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Abstract

Direct computation of the transition time between neighbor reso-
nances in the standard map, as a function of the perturbation param-
eter K, allows for improving the accuracy of the critical perturbation
value up to Ko — Ky < 2.5 x 10™* that is by a factor of about 50 as
compared to the previous result due to MacKay and Percival.
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As is well known by now a typical structure of the phase space of a
few—freedom nonlinear dynamical system is characterized by a very compli-
cated admixture of both chaotic as well as regular (integrable) components
of motion (the so—called divided phase space, see, e.g., [1, 2, 3]). Statisti-
cal properties of such a motion are very intricate and unusual. One of the
most interesting (and important for many applications) problem is the con-
ditions for transition from a local (restricted to relatively small regions in
phase space) to the global chaos covering the whole available phase space.
The most studied model of such a transition is described by the so—called
(canonical) standard map (for history of this model see [4]):

ﬂ:y—f—w-sin(ﬂﬂm] O i (1)
where K is the perturbation parameter. In this simple model the transition to
global chaos corresponds to some exact critical value K = K,,. For K > K.,
the motion becomes infinite (in momentum y) for some initial conditions
while for K < K., all the trajectories are confined within a period of map
(1) ﬂsy g 41 :

The first idea how to solve this difficult problem was due to Greene [5].
First, he was able to solve a much simpler problem of the critical perturbation
K (r) at which a particular invariant Kolmogorov - Arnold - Moser (KAM)
curve with the rotation number r is destroyed. Critical function K(r) is
extremely singular with big dips at everywhere dense set of rational r val-
ues (see, e.g., [6]). The physical mechanism of this behavior (known since
Poincaré) is explained by resonances in the system (1) as the rotation num-
ber is the ratio of oscillation/perturbation frequencies. Whence, the main
Greene’s idea: to find the 'most irrational’ r = rg which would correspond
to the motion most far—off’ all the resonances. The former is well known in
the number theory: ry = [111...] = (v/5 — 1)/2 where the first representation
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is a continued fraction. This ’golden’ curve was found to be critical at the
parameter K = K, = 0.97163540631... [5, 7]. It was conjectured that for
K > K, all invariant curves are destroyed [7], that is K., = K.

The ’most-irrational’ assumption - as plausible as it is - remains a hy-
pothesis. The main difficulty is here in that the resonance interaction and
overlap, destroying invariant curves, depend not only on the resonance spac-
ings, which are indeed maximal for » = r;, but also on the amplitudes of
those which are not simply an arithmetical property. Another argument,
based on the analysis of the critical function K(r) [8, 9], also does not prove
this principal hypothesis.

A different approach to the problem - the so—called converse KAM theory
- was developed in {10, 11]. It relies upon a rigorous criterion for the absence
of any invariant curve in a certain region. Unfortunately, this criterion can
only be checked numerically, and besides it provides the upper bound KZ
only (the lower bound K7 = K,;). The remaining gap, or the accuracy of
Kep:

(AK)er = K& = Ko (2)

can be made arbitrarily small at the expense of computation time tc which

scales as [10]
tc x (K} — K)~P (3)

Facing this difficulty, it is natural to recall the first method for calculating
the critical perturbation used in [1]. The method was based on the direct
computation of trajectories for different K — K. The criterion of supercrit-
icality of a particular K value was very simple: the transition if only a single
trajectory in one of two neighbor integer resonances (y, = 0 meod 1) through
the destroyed critical curve. With the computers available at that time the
minimal K = 1 has been reached only which corresponds to the uncertainty
(AK)min = Kmin — Ky = 0.0284. This may be compared to the later result
(AK)min = 0.0127 [10]. ;

, Remarkably, the dependence of the average transition time on parameter
K was found to be similar to scaling (3):

A
<t>= T T (4)

Fitting three unknown parameters gave: A = 103, p = 2.55, and K., = 0.989.
The latter result was rather different from the present value K. ~ K,
again because of the computation restrictions mentioned above: K > 1, ¢ <
107 iterations. Nevertheless, the fitting Eq.(4) provided a less uncertainty

4

(AK)y = Ky — Kg = 0.0174 as compared to the result from the minimal
K. The same is true for data from [10] where (AK); = K; — Ky = 0.00236.
The latter value was apparently obtained by the direct fitting the relation
(3). Fitting in log-log scale provides a much better result: (AK); = K; —
Ky = —0.000128 & 0.000288 that 1s the remainig uncertainty reduces down
to 0.000288.

In both cases the fitted value for the critical perturbation K., is only true
up to a certain confidence probability while the minimal K is an exact result:
BT = Kuti:

In the present paper the studies [1] are continued with much better com-
puters. The main result is farther considerable increasing of the accuracy
(AK)-

To reduce the computation expenses, the transition time was calculated
for a number of trajectories V;, started near the unstable fixed point of a
half-integer resonance (y, = 1/2 mod 1), and then run until each of them
crossed over to a neighbor integer resonance.

The minimal K value is determined already by the first trajectory escaped
from the half-integer resonance. In this way the minimal uncertainty

has been achieved with the escape time ¢ & 6.77 x 10! itterations which took
about 72 hours of CPU time on ALPHA-4100 computer (see Fig.1).

