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Abstract

We calculate the quark part of the kernel of the generalized non-
forward BFKL equation at non-zero momentum transfer ¢ in the next-
to-leading logarithmic approximation. Along with the quark contribu-
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from the quark-antiquark production and from the quark contribution
to the radiative corrections in one-gluon production in the Reggeon-
Reggeon collisions. The results obtained can be used for an arbitrary
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1 Introduction

The BFKL equation [1, 2] became very popular in the last years due to the
experimental results on deep inelastic scattering obtained at HERA [3]. These
results show that the power of the growth of the cross sections of the photon-
proton interaction with the energy for a “hard” photon (the “hardness” is
supplied either by the photon virtuality or by the masses of the quarks into
which the photon is converted) is larger than the corresponding power for
hadron processes. The idea arose that the rapid increase of the cross sections
of the “hard” photon interactions is the manifestation of the BFKL dynamics.

The BFKL equation was derived in the leading logarithmic approxima-
tion (LLA) of the QCD perturbation theory, which means summation of all
terms of the type [asIns]™; a; is the QCD coupling constant and s is the
square of the c.m.s. energy. Unfortunately, in this approximation neither the
scale of s nor the argument of the running coupling constant «; are fixed. So,
in order to do accurate theoretical predictions, we have to know the radiative
corrections to the LLA. The program of the calculation of the radiative cor-
rections was formulated in Ref. [4] and fulfilled in Refs. [5]-[10]. Recently, the
calculation of the radiative corrections to the kernel of the BFKL equation
was completed and the equation in the next-to-leading logarithmic approx-
imation (NLLA) was obtained [11]. The corrections appear to be large and
caused a series of papers [12] devoted to the problem how to deal with the
corrections and what they mean.

The BFKL equation is a particular case (for the forward scattering, i.e.
t = 0 and vacuum quantum numbers in the t—channel) of the equation for the
t—channel partial waves of the elastic amplitudes [1]. Independently from the
value of ¢, we have in general a mixture of various irreducible representations
R of the colour group in the t— channel. The most interesting representations
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are the colour singlet (Pomeron channel) and the antisymmetric colour octet
(gluon channel). For brevity, we use the term “BFKIL equation” for the
general case as well, adding the word “non-forward” when it is necessary to
distinguish the general case from the particular “forward” case.

It is very important to find the corrections to the kernel of the non-forward
BFKL, for the gluon channel as well as for the Pomeron channel. In the case of
the Pomeron channel the equation can be applied directly for the description
of experimental data. The importance of the correction in the gluon channel
is determined by a remarkable property of QCD, the gluon Reggeization.
We remind that the derivation of the BFKL equation was based [1] on this
property. In fact, this equation is the equation for the Green function of two
Reggeized gluons. In the colour singlet state these Reggeized gluons create
the Pomeron. The self-consistency requires that in the colour octet case
the two Reggeized gluons reproduce the Reggeized gluon itself ( “bootstrap”
condition). The above statements are valid in the NLLA as well as in LLA.
The “bootstrap” equations in the NLLA were recently derived [13]. Since the
BFKL equation is very important for the theory of Regge processes at high
energy +/s in perturbative QCD, these equations must be checked. Along with
the stringent test of the gluon Reggeization, this check has another important
meaning. The calculations of the radiative corrections to the kernel are very
complicated. Therefore, they should be carefully verified. Up to now, only a
small part of the calculations was independently performed [9] or checked [14].
The bootstrap equations contain all the values appearing in the calculations
of the NLLA kernel, so that they provide a global test of the calculations.
Beside this, the colour octet state of two Reggeized gluons is necessary for
the description of colourless compound states of more than two gluons, in
particularly, for the Odderon.

In this paper we consider the non-forward BFKL equation, calculate the
quark contribution to the kernel of this equation and demonstrate explic-
itly the fulfillment of the “bootstrap” conditions in the NLLA in the part
concerning the quark-antiquark contribution.

In the next Section we present the general form of the quark contribution
to the kernel. In Section 3 we give the explicit form of the quark piece of the
gluon trajectory and derive the quark part of the contribution to the kernel
from the one-gluon production. In Section 4 we consider quark-antiquark
production in collisions of two Reggeized gluons. In Section 5 we obtain
the contribution of this process to the kernel. In Section 6 we demonstrate
the fulfillment of the “bootstrap” condition for the trajectory. The results
obtained are discussed in Section 7.
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Figure 1: Diagrammatic representation of the elastic scattering amplitude

A+B— A+ B.

2 Definitions and basic equations

As usual, in an analysis of processes at high energy particle collisions, we
use the Sudakov decomposition for particle momenta. Admitting that the
initial particles A and B have non zero masses, we introduce the light-cone
vectors py and p_ in terms of which the momenta of the initial particles
are pa = py + (m%/s) p— and pp = p_ + (m%/s) ps respectively, with
s = 2(p4p-). In the NLLA, as well as in the LLA, the elastic scattering
amplitudes with momentum transfer ¢ ~ ¢, are expressed in terms of the
impact factors @ of the scattering particles and of the Green function G for
the scattering of Reggeized gluons [13] (see Fig. 1). The Mellin transform
of the Green function for the Reggeized gluons with initial momenta in the
s—channel ¢1 ~ fpy 4+ ¢11 and —gs ~ —apy + ¢q21, momentum transfer ¢
~ ¢, and irreducible representation R of the colour group in the ¢t—channel,
obeys the equation [13]:



WG (@1 8, 4) = (1)
=2 (= 2 ¢(D-2 — — dD_Qr R) (= = R) (=2 = . >
§i (@1 — )" 6 )(41_92)+/ﬁ’d N, 7 ) G (7,3 )

72 (7 =)

Here ¢ and —¢5 are the transverse momenta of the colliding gluons in the
s—channel, ¢ is the momentum transfer and D = 4 + 2¢ is the space-time
dimension, taken different from 4 to regularize the infrared divergences. Let
us note that we use a normalization which is different from the one used for
the forward case [11]. The non-forward kernel, analogously to the forward
one, is given as the sum of the “virtual” part, defined by the gluon trajec-
tory j(t) = 1 +w (¢), and the “real” part IC,QR), related to the real particle
production in Reggeon-Reggeon collisions

KRN, @i 1) = (2)
v (=73 +e (=@ = 1))@ @ - 0 8P (@ - )+ KR (31, 6 )

The gluon trajectory is known [7] in the NLLA. The “real” part for the
non-forward case is known in the LLA only [1]:

Lo 2en (G2 — )+ 20— 7).
KRB (F1, ;7)) = — R1<q1(2 7) 322@1 7) -7t (3

V)

(2m)P- (41— 72)

where the superscript B means the LLA (Born) approximation and the co-
efficients cp for the singlet (R = 1) and octet (R = 8) cases are

N
61:]\77 cg = — . (4)
2
In Eq. (3) and below g is the bare coupling constant, connected with the
renormalized coupling g, in the M .S scheme by the relation

11 2n¢\ 73
=g 1 [——22L )2 5
9= guh +<3 v ) 2| (5)
where ) ( )
B goNT(1 —e€
g =" (6)
7 (4m)2+e

Let us stress that in this paper we will systematically use the perturbative
expansion in terms of the bare coupling g.
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In the NLLA the “real” part of the kernel can be presented as [13]:

Yo dspp Yo .
KR (qwm):/—(z )DImA%;? (@, 00 (50 —5pm)  (7)
i

Here Ag;) (91, q2; q) is the scattering amplitude of the Reggeons with initial
momenta ¢; = fp4 + q11. and —gs = ap_ — g21 and momentum transfer
q = g1, for the representation R of the colour group in the t—channel, s, =
(g1 — q2)2 is the squared invariant mass of the Reggeons. The s, —channel
imaginary part Im.Ag%) (41, ¢2; ¢) is expressed in terms of the effective ver-
tices for the production of particles in the Reggeon-Reggeon collisions [13].
The second term in the r.h.s. of Eq. (7) serves for the subtraction of the con-
tribution of the large s, region in the first term, in order to avoid a double
counting of this region in the BFKL equation. The intermediate parameter
s, in Eq. (7) must be taken tending to infinity. At large s,, only the contri-
bution of the two-gluon production does survive in the first integral, so that
the dependence on s, disappears in Eq. (7) due to the factorization property
of the two-gluon production vertex [13]. Since we are interested here in the
quark contribution only, we can omit the subtraction term and perform the
integration over s, up to infinity.

The imaginary part of the Reggeon-Reggeon scattering amplitudes en-
tering Eq. (7) can be expressed in terms of the production vertices, with
the help of the operators Pr for the projection of two-gluon colour states in
the t—channel on the irreducible representations R of the colour group. We

have [13]

R e1c, | Preact *
ImAGY) (q1,92;9) = {erci[Prleacs) 1'.2 [e2ca) > /vifc}; (41, 92) (vf/fc}/ (qllanQ)) dpy .
nR 172
0 ﬂ
(8)

Here and below ¢} = ¢; — ¢, i = 1,2; ng is the number of independent states

in the representation R, 'y(}{lfc}; (91, q2) is the effective vertex for the production
of particles {f} in the Reggeon-Reggeon collisions, dp; is their phase space
element,

‘ D ¢(D) dD_llf
dpy = (2m)" 8PN g1 —q2 — 2 1) [

— T (9)
n 1 P 2



The sum over {f} in Eq. (8) is performed over all the contributing particles
{f} and over all their discreet quantum numbers. In the LLA only one-gluon
production does contribute and Eq. (7) gives for the kernel its LLA value
(3); in the NLLA the contributing states include also the two-gluon and the
quark-antiquark states. The normalization of the corresponding vertices is
defined in Ref. [13].

