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Abstract

Theory of the transition radiation and the transition pair creation
is developed in the frame of QED. The spectral-angular distributions
of probability of the transition radiation and of the transition pair
creation are found. The total energy losses of an electron and the
total probability of pair creation by a photon are calculated and ana-
lyzed. Features of radiation and pair creation processes in a superdence
medium (typical for white dwarfs) are discussed.
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1. The transition radiation arises at uniform and rectilinear motion of
a charged particle when it intersects a boundary of two different media (in
general case, when it moving in a nonuniform medium or near such medium).
This phenomenon [1] was actively investigated during a few last decades (see,
e.g. reviews [2], [3]) and widely used in transition radiation detectors. The
existing theory of the transition radiation is based on the classical electrody-
namics. The quantum theory of the transition radiation is of evident interest.
An analysis in the frame of quantum electrodynamics indicates existence of
the crossing process: electron-positron pair creation by a photon on a bound-
ary of two different media. We shall call this process as the transition pair
creation.

It turns out that the quasiclassical operator method developed by authors
is adequate for consideration of the transition radiation. The probability of
the process has a form (see [4], p.63, Eq.(2.27))

e2 Bk [ 00 7 b2 hk?
dw = — dt dty R*(t t —— kp— — | dt
o= G [t [ amrmen |2 [ (-1 .
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where p = p# = (g, p) is the 4-momentum of the initial electron, & = k# =
(w,k) is the 4-wave vector of the radiated photon, in a medium |k| = nw, n
is the refractive index, &’ = € — hw, the matrix element R(#) is defined by the
structure of a current, we employ units such that ¢ = 1. Here we took into
account the term k? in the exponent (this is result of the disentanglement of
the operator expression, see Eq.(2.23) of [4]) which is essential in the consid-
ered case since we consider radiation in a medium (this term was skipped in
our paper [5]) and we use the representation Eq.(2.24) of [4] because we are
dealing with a nonuniform case. For electrons (spin 1/2 particle) one has

R(t) = =1, ()67, (p) = ¢, (A(1) +ioB(1)) ..
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here e is the vector of polarization of photon (the Coulomb gauge is used),
the four-component spinors us,, us, and the two-component spinors ; ., @,
describe the initial (s;) and the final (sf) polarization of the electron, ¥ =
v™1 (v —n(nv)) ~ v, vy is the component of particle velocity transverse
to the vector n = k/|k|, v = ¢/m is the Lorentz factor. The final expressions
in (2) are given for radiation of ultrarelativistic electrons, they are written
down with relativistic accuracy (terms ~ 1/+ are neglected) and in the small
angle approximation. For the rectilinear motion radiation arises because of
variation of the refractive index n(w), e.g. at intersection of a boundary of two
different media. The main contribution gives the region of high frequencies

where ) )
4me? N
nw) =1- 2 2= (3)

2w?’ m

where N is the density of electrons in a medium, wq is the plasma frequency.

2. Here we consider the transition radiation in the forward direction at the
normal incidence of the relativistic particle on the boundary between vacuum
and a medium. In this case the photon mass squared can be written as

'k = (hwo)?g(1), (4)

where the function g () describes variation of the density of a medium on the
projectile trajectory. The combination R*(¢2)R(¢1) in (1) can be presented
in a form

R*(t2)R(t1) =

= %Tr [(140¢;) (A7 (t2) — ioB* (t2)) (1 + oCy) (A(tr) +ioB(t1))],  (5)

where (1 + () is two-dimensional polarization density matrix, we neglect
here change of the electron spin during radiation process. If we are not
interested in the initial and the final electron polarizations, then

% 3" R (ta) R(th) = A*(ta) A(t1) + B (£2)B(t1). (6)

84,8%
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Summing over the photon polarizations A we have

2

S (A" (t2) A(t1) + B* (12) B(t1)) =

A=1

1 [(hw)?
26’2 72

+ (% + ) (t2)9 (1)
This form of R*(t3)R(t1) was used in [6]. For the rectilinear trajectory

D (A%(t2) A(tr) + B (82)B(11)) = 251—'2 [r1+ 12077 (8)

where ¥ is the angle between vectors p and k,

h 2 12
((-U') ’ T,2:1+6_2.
£

=
g2

In the case considered one can expand

1 92 k?
kp:we(l—nv):we(W—i—E—}—ﬁ),

2 2 _
(hk)* | hwe 1+72192+k_5(5 h‘-")]

hkp — ~
p 2 22 m? w2

Substituting the results obtained ((6), (8) and (9)) into Eq.(1) we obtain the
spectral-angular distribution of the probability of the transition radiation
dw e?

dhwdy ~ 27h’w

(r1 +r2y) [ M (y) ], (10)

M) = [ o[- [Ty et do o) = 000 = pugte)
(1)

Here we introduced the angular variable y = y?9? and substitution of the
2

) wm . . .
variable 2—/t — t in the expression for M (y) is performed.

An important case is the transition radiation on the boundary between
vacuum and the medium. In this case g(t) = ¥(¢) and we take integral over
the angle

1 1

My =1 — — , k=14 g,
(v) <1+y K_{_y) %o

dwy, e? 1 2 ) 2 .
dh(_d —%{Tl |:1+;—K:_1hlhj| +T‘2 |:<1+m)hll{—2:|} (12)
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Figure 1: The energy losses spectrum w(w) = hw

The results obtained ((10)-(12)) is the quantum generalization of the theory of
the transition radiation. In the classical limit hw < ¢ one hasry — 0, r9 — 2,

2
wg .
Yo — w—g'y2 = k2 and we have from (12) the known expression for the spectral

distribution of radiated energy of the transition radiation on the boundary
between vacuum and the medium dF/dw = hw dw,/dw in the classical
theory (see e.g. [2]-[3]). The spectrum (12) for the case hwg = 2m, ¢ =
100 MeV is shown in Fig.1 (curve 1), for comparison the classical spectrum
(curve 2) is given. The classical probability is always larger than the exact
one and remains finite at hw = €.

Process of the transition radiation in frame of the quantum theory was
considered many years ago in [7]. The spectral distribution of the probability
of the transition radiation w(w) obtained in the cited paper differs from
Eq.(12). Tt should be noted that Eq.(14) of [7] for w(w) doesn’t satisfy the



symmetry relation with respect permutation £ <+ &’ in the crossing channel
(after application the substitution law, see (19) below).

w2 ee’
When ¢y = — — <1 the spectral energy losses are
w?m
dE e? e? w§ e?(2(hw)? + €2 4+ £"?)
— = 2 = . 13
do 12770 (271 4 r2] 127 m# w (13)

So for hwy < m the hard part of the spectrum of the transition radiation (for
hw ~ €) is suppressed as (hwg)*/m* (for the case considered we have power
suppression) tending to zero at the end of the spectrum as ’2.

Integrating (12) over photon energies we obtain after rather cumbersome
calculation the total energy losses A E when the electron intersects the bound-
ary between vacuum and the medium

AE = / oo 207
0 dh(—d

¢ € {Qa + 4_(1(1 —2a)[-2+4alnda+ (1 4+ (1 - 2a)4a)J(a)]} , (14)

~ Th 3
2 27,2
where a = (heo) = hk )
m? 4m?
1 </ a )
— —arctan,/—— |, a<1;
a(l —a) \2 V1i—a
J(a)=1< 1, a=1;

ﬁln(ﬁ—kﬂ), a> 1.

In the limit a < 1 we have from (14)
2 h
AE = S oy (1 - iﬂ) , (15)

here the first term is the known classical result and the second term is the
first quantum correction. In the opposite limit a > 1 we find from (14) for
the total energy losses AFE

2¢? 1
AE = Inda — - |} . 16
3. C ( n4a 6) (16)
The total energy losses AE when the electron intersects the boundary be-
A 2
tween vacuum and the medium are shown in Fig.2 vs @ = (4“)02) .
m
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Figure 2: The total energy losses AE Eq.(14) in units

For any matter on the Earth hwo < 100 eV and it follows from above
that photons of the transition radiation are soft (hwi, < £). However for the
matter with density ¢ ~ 108g/em? (white dwarfs) one has hwg ~ m and the
region of photon energies hw;, ~ € 1s not suppressed. So the quantum theory
of the transition radiation may have astrophysical applications.

The polarization of the transition radiation can be found from (6). We
introduce two polarization vectors



o nx (s xn) sXn

(17)

“lx(xn) 2 Jsxna

where s = v/|v|. Substituting the amplitudes A(¢) and B(¢) from Eq.(2) one
obtains the Stokes’s parameters

2ee’¥?
(a7 + (& 1 ) 77

&1 =6=0, &= (18)

In the classical limit one has hw — 0, ¢/ = ¢ and we arrive to the known
result [2] that the transition radiation is completely linearly polarized ({3 = 1)
in the radiation plane.

3. The crossing process for the transition radiation is the transition pair
creation: when a photon intersects the boundary of two different media (in
the general case, when it is moving in a nonuniform medium) the photon
mass squared (hk)? # 0 changes and creation of the electron-positron pair
becomes possible. The probability of the pair creation can be obtained from
the probability of radiation with help of the substitution law:

Bk — &Pp/h®, w— —w, €— —¢ (19)

Starting from (10) and (11) we have for the spectral-angular distribution of
probability of the transition pair creation for the created electron

dw e2
ddy  anhle (s1+ s29) |M (y)]?, (20)

where . N
M (y) :/ exp [—2/ (14+y—p(t)dt| dz, s1=1,
- 0

62 + 6/2

T St = e (21)

S9 =
here ¢ (&') is the energy of the created electron (positron), y = (yd)?, 9 is
the angle between momentum of the initial photon and the momentum of
the created electron, ¢(t) is defined in (11).

An important case is the transition pair creation on the boundary between
vacuum and the medium. In this case g(t) = ¥(¢) and we take integral over
the angle

1 1 wi ee’
M =y — = —— =1 —¢ g U 22
W=i(r-—) x=1-m w=2Z @
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dw, e2 1 2 2
—_P 14+ —— 1 1+ —]1 -2 .
de 27rh2w{81[+x x—lnx]+s2[<+x—1) "X ]}

As one can expect the probability (22) is symmetrical with respect energies
¢ and ¢'.

Integrating (22) over the electron energy we obtain the total probability
of the transition pair creation

/wdwp e2 |54+2a—4a® [1—a a 5 16
wy, = —de = — | — arctan - — ——,

g de 27h | 3a(l—a) a l—a 3a 9
(23)

where a < 1, a is defined in Eq.(14).
In the limit @ < 1 one has from (23)
e [8 , 256 4 4

= — |= . 24
W= o 359 Tapd tOU )] (24)

This means that in this limit the pair creation probability is damped o
(hwo/m)* (this is the only result obtained in [7] for pair creation, however
with wrong coefficient).

The total probability of the transition pair creation w), is shown in Fig.3
as the function of a = (hwg)?/4m?* = (hk)?/4m?. It is seen that w, grows
very fast with a increase.

At a = 1 Eq.(23) can be written as

2
wp:z—h[%—s—o]. (25)
—a T

At a = 1 the value of w, becomes divergent. We have to recall that wj, is the
total probability of pair creation for the infinite time. If takes into account
an absorption (or the imaginary part of the refraction index of the medium)
the value of w, will be finite.
At @ > 1((hk)? > 4m?) the photon becomes unstable since the channel of
decay v — et e~ pair will be open and just this process gives the contribution
into the absorption. The corresponding expression for the probability the
process per unit time one can obtain using Egs.(20)-(21):

M(y) = 276 <1+y—a%)

dw, eZ2m? [ g? 4 ¢'? 4ee’
_— = — 1 — )41 — dy. 2
dtde — 2h%ce’ Jo Y ) Ty oGz )W (26)
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Figure 3: The total probability of the transition pair creation w, Eq.(23) in
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units

Here we returned to the standard time making the inverse substitution
2

w
t—

¢ 7

t (see Eq.(11)). This expression can be obtained also if one consid-

ers large but finite part of the projectile trajectory in the medium. In this
case the pole term (see (22)) dominates

M(y) ~ exp(s(x +y)T) — 1],
W) = 7 leplx+y)T) — 1]
e e 1 —cos(x +y)T
$1 4 S2y My2dy:/ §1 4 Say)——————— >~ (51 — s9x) 27T}
[t s MRy [ (o) I s (5= )
m2w
X<0, —xT=-x5t>1. (27)

The same result will be found after integration over y in (26).
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Introducing the variable z = ¢/(hw) and passing to the variable z = 2z —1
we find

2,,2
Z= a2 1]} g

:em / [1+a(1+27)] r (28)

From (28) we obtain the known expression for the probability per unit time of
photon decay (or creation of the electron- positron pair by the virtual photon)
for (hk)? > 4m? in the medium (see, e.g. [8], Sec.113)

dw 2e2m? Ja—1

w d—tp:—%% —(2a+1) = ,/ k)? +2m?) .
(29)
4. We consider now some features of the radiation and the pair creation
processes in a superdense medium of the type which exists in white dwarfs.
In the such medium the Landau-Pomeranchuk-Migdal (LPM) effect (sup-
pression of the bremsstrahlung due to the multiple scattering of a projectile
[9]) affects the bremsstrahlung process for any energy of radiated photon hw
including the region where hw ~ ¢ for the initial energy € > 100 MeV. Note
that for heavy elements on the Earth this situation takes place starting from
the initial electron energy of the order of a few TeV. For estimations we use
the results of our papers [10], [5]. The function vg is the important char-
acteristics of the LPM effect which defines (for vy > 1) the mean square of
the momentum transfer measured in the electron mass m on the formation

length of radiation (see Eq.(2.36) of [10]):

167n7%e%ee’  1837-1/3
vi = ™ 2 € . vi(ed)et =1, (30)

miw 0c

where n is the number density of atoms of the medium, 7 is the atomic num-
ber. When vg > 1 the standard (Bethe-Heitler) probability of bremsstrahlung
is suppressed due to the LPM effect. For this case we introduce

g’ 1 €
g / In =
vy =& P &o 0( ST (1937- 1/3) n 0>,

where 29 = m (1672%a?X\3n1n (1832-1/3)) 7" here a = ¢2/h = 1/137, A, =

h/m. The accurate definition of &y follows from (30). For definiteness we
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consider Z=26 (iron), p = 10% g/em® and ¢ = 200 MeV, then we have
gg = 1.1MeV, & ~ 15.5. Tt is apparent that for such value of vy the
energy losses of a projectile diminishes and the radiation length increases

(see Eq.(2.43) of [10])

-—— =L .~
e dl rad = 9rhe Jo, ee! /2 €2

_ Soam” [B (3 1) +B <§ 3)] _ am® 3‘”"“2, (31)
N/ 2he 272 272 32v/2he he

where B(z,y) is the Euler beta function. For chosen energy ¢ we have Lyqq ~

1 de _ am? [ e? 4+ ¢ vy hwdhw

7-10"7ecm. At hw ~ ¢ value of vy increases as /7. The same behavior has
Lyaqg x v/& o /7. The formation length in this case is
2vh _vh

lj=——"——— =" ~2.-10"%cm. 32
! m(l +v) 8m o (32)

(hwo)? ee’ .
is
m?  (hw)?
rather small since hwg = 0.2 MeV and one can neglect the polarization of the
medium.

Note that under the selected conditions the value of ¢y =

The differential probability of the pair creation can be found using the
substitution law Eq.(19). The lifetime of a photon is

W am? [P g2 4 2 v, de
= Wp — ¢ S Fo
T Irhiw 0 ge! \/E hw’

ge!

Y0 =5\ ()

& = &o(e = hw), (33)

here ¢/ = w — . For the used above parameters and w = 200 MeV we have

1 Eyam? (1 5) 3¢,am?  4am?
— =W, ~ =P B -, =] = P ~ s 34
T P \/§7T7'L2w 22 8\/5712(.0 hw (34)
3 . —7
T = ZLMd ~53-107" cm,

and the formation length of pair creation I, for ¢ = w/2 is twice shorter than
Iy (I, =~ 10=%cm).

It is shown in [10] that when a projectile crosses boundary between vac-
uum and a medium it radiates boundary photons. The transition radiation
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can be considered as a particular mechanism of radiation of boundary pho-
tons. We consider the complete probability of the boundary radiation for
vg > 1 (see Eq.(4.14) of [10]). Using this formula we have the contribution
of boundary photons in the spectral distribution of energy losses

(8
= o { Bk
(35)

where we put k = 1 (since o < 1). We present v¢ Eq.(30) as vg = {4/’ /w.
Because we consider situation when &; > 1 we can put ¢ the upper limit of
the integration over w since integrals are convergent. As a result we find for
the energy losses due to boundary photons radiation

dAE,
dhw
V2

2
lnl/o—l—C—ln2+V—0<ﬂ+lnyo+1—0+z)

5

20 9 27w 2 4
AE, = 1 —In2+
= 3 I:nfo 6 - n 32\/_&)( + In 50-1—2 - C+ )]
(36)

For the parameters used (£, ~ 15.5)

2
AE, =1. 33&6 2.1073¢ (37)

Now we turn to the boundary pair creation. Performing the substitutions
Eq.(19) in Eq. (35) and integrating over the electron energy £ we obtain the
total probability of boundary pair creation

wy = 5 [mgp ——C—In2+
2
il < ++Ing, + 5 C—|—£—2ln2), (38)
4V/2¢, 4

here we define v, Eq.(33) as v, = £,/e¢’ /w?. So we have for §, ~ 15.5
b a -3
=1. ~1.4-107".
wy, 8371' 0

Comparing the energy losses due to the boundary photon radiation (37) and
due to the transition radiation (15) (for the parameters used hwg = 0.2 MeV
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or
a=0.04 < 1) we find

AFEy 1.3

~ ~ 2.1, 39

AE”- F\/E ( )
so that AFE} is slightly larger than AE},.. For the pair creation we have differ-
ent situation: the probability of boundary pair creation wg (38) is essentially
larger than the probability of transition pair creation w, (24):

2

wp a . _4
——~ —~3.107" 40

Of course, one have to take into account that all the discussed boundary
effects give visible contribution on the depth of the order of a few formation
lengths.
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