The average transition time was computed from N;, = 400 trajectories
for each of 100 values of K in the interval: 0.0035 < K — K, < 0.35. This
costed 36 hours of computation. The results are shown in Fig.l1. In the
whole interval of AK the dependence < #(K) > is not exactly a power—
law. It becomes so asymptotically for K — K., as expected from the theory
[12]. For this reason, only few smallest K values of the function < {(K) >
were taken for the final fitting which is also shown in Fig.1 by the solid line.
It is obtained from the fitting 15 left—-most points (just up to the first big
fluctuation) in log-log scale, and corresponds to the following parameters in

Eq.(4):
(AK); = 0.000125 +0.000267, p = 2959 £0.0771, A = 33 +8 (6)

The fitting relative accuracy rms = 0.071 is close to, but somewhat larger
than, the standard rms = 1/4/N;, = 0.05. This is seen from the data of
3 single trajectories in Fig.1, too. Notice also 2 very big deviations for the
average over 400 trajectories which nature remains unclear. Interestingly, the
relative fitting accuracy of the data [10] is considerably higher: rms = 0.02.
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AK =K-K,

Figure 1: Direct computation of K¢ in standard map: average transition
time through the destroyed critical curve vs. supercriticality. Circles show
numerical results for N, = 400; stars represent 3 single-trajectory runs,
including one with the minimal AK (5); straight line is relation (4) with
parameters (6) fitted from 15 left-most points (circles).

This would require as many as about 5000 trajectories in the present method.
However, it does not mean that the computation of the procedure in [10]
would be shorter.

The most important parameter in (6) is (AK); which is zero within sta-
tistical errors. This farther confirms the Greene hypothesis K., = Ky. The
exponent p is also equal to the theoretical value pip = 3.011722 [12] to the
fitting accuracy. The present value of parameter A is much less than in
[1] because of a different (shorter) transition between resonances used. The
summary of all results is presented in the Table below.

"“3_-_.__=J

Table. Accuracy of K., in standard map

(A K Jsin (AK)gie Reference
exact probable
2.84x107° ] 1.74x10"* 1]
1.27x 10-2 | 3.36 % 1073 [10]
+1. x 10~3

-1.28 x 10~* [10]
+2.88 x 10~ our fit

5% | 1% x W0 present
+2.67 x 10~ paper

A serious difficulty in such a numerical approach to the problem is the com-
putation accuracy. This was mentioned also in [10] but no estimate for the
computation errors was given, apparently because of a very complicated nu-
merical procedure. Even in a much simpler method [1], accepted in the
present study, the effect of noise turned out to be rather complicated. Spe-
cial numerical experiments were done to clarify the question. To this end, a
random perturbation of amplitude v was introduced in both equations (1).
The results are shown in Fig.2.

Typically, the transition time becomes less than that without noise, and
saturates below some critical noise—dependent valueof K: AK £ B(v). How-
ever, in some cases the average transition time considerably grows, as an ex-
ample in Fig.2 demonstrates, apparently due to a sharp increase of the fluctu-
ations near the crossover from normal (noisefree) dependence of < {(AK) >
to the saturation. In turn, these fluctuations are apparently explained by the
noise—induced diffusion into some of many small domains of regular motion
within the critical structure.

A rough estimate for unknown function B(r) can be obtained as follows.
The transition time is primarily determined by the width dy ~ (AK)? of the
chaotic layer around destroyed critical curve [12, 13, 3] while the diffusion
time through this layer {g ~ 1/AK [14, 13, 15, 16]. Noise decreases this time
down to t, ~ (6y)%/v>. Hence, the crossover corresponds to t, ~ tp, whence:

B(v) ~ AP (7)

with & = 2/5. Fitting the empirical data in Fig.2 in log-log scale gives:
b & 0.39 + 0.012, which is surprisingly close to the theoretical estimate, and
A a2 0.9716 & 0.054 (Fig.3). The fitting accuracy is also fairly good: the
relative rms = 0.019. Moreover, below crossover (AK < B(v)) the width
dy as well as the diffusion time depend on v only, and hence the transition
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AK =K-K,

Figure 2: The effect of noise on the supercritical transition time: straight line
is the fit of the noisefree computation results (cf. Fig.1); points connected by
lines represent the impact of noise with amplitude v computed for Ny, = 10;
numbers at lines are -log(v) values (logarithm decimal).

time remains approximately constant for a given v (Fig.2). In any event,
the minimal (AK)min (5), which is the main result of the present study, is
well above the expected limitation for the double—precision computation (see
Fig.3). :

In conclusion, the direct approach a la {1] to the problem of the critical
perturbation in the standard map does further confirm Greene’s hypothesis
K. = K4 with a much better exact upper bound (5): K., —K, < 2.5x107%

Still another recent confirmation of this conjecture (curiously, with roughly
the same statistical accuracy (6)) has been inferred from a detailed study of
the critical structure at the chaos—chaos border in standard map for K = K|,
[16].
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Figure 3: Noise scaling: circles give the empirical crossover values B(v) as
a function of noise amplitude v connected and extrapolated by the straight
line (7); the upper horizontal dotted line shows the minimal AK in compu-
tation with noise while the lower line indicates (AK)min (5) achieved in the
main double-precision computation (see Fig.1) with the accuracy roughly
corresponding to log(v) & —15; all logarithms are decimal.
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