The most interesting representations R are the colour singlet (Pomeron
channel) and the antisymmetric colour octet (gluon channel). We have for
the singlet case

Jclc’l 502 cl,

(14| Py each) = N M= 1, (10)
and for the octet case
<clc'1|758|czc/2> = % ., ng=N2-1, (11)

where fyp. are the structure constants of the colour group.

3 Quark part of the kernel from the gluon
trajectory and real gluon production
The gluon trajectory is known [7] in the NLLA. The quark contribution

wq(t) to the trajectory appears at the two-loop level only. For the case of ny
massless quark flavours it can be written as

2 (D—2)
@ _ 9t d [0 —~  op (m .
A§0) = s | Gy Fa@ - 2hald 12
where t = ¢ = —¢'% and
L _ 2PN T (2= 2) T2 (F) o (B-2) .
Fo(q) = D (77) (13)
(4m)=T (D)

The quark contribution to the Reggeon-Reggeon-gluon (RRG) vertex was
calculated in Ref. [6]. We remind that beyond the LLA the vertex has a
complicated analytical structure [15, 5], but in the NLLA only the real parts
of the production amplitudes do contribute, because only these parts inter-
fere with the LLA amplitudes, which are real. Neglecting the imaginary parts,



the quark contribution to the RRG vertex becomes

d d g?’an (2_%) r’ (%‘

' 1
Yeres (41,02) = €675, (47) 7T (D) )e*GH {QCu(fh; )Y + 19
Pa PB (Q) o2 9 2y £(Q)
" <(’fPA) - (kp3)> [f57 = (2K = 47" — ) 2 ]}. (14)
I

Here 5dG and eg' are the polarization vectors of the produced gluon in the
colour and Minkowskii spaces respectively, k& = q; — ¢ is the gluon momen-

tum,

2-‘2 2-‘2
C(q2,91) = —q11. — q20 + (1 — q11) ( — 2—21) + (g2 — q21) ( - g) )

k k?
) (15)
an
Q) _ (@ + ) <2 _ 1)2
e\t ™
k2 D oo D
1= o E (22 - 2],
. 1 D -
f?()QJ — m I:q—*12q—'22(D - 2)2¢0 + (E — . ) k2¢1:| ) (16)
1 3
where
on = ()" — ()] a7

Using the expressions (14)-(16), with the help of Egs. (8)-(11), we obtain
from Eq. (7)

i) = ep L1 D=9 [P+ 9P
rEG (01,92,0) =CRr (2m)P=1 (4m)2+e  T(4+ 2e)

o { (R (oK% = @7 — @7 — 200 - 202 +20%) + (@7 — E)@* — @2 ?)]
(

21+ 7237 60 — e(§? + §7) 1]
X =2 _ =2\3
(fh ‘JQ)
PR g2712 9F2p2 _ p2(g2 4 g2
+2(1 4 (Bl A2 Sl (é 1) 4,
k (67 —35)




In the physical limit € = 0 we have:

x{ [k2 (2k2—q"12 —q_'22 _2[]—»1/2 —2@'2':2—}-2@'2) n (512 —522)(§f2 _[]—»2/2)}

X -
(@ —d5)3
9 e - ad | 206 — (3 +35) | i
+ = + =7 _ =3 ni =3
k (¢ 5) 3
+ (=, e @)} (19)

The remarkable property of the kernel, which follows from the gauge invari-
ance of the theory, is vanishing of the kernel when one of vectors §; or ¢/

tends to zero. One can check that this property is fulfilled in Egs. (18) and
(19).

4 The quark-antiquark production
in the Reggeon-Reggeon collisions

Let us consider the production of a quark-antiquark pair with momental; and
l5 respectively in collisions of two Reggeons with momenta ¢; and —qs. We
will use the Sudakov parametrization for the produced quark and antiquark
momenta {; and [5 :

li = Bipa + aspp + ;1 saiff; = —12 =102, 1=1,2,

Bi+pP2=0, artars=a |, Lip+lbr=q1—q21 (20)

and the denotation
k:l1+l2:fJ1—fJ2, SRR:kQ' (21)

For the effective vertex of the quark-antiquark production in the Reggeon-
Reggeon collision we have [10]:

gzﬂ (11) tcltCEb(11712) — ¢ tclb(lz,ll) U(lz) s (22)

N | —

’72?2(417 42) =
10



where £¢ are the colour group generators in the fundamental representation.
The expressions for b(l1,l3) and b(l,11) can be presented in the following

way':
1pa@i¥s 1
b(ly, 1) = —4———F2= — — 2:
(1) = Haflts _ Ly (29
and 1 D¥ )
b(ly, 1)) = —£Bx20A 24
(15, hh) s 7, ! (24)
where ) .
t1= (g1 — 1), ta = (g1 — 12)*,
Qi=qir—l1, Q2=qi1— a1,
7t 7
=2 [(m—i—f]z)L—ﬂPA <1—2m> + app (1—2m)] . (25)

According to Egs. (7) and (8), the quark-antiquark contribution to the
BFKL kernel can be presented in the form

R T
E%R)QQ (Q1,f12§f1)

(16} [Pr|cach) Q Q ) :
= S 2 [ 182 a) (353 @) dsiades o (20)
QQ

where the sum 1is taken over spin, colour and flavour states of the produced
pair, ¢ = ¢; — ¢, Spn = (q1 — q2)? is the squared invariant mass of the two
Reggeons and the element dpy of the phase space is given by Eq. (9). The
f-function in Eq. (7) is omitted since the integral over s,, is convergent at
infinity. From the representation (22) we obtain

<Clcll|7572|326/2> QQ Q0 v\ _ g4nf
SRS 48, (aa2) (438 (01.48)) = G5t lanAtbpB(h o b))
QQ

(27)
Here n; is the number of light quark flavours, the coefficients ar and bgr for
the interesting cases of singlet and octet representations are

ao=N?—=1, by=1; ag=—, bg=0 (28)

and

A=tr (b, YR, 1)) B =tr (b, L) b (1,1) , (29)
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where b'(l1,15) is obtained from b(l1,l3) by the substitution ¢15 — ¢}, =
q1,2 — ¢ . In the following, for reasons evident from Eq. (28), we will call A
“non-Abelian” and (B — A) “Abelian” parts.

The calculation of the traces gives

S8a1fPa = =, 16 _, 912452+§22q/2

A=32—= — (g2 1112z 1241
tltll (QlQl) + 8 ]i'2 (q Saﬂ )

8 Ry L
BEE g lsaf — saif + 272 2L — 24122?1 =20 (41 + ¢2)]

x[saf — salﬂ—l—Z_"Q - —2@'2'2% — ZE((j'f +43)]

+]1,2{[ (((@1 ) (sa1fs — D) + (0112)(Sa1[3+f1((j‘{+q‘2’)_Qq“l/?%))

(h o ly,a1 6 Ba,a0 0 P, §) & —00, 01 & 42))}+{‘ZH‘Z’}},
(30)
sa = =
(A—BH%th%ﬂﬁ{~§%®Q0
14

fh1} 9}+{EHE}' (31)

The Abelian and non-Abelian parts possess a “nice” behaviour at large trans-
verse momenta of the produced particles and at large values of their invariant
mass, that guarantees the convergence of the integral in Eq. (26) at l_? — 00
and sp, — 0o0. The only region which leads to a singularity at the physical
dimension D = 4 is the infrared region k% — 0. This singularity is regularized
by non-zero ¢ = D/2 —2 . To make the discussed behaviour explicit, one has
to take into account the relations (20) between longitudinal and transverse
variables. The functions A and B can be expressed through the transverse
momenta and one ratio of the longitudinal momenta. Choosing this ratio as

B1 .
we have . .
&—1—;1: ﬂ_(l—:p)lf %_33122
8 Ta by a7



= - k2 ==
Saﬁ 'E(l_I)’ SRR .13(1—13) ) (33)
where .
N=(—-2)y —zly, L=A42z(1-2)k, (34)
and . -
~ l -2 i ; -2
1 :___ql +2(llq1) 3 t2__1_ _q1 +2(12q1) )
b} f12 =12 =1 7 f2 7! 2 /
2] =-, "0 +2(hgy ) tzz—l_ —qi "+ 2(l47 ) (35)

Using these relations, we obtain

A =16z(1 —z) {—x(1 _2) (2 (AGY) n 2(q“1f1)~— q*12>

A2 A2y
=9 =72 K]; 2
—z(1-2) 1;5 (1_2‘”+2I(1_I)(K2)) +{q7 Htf/}, (36)

:L‘t~/1 —a 5 2t 1—2)i, af
2 g =132
7 (2(q L) —477) 1 1 1 ( N
= - — —= — _2
+ 2t) (1—=z)t, at, + z(1— 2)i, 1, (q1l1)(4772 )



12 =2
o

) PN - o (TN L =2 k am
VAT T)@d) + (@ — )R + 7 - )}+{h ol (37)

b

2

Tt is easy to see from Egs. (36) and (37) that the integrand in Eq. (26)
4 -
li

l;

dk? ' de dP-2y
[ st = | s [ oo (39)

(2m) o 2z(1—2) ) (2m)(P-1)
I;
of values of z close to 0 or 1 (which correspond to large invariant masses
Spr - see Eqs. (33)), the convergence of the integration in these regions is
guaranteed by the vanishing of the functions A and B as z(1 — z), as it is
evident from Egs. (36) and (37). The limit k? — 0 means A% 5 0, according
to Eq. (33). The Abelian part is regular in this limit, as it can be seen from

Eq. (37). As for the non-Abelian part, from Eq. (36) we have for its singular
part:

falls down as when

— oo . Taking into account that

we see, that the integration is well convergent at large . As for the regions

Kiy @230\ ((Rey (A
Asin — 161‘(1-1‘) —8$(1—I‘) ( _‘ql) _ 1_‘(_‘ ) ( _‘1) _ ql_‘ (_’ )
I A2 K2k2 A2 K2j2
59 299 | 299
4 1 _“*‘_"12 1 } (39)
2 A2 2

5 The quark contribution to the kernel

. A (R)
To obtain the contribution to the kernel ,CRRQG

quark-antiquark production, we have to perform the integration in Eq. (26).
Though the expressions (36) and (37) are convenient for analyzing the be-
haviour of the functions A and B, they are not for the integration with the
measure given in Eq. (38). For this purpose, it is better to use the repre-
sentations (30 ) and (31) which are explicitly invariant under the “left-right”
transformation

(q1,42;¢) from the real

hol, arepf, aep, 00 46 -0 (40)

and to exploit also the integration measure in the alternative form:

dk? (Y dy dP-2,
[ oo = |, wi | s “
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where

y=—_- (42)

The details of the integration are presented in Appendix I. The integration
for the non-Abelian contribution can be performed for arbitrary space-time
dimension. The result is

dk? 16 T(1 - [T(14 )2
/%deA— (4)2te c T(4 + 2¢)

];2 € o o . .
{2(1+6)2<( 9) (q12q42+qo2q1’2)+(q2)1+)

+[FE (2 - a2 @ -2 - 2@t 20?) + @ - )@ - )
% [2(1 + )3 d5 ¢o — (@i + 75)61] + E(E —d* g% — 40+ 5)2‘T2¢
= = - 1
(G —77)? (7 —75)
2 q_‘12q_:72
+4(1+@~W¢0 + (=7, L1, )} : (43)
1 2

where the functions ¢, are given in Eq. (17). Considering the physical limit
€ — 0, we have to take into account the subsequent integration of the kernel
over k which leads to contributions ~ e¢~! from the terms having the singu-
larity at k2 =0. Conserving all the terms giving non-zero contributions in

the limit ¢ — 0 after integration over l;, the result (43) in this limit reads

dk? 2 12 IT'(2 2
[ et = o r(-g 2o
(2m) 3(2m)2 (471') T'(4 + 2¢)
(];2)6 2R 4 27 2)1te
X( /;2 ( + 90
+[]_f‘2<2]_f‘2—f]_‘ —q5 —24{% =24,  + 27 )+(1_ 7s) 12—52/2)}
07272 In (72/52) — (74 — g
><[ 192 ﬂ(‘]}@/ 222 3(‘11 ‘12)] PR
(7 — )
WEE — TG+ 72 =2 72q2
(L) ) ()
(12_‘122) ‘122 4
+ (71 «=q1, 2= 7)) (44)



The Abelian contribution is not singular at all, so that we can consider
it from the beginning in the physical space-time dimension, ¢ = 0 . Nev-
ertheless, this contribution has a form much more complicated than the
non-Abelian one. Evidently, the circumstance that the latter contribution
is simpler must be related to the special role played by the gluon channel in
presence of gluon Reggeization. In fact, the Abelian contribution was calcu-
lated many years ago [16] in the framework of Quantum Electrodinamics and
we can use the results obtained there. We have

dk? 32 q q
——dp(A—B+lL +— )= —Ki |1 — =, 2 — = 45
/(27r) pi( +1 2) )7 '€l (ﬂh 525 (45)
whit the function K; given by Eq. (A39) of Ref. [16], where in the r.h.s. of
the equation we have to make the substitutions
= - ~ - i = i 3 - — 5/ = =
q_>q1_2a ~_§: T%EaQ_)ql_q(l_y)a Q _>q2—‘J(1_CU)
Tt is worthwhile to say that Eq. (45) contains a non-zero fermion mass and,
at first sight, has a logarithmic singularity when the mass tends to zero; but
the singularity is spurious because of cancellations among various terms.

We can now present the quark contribution KRe (41,92 ¢) to the “real”
part of the non-forward kernel of the BFKL equation. It was explained al-
ready that in the NLLA this contribution is determined by the quark correc-
tion to the one-gluon production and by the quark-antiquark production in
the Reggeon-Reggeon collisions:

o oo R o oo R o oo
K9 (G, 35 0) = Kigna (3,05 0) + K0 o (@, @:0) - (46)

The first term in the r.h.s. of this equation is given by Egs. (4) and (17)-(19);
the second, by Eqs. (26)-(29) and (43)-(45). For the octet case, as it can be
seen from Egs. (26)-(29), the contribution from the quark-antiquark produc-
tion contains only the non-Abelian part, which was calculated for arbitrary
space-time dimension. Since the quark correction to the one-gluon produc-
tion was also calculated at arbitrary D, the quark contribution to the “real”
part of the kernel in the gluon channel at arbitrary e turns out to be:

1 T(l—e) [T(24¢)])?
(2m)P-1 (4m)2te € T'(4 + 2¢)

/C,ES)Q ((ﬁ, 72; ff) = !14an

];26 o
X{(,;z)(fq

h

2

+ @)+ (@) - ((_‘12)6 + (_‘22)6)

V)
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BB (g (a2 1 (e . @H@')} @7

It is easy to see, that the expression in the curly brackets vanishes when
any of the ¢;’s or §;’s tends to zero, as it should be. In the physical limit
€ — 0, keeping all the terms giving non-zero contributions in that limit after
integration over k , we obtain

4 ¢ 2
K, ({h’ q2; Q) 24(27!’)5 { e (47]-)25 ( 6) F(4 4 26)

];:2 ¢ R =9 = — —2\€ —2\€e —2\€e
X [(]-52) (q12q2'2+q22q1'2)+q2 ((f]z) —(412) - (‘122) )]

+2 =12 >2 =12 72

7 =54 g . . .

(774 = 21 )ln<—q}2)+ (@1 «— a1, q2Hq2')}~ (48)
2

The quark contribution to the “real” part of the kernel in the Pomeron
channel, according to Eqs. (4) and (27)-(29) and (49) can be presented as

@ (7 a7y =2k ®Q (71 ay iy = I e (o T 2T
K% (q1, 42 ) =2K7% (q1, 42; )_WAI —50-5)- (49)

Let us mention the properties of the kernel

KRN0, 425 4) = K1, 0;4) = KRG, 7)) = KP4, d34) = 0,

KRN, §2:7) = KB, q1; —7) = KNG, 4o =)

which are consequences of the symmetry of the imaginary part of the Reggeon-
Reggeon scattering amplitude (8), entering the expression (7) for the "real”
part of the kernel. Let us stress here that the above properties, which follow
from very general arguments, are valid also for the gluon part of the kernel;
we omitted indeed the superscript ) in the above equations.

Another important property of the kernel is its infrared finiteness at fixed
k =§1—{2. The 1/¢ singularity in Eq. (47) is the ultraviolet one and disappears
when we expand the kernel in terms of the renormalized coupling. Indeed,
in this case we have to add to the r.h.s. of Eq. (47) the piece coming from
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the coupling constant renormalization (5), (6) in the LLA kernel (3). For the
expansion in terms of the renormalized coupling we obtain in the limit ¢ — 0

K9 (@, 6 0) gy [ A+ gl (R 1
. 41,9259 ) renorm— TIHe(1— )N | ¢ T'(4 + 2¢) 2 3

@ BED )1 (O @R -@un, (@
7o —q +3 q n —~9 =9 ) —9
k? 9193 k2 3

+ (1 q*qu"é)} (50)

As it can be seen from this expression, the 1/¢ singularity at fixed k2 disap-

- €
pear after expanding (ﬁ—z) in powers of €. The expansion is not performed

here, since in the integral over k of Eq. (1) the region of small ];,‘2’ for which
eln (Z—z) ~ 1, does contribute. This region contributes to the integral with

terms singular in 1/e. For the vacuum channel, these terms cancel the sin-
gularity in the ”virtual” contribution to the kernel, related with the gluon
trajectory. The cancellation occurs in a way quite similar to the analogous
cancellation in the forward case, so it does not need a special treatment. For
the octet case such cancellation is evidently absent because of the different
coefficients (4) between vacuum and gluon channels. We observe, however,
that the cancellation is recovered in the case of the colourless compound state
of three Reggeized gluons, i.e. the Odderon. In this case, indeed, the "real”
part of the Kernel involves the three combinations with different pairs of
Reggeized gluons in the octet channel, while the ”virtual” part of the Kernel
involves three gluon trajectories. The cancellation of the infrared singularities
follows then quite simply from the singular part of Eq. (49).

