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The controversial concept of quanium chaos — the dynamical chaos
in bounded mesoscopic quantum systems — is presented as the most
important and universal instance of a nmew generic dynamical phe-
nomenon: pseudochaos. The latter characterizes the irregular be-
haviour of dynamical systems with discrete energy and/or frequency
spectrum, which include classical systems with discreie phase space.
The question of randomness is addressed in terms of the algorithmic
theory of dynamical systems, using the Arnold cat map for illustration.
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1 Introduction: the quantum-—classical
correspondence

A recent publication [37] has provided the opportunity to reconsider the very
controversial problem of the so-called quantum chaos, that is, the statistical
properties of bounded mesoscopic quantum systems. In spite of intensive
studies into this problem (see, e.g., the conference proceedings [1]) the physi-
cal meaning and interpretation of quantum chaos remain vague, to the extent
that there is as yet no agreement even on the most basic question: does any
chaos at all exist in quantum mechanics? We should clarify from the outset
that the trivial affirmative answer to this question (quantum mechanics is
fundamentally random) is irrelevant to our discussion. For, even though the
random element in quantum mechanics (‘quantum jumps’) is unavoidable,
it can be singled out and separated from the ‘proper’ quantum processes.

"The intrinsic randomness in quantum mechanics is related only to a very

specific event —the guantum measurement— which is, in a sense, foreign to
the quantum system itself (see [13, 17, 18] for a discussion). This allows us
to divide the problem of quantum dynamics into two qualitatively different
parts:

o The proper quantum dynamics as described by the time-evolution of
the wavefunction v, which obeys some purely dynamical (deterministic)
equation, for example, the Schrodinger equation. The discussion below
will be restricted to this aspect only. :

e The quantum measurement, which includes the registration of the re-
sult, whence the collapse of the y-function. Because no dynamical
description of the quantum measurement is as yet available, this issue
remains vague. In particular, there is no agreement on the question of
whether this is a real physical problem or an ill-posed one.
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Recent advances in the studies of quantum chaos have mostly relied on
the aforementioned device of separating out the dynamical part of quantum
mechanics. Such a philosophy is accepted —at least implicitly— by most
researchers in this field.

While the general aspects of quantum dynamics were extensively studied
since the early days of quantum mechanics, the problem of quantum chaos
arose only much later, after the simpler phenomenon of classical chaos was
discovered and assimilated [13]. Classical chaos has been central to the de-
velopment of the theory of dynamical systems, particularly of ergodic theory
[2].

As a general mathematical theory, ergodic theory needs not be restricted
to classical mechanics only, and indeed its application to quantum dynam-
ics has led to surprising results. For instance, it was discovered at an early
stage [10, 11, 14], and subsequently confirmed [13, 29], that quantum me-
chanics does not typically allow ‘true’ (classical-like) chaos. This is because
in quantum mechanics the energy and frequency spectra of any bounded sys-
tem are discrete, so that the motion is almost periodic. Hence, according
to ergodic theory, such quantum dynamics belongs to the limiting case of
regular motion, quite the opposite of dynamical chaos.

The ultimate origin of quantum almost-periodicity lies in the discreteness
of the phase space itself (or, more formally, in the noncommutative geometry
of the latter), which is the basis of quantum physics and which is directly
related to the uncertainty principle. At the same time, another fundamental
principle —the correspondence principle— requires the transition to classical
mechanics in all cases, and in particular when the classical system is chaotic.
This dichotomy lies at the heart of the present controversy on quantum chaos.

An insight into this problem [13, 18, 20] was gained from the simple ob-
servation (well-known in principle, though perhaps not in practice), that the
sharp border between discrete and continuous spectrum is physically mean-
ingful only in the limit |t| — oo, a regime routinely considered in ergodic
theory. The study of the finite-time statistical properties of dynamical sys-
tems —quantal as well as classical— thus becomes a new strategic aim; ac-
cordingly, the existing ergodic theory will require some modifications, so as
to incorporate finite time explicitly. E

Over a finite time, a discrete spectrum is dynamically equivalent to a
continuous one, thereby providing much stronger statistical properties of mo-
tion than one would expect from asymptotic considerations. In some cases,
motions with discrete spectrum may exhibit all the statistical properties of
classical chaos, albeit only on some finite time scales.
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The most important time scale in quantum chaos is the relazation time i g,
which refers to one of the main properties of chaos, the statistical relaxation
to some steady state. The relaxation time is given by the following general
estimate [13, 20]:

th~ % ~po < pr. (1)

The quantity @ stands for some appropriate quantum parameter, which is
large in the semiclassical region, e.g., the total number of states for a bounded
quantum motion: Q ~ I'/(2r)¥, where T' is the volume of the phase space and
F is the number of freedoms. The parameters w is a characteristic frequency
of the motion, while the meaning of py and py will be explained below. (In
what follows we always assume that Planck’s constant is equal to one.)

The physical meaning of the relaxation time tp originates directly from
the uncertainty principle (At-AE ~ 1), as implemented in equation (1). One
sees that ¢ is bounded by the Heisenberg time py, which is the full average
density of energy levels. For t $tg, the discrete spectrum 1s not resolved,
and the statistical relaxation follows the classical (limiting) behaviour. This
is precisely the regime (which is unaccounted for in ergodic theory) where
quantum pseudochaos manifests itself. A more accurate estimate of {g can
be obtained by considering the average density po restricted to the so-called
operative eigenstates, that is, those which are actually present in a particular
quantum state 1, and which control its dynamics.

It is mathematical expedient to consider in place of finite-time relations
(of true physical significance), the following conditional limit:

t
t, Q@ — oo, R = = const (2)

-~ tr(Q)

where Tg is a new dimensionless time. The double limit (2) (unlike the single
limit Q — oo) is not the limit of classical mechanics which, in this repre-
sentation, holds true for 7z < 1 and with respect to the statistical relaxation
only. For g 2 1, the behaviour remains essentially quantum even in the limit
Q — oo, and it is called mesoscopic. Specifically, the quantum steady state
is generally quite different from the classical statistical equilibrium, in that
the former may be localized (under certain conditions), that is, nonergodic in
spite of classical ergodicity.

Another important difference is found in the fluctuations, which are also
a characteristic property of chaotic behaviour. By comparison with clas-
sical mechanics, the quantum %(t) plays, in this respect, an intermediate
role between the classical trajectory with large relative fluctuations, and the
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coarse-grained classical phase-space density with no fluctuations at all. Un-
like either, the fluctuations of 1(t) (or rather, those of averages in a quantum

state ¥(t)) are typically of order dam, where dg < Q —the Hilbert dimen-
sion of the state ¥— is the number of operative eigenstates associated with
the quantum state ¢. In other words, the chaotic wavefunction represents
statistically a finite ensemble of approximately dg statistically independent
systems, even though formally ¥(t) describes a single system in a pure state.

The relaxation time scale tr should not be confused with the Poincare re-
currence time t p, which is typically much longer, and which sharply increases
when the size of the recurrence domain decreases. The time scale tp charac-
terizes large fluctuations for both the classical trajectory and the quantum ¢
(but not for the phase density), of which recurrence is a particular case. By
contrast, tg characterizes the average relaxation process. Rare recurrences
(the larger the quantum parameter Q, the rarer), make quantum relaxation
similar to the classical non-recurrent one.

Statistical properties which are stronger than relaxation and fluctuations
are related to the local exponential instability of motion. The importance
of these stronger properties for statