.6
103 4.31 x 10713 - 8.3
108 4.31 x 10715 - 8.1
107 4.31 x 10717 - 7.7

4.2 Exit time statistics

To clarify this question a new series of numerical experiments was undertaken.
To this end, the exit times from the halo, instead of recurrences, were measured.
Such a method was recently successfully used in the studies of the critical
structure in Ref.[16]. In the problem under consideration here the measure-
ment of exit times was organized as follows. A number (typically 100) of
trajectories with the initial conditions homogeneously distributed over the
circle around a microtron island (see Fig.5a) were run until they crossed the
exit line. The dependence of the average exit time 7., for a series of the circles
with increasing radius p; as a function of the area within a circle A; = mp? (in
scaled variables (24)) was thus computed. The minimal circle of radius p; = 3
touches the island, and comprises the area A,,;, = 28.3 while island’s area
in these units is Ay, = 6.72, the minimal ratio being R., = A, /A, = 4.21.

The main results of this measurement are shown in Fig.7 for 8 different
values of parameter n up to n = 107 with the island area as small as A, ~
4 x 10717 ! This is completely out of reach for the PR method (cf. Ref.[16]).
The difference is in a rather short exit time from the halo, we are interested
in, as compared to the long recurrence time on the tail where it is eventually
separated from the exponential (Fig.6).

The main result revealed in Fig.7 is a transition between the two different
scalings. One, for relatively large Ty, is the standard critical scaling shown
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Scaling of exit times from halo
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Puc. 7: Scaling of exit time from halo: the ratio R., of the critical to
island area vs. the average exit time out of the former (points) from a
hundred trajectories (for each of 8 values of n) with initial conditions on
a series of circles (see Fig.ba and the text). Dashed line shows the standard
critical scaling (34) which breaks down at some values of crossover time 7.,
depending on n (insert).

by the dashed line which is the fitting of numerical data to the relation

Rep(Tep) = RL(U (34)
Tex
with Rez(1) & 50. As expected, this part of the data does not depend on
n. Moreover, scaling (34) is in a good agreement with the PR tail in Fig.6.
The relation between the two is well known [3, 8, 14, 16]. Generally, the
power—law PR statistics is descibed by (cf. Eq.(32)):

<T>
N 4 =~ 7
T (T) T

(35)

where < 7 > is the average PR time, and the latter expression is obtained
from the ergodicity within the chaotic component of the motion. The function

A = 2D ) (i) (36)



is directly related to the exit time statistics in the latter expression by
approximate relation 7 & 2 ¢, [16]. Whence

P(1) ~ 2V7TA(L) < 7 > (37)

For integer map’s time

- 1 1

= —- — — | = 38

<T> ZT(TV (T+1)v) ((v) (38)
7=1

where ( is the Riemann function.

A different, new and unknown, scaling in Fig.7 for 7., < 7¢r, requires
further studies. What is of importance here is the termination of the critical
scaling at a finite 7., = 7¢r,. This determines the outer border of the critical
structure.

In terms of the ratio R, and for v = 2 the relation (37) gives (see Eq.(34))

71-2

R~ gRex(l) ~ 164 (39)
which is in a reasonable agreement with numerical data (third column in
Table). However, unlike the data in Fig.6 where the actual power—law scaling
is not seen under much larger exponential transient, the data in Fig.7 clearly
demonstrate that the critical scaling does not reach the limit 7 = 1 assumed
above. Moreover, the crossover time 7., increases, and hence the size of
the global critical structure (R.;) decreases, as n grows (Fig.7, insert). The
increase of 7.., must have an upper bound because otherwise the critical
structure near the chaos border would be also destroyed in contradiction
to the detailed studies of that in anomalous diffusion [14]. Indeed, the
empirical dependence 7., in Fig.7 (insert) can be fitted reasonably well by
the expression

4.66

n0-172

Tero = 6.69 — (40)

The upper limitin 7., corresponds, according to Eq.(34), to the lower limit in
the ratio Ry > 7.47. Combining Eqgs. (34) and (40) we obtain approximately

Rex (1)

Tewo(N)

Rep(n) =~ (41)
The empirical values of this dependence are given in Table (fourth column).
They indicate much smaller, yet still a fairly large, size of the critical structure
as compared to the limiting estimate for PR (third column). The former
seems to be more reliable and realistic.
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5 Discussion: a new puzzle

The original motivation of these studies was the unusual exponential transient
observed in PR in the presence of chaos border [9]. However, in the course
of investigating the mechanism and conditions of this phenomenon a more
interesting observation has come out. It suggests the existence of a new,
unknown to my knowledge, part of the critical structure surrounding, like a
halo, the well-known inner part close to the chaos border. In spite of some
contradictory empirical evidence the halo apparently occupies the most of the
global critical structure. In any event, in the microtron model considered in
this paper the area of the halo is much larger than that of the regular island
inside it, even according to the minimal estimates (see Table and Fig.7).

As is well known, the scaling of the peripheral part of the critical structure
is generally nonuniversal, at least quantitatively, in the sense of the correspon-
ding power—law exponents, for example [16]. However, it might be nevertheless
typical qualitatively as it appears in our model. In this respect, 1t would
be interesting to look at different examples of the global crtical structure.
One possibility is to use the same model with a fixed parameter L = 27n
(Section 4) but for different values of the stability parameter ¢ in Eq.(25).
First preliminary numerical experiments have been done for 9 values of ¢
within the whole stability interval (—4 < ¢ < 0; 27 < K < 7.45) including
the ’quasiergodic’ case K = 7 used in Section 2 for other purposes. In all
cases but the latter the PR behavior was similar to that in the main series
of numerical experiments (Fig.6), at least qualitatively. However, just for
K =T a sudden surprise has emerged which is presented in Fig.8.

In spite of a very long run (10! iterations) no clear sign of the expected
power—law decay is seen. A small deviation from the final exponential at the
end of the dependence is a typical feature due to a poor statistics (cf., e.g.,
Fig.6). The first exponential is close to the expected one with the fitted decay
time < 7 >= 2.41 as compared to the theoretical < 7 >= 2.38 (see Section
4). For the second exponential the empirical decay time < 7 >= 23.1 is about
10 times longer. This means that a trajectory is kept within (sticks to?) a
certain domain but not in a way it does so in the usual critical structure.
Moreover, the relative area Ag ~ 2 x 10~* of this peculiar domain, estimated
similarly to A¢p(n) in Eq.(32), is small and is comparable with that of the
island inside (Fig.5b): A7 ~ 7.8 x 107°. This island does have a chaos border,
yet contrary to usual behavior, it does not produce any appreciable power—law
decay of PR. Another preliminary remark 1s that a more careful inspection
of Fig.bb seems to suggest a different, more regular than usual, structure of
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K7 puzzle

log P(7)

50 100 150 200 250 300 350 400

Puc. 8: Poincaré recurrences for L = 27, and K = 7. The solid line shows
numerical data from a single trajectory of 10'! iterations. Two dashed lines
are fitted exponentials with the average decay time < 7 >= 2.41, and <
T >=23.1, respectively.

the chaos border for K = 7 (cf. Fig.5a). Certainly, this ’anomaly’ deserves
further investigation.
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