6 The check of the “bootstrap” condition

The “bootstrap” condition derived in Ref. [13] has the form

2 D— 2
g Nt / / d (8) oo
- (71,423 9)
2(2m)" " —q‘) i qv—d)

=w (1) (w0 1)+ (1)) . (51)
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Here K®) (71, ¢; §) is the kernel of the non-forward BFKT, equation , w (t) =
w (1) +w® (t) is the deviation of the gluon Regge trajectory from unity in

the two-loop approximation and ¢ = —¢'2.  In the one-loop approximation
(LLA) the trajectory
INt dP=2
W (1) = _ .g - / < 71 i (52)
2 (2m) g7 (0 = q)

is purely gluonic. The quark contribution to the trajectory appears at the
two-loop level (NLLA) and in the NLLA is given by Egs. (12) and (13).
The kernel K®) (41, d5;¢), according to Eq. (2), is expressed through the
trajectory and the “real” part. The quark piece of the latter is given by
Eq. (47). Using this equation together with Egs. (12) and (13) for the quark
contribution to the trajectory, we arrive at

dP gy 1 1 T(1—e)[I(2+ 6]
- = (S)Q . — 4 N
/ T D= N e T e ra g2

s (@ -@-@) @y 6

where k =¢1 — 4>, ¢/ = @i — { and ¢4 = §5 — ¢. Putting the r.h.s. expression
into Eq. (51) and using Egs. (52), (12) and (13), it is easy to verify that the
“bootstrap” equation (51) is satisfied.

7 Discussion

In this paper we have calculated the quark part of the kernel of the generalized
non-forward BFKL equation at non-zero momentum transfer ¢ in the next-to-
leading logarithmic approximation. Along with the quark contribution to the
gluon Regge trajectory, which is the same as for the case of zero momentum
transfer ¢ and therefore is known already, this part includes pieces coming
from the quark contribution to the radiative corrections for the one-gluon
production and from the quark-antiquark production in the Reggeon-Reggeon
collisions. The results obtained can be used for an arbitrary representation
of the colour group in the t—channel.
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For all such representations, the part of the kernel related with the real
particle production is infrared finite, in the sense that there are no singu-
larities at fixed transverse momentum k of produced particles. Integration
over k in the generalized BFKL equation leads to terms singular in the limit
€ — 0. For the vacuum channel, these terms cancel the singularity in the ”vir-
tual” contribution related with the gluon trajectory. For the octet, case such
cancellation is evidently absent, although it is recovered in the case of the
colourless compound state of three Reggeized gluons, i.e. for the Odderon.

The kernel for the octet case enters the “bootstrap” equation for the
gluon Reggeization in QCD. The fulfillment of this equation is necessary for
the self-consistency of the derivation of the BFKL equation. We demonstrate
explicitly the fulfillment of the “bootstrap” condition in the next-to-leading
logarithmic approximation in the part concerning the quark contribution.
The check performed serves simultaneously as a stringent examination of the
correctness of the calculations of the quark contribution to the kernel of the
BFKL equation.

Recently a paper by M. Braun and G.P. Vacca [17] appeared, devoted to
the NLLA kernel of the non-forward BFKL equation in the octet case. In
this paper the kernel was obtained using as a basis the bootstrap relation and
a specific ansatz to solve it. Our results disagree with the results obtained in
Ref. [17] . Since our answer is the result of a direct calculation, contrary to
the results of Ref. [17], in their approach there must be a weak point. Indeed,
already the form of the bootstrap relation used in Ref. [17] is too restrictive
and is not satisfied. Moreover, the ansatz used to solve the bootstrap equation
does not satisfy the symmetry relations of the kernel..

A Appendix I

In this Appendix we present the details of the calculation of

dk? Y dx dP=21
/(%)d”fA_/O 2:(1 — z) /(%)(D—UA’ (A1)

where A is given by Eq. (30). We group the terms contributing to A in four
different classes according to their behaviour under the integration. The first
class contains only the first term in the r.h.s. of Eq. (30)

Ay =3222(01Q1) (A.2)



Tt can be rewritten using Egs. (20), (32), (33) and ( 35) in the equivalent
form

@) _ 322(1 — 2) [7(G, Q)

Ay =32 = .
B+ (@ - 2 q))] [+ 2 (@ — 2L )]

I—IZZ(Q
1

x

Taking first the integral over z, we have

—

[ e OG0 @0
0 2z(l—2z) (q} ) (7 —

Using now the following simple trick

1 -7 ! 1
S S X P S—
(@=L = (i —h)?* (-h)?* Jo 2@ =h)?+(01-2)(¢—h)
the integration over /; and the subsequent integration over z become trivial

and give
64T (—e€) [T(2 + €)]?, ., . dP-2]
- (‘) u .)] ()" +16/ﬁ~ (A.4)
(4m)2+e T(4+ 2¢) (2m)(P-1)
The last term in the above expression vanishes in dimensional regularization.
We stress once more, however, that independently from the regularization

scheme, the integrals which diverge at large |l | in D =4 cancel in Eq. (A.1).
The second class of terms in the r.h.s. of Eq. (30)

16 ., P02+ 354
Ay =8 — —2(§%—
2 k2 (a saf )
_..2/}1

[saﬂl — sa1 B+ qu ” — 245

-;/ 2 ﬁl

B
Using again Egs. (20), (32), (33) and (35), the above expression can be recast
in the following form

8
(k2)?

[saﬂl—soqﬂ%-?_”?z—? 2f1(‘ff+q_‘?l)] :

-2 =12 =2 =1
Ay = 162(1 — 2) [2 +(1—20)2 2 ; L 2x(1—2)(1 23:)”1;21 ]
1622(1 —2)? [201—22) {,~_, 7! 2(Ak) _ i
— = 2(1=2) (Aql)—x(l—x)T I—Zx(l—r)f



2(1—22) [ i (Ak) ik
(=) ((Aql) z(l—z) 5 1—2z(1—2) 5 (A.6)
_q-‘1/2—*22_|_-‘12—*2/2+ q—*2
b)) z(1—z)

(A2)?

Non-zero integrals over [y are the following

dP=2; 1 2@(—e¢) .
h= / NP0 = (et o

La (-2 ((&m —2(1-a) 32“’;)) ((an') Y Q(M)) |

dP=2, 1 20(1—¢) .
B
_ dP-2, 1 _ QF(—E) Sore_1
s _/ @D jog - amrre TR

dD—2l1 1
fa :/Wm
x (@q?) ~ a1 >“TA’“)) ((Kq*o ~ a1 - )q;ﬂ)

(- 1—T2a'2 _ ' 2(qh k) — a2(7'k .
— ( 6) ( 6)(]1 q1 q1 (ql ) 41 (ql );‘E(I—I)[;‘E(l—;‘l})k2]e_1 )

V)

(am)7+e (0+0)
Using the above result and integrating also over z , we finally obtain
/1 da / a2l _ _64F(_€) T2+ ) (];2)6(-»/2—»2_1_-42 ——12)
o 22(l—2z) ) @) @027 T an)te T(d+2¢) fz o BT
(A.8)
The remaining terms in the r.h.s. of Eq. (30) are
16 1 = = = = = = o PR
Az = 72 [E (((quf)(salﬂz — hilz) + (Qil2)(sa1 B+ L (§) + ¢3) — 241/?;1))
+(h Hl;,m9527012951751H—J275fH—55))} ; (A.9)
and
Ag=A3(dy & @, 0y & d7) (A.10)
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It is not necessary to calculate explicitly the integral of A4, since it can be
obtained by simple substitutions from that of Asz. Concerning As, it can be
rewritten equivalently as

ay =20 [(Eél)z;(q*f i) + ) B+ )+ DO E)
rongs (1= 250) (030 - apas (1= 227) (G0 (A11)
Q108 ﬂs 20/1 Q98 Ozﬂs 11 . .

Since As is manifestly invariant under the “left-right” transformation (40),
we can separate in the above expression two set of terms, related each other
by the “left-right” transformation. One possible separation is

with obvious notation. Since the integration measure can be presented in
two equivalent forms (38) and (41) connected by the “left-right” transforma-
tion, the result of the integration of féL/R) can be obtained from that of f3
by the change (¢} ¢ —q5, ¢ ¢ —q3). Therefore the former integration
can be avoided. This allows to escape those integrands with A4, at the
denominator which come from the term proportional to a3/« in Eq. (A.11)
and would be very nasty to integrate with the measure (38). Let us focus
then our attention on f3 which can be written as:

_8z(1—2) {gx .Gy — B0 Gu(di + @)

A2ty z

x

fs =

+ 2B @020 — ) @) + (@ - T + L+ @) ) (A13)

The integration of the first term is trivial and gives

I__/l dx /dD—211 16(1 — 2)A2(1,Q1)
ST ), 2(1=2) ) @n)®D A

_3r(=g P2+ )’
© (4m)2te T(4 4+ 2¢)
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For the remaining terms we limit ourselves to illustrate the strategy of the
integration since presenting all the intermediate results would be too lengthy.
The basic integrals to be calculated are of the form'

D ‘711 ',En+1
1—/ dr/ — — , (A15)
(G —2h)? (1 — 21)? + 2(1 - 2) 7]

with n natural number. Using the Feynman parametrization and integrating
in d”~2l;, one obtains

_2T(1—¢) n+l
= dl‘ dZ =9
(4m)2te {zz[z l—z) 24+ (1—2)q?] e

2I'(1 — ¢) /1 . /1 z"
= — dy y* dr—— — — — , A.16
(4m)2+e Jg y @@ =77 +§ - i) e (4.16)

where the change of variable y = zz has been performed in the last equality.
This integral can be now calculated integrating first over  and then over y.
The complete calculation for all the terms in Eq. (A.13) but the first is long,
but straightforward. The final result for

/0 Qx(ilx— z) :/(gdﬁ)zz;l_ll)(ABJrAz;) (A.17)

is given by the last three rows in the r.h.s. of Eq. (43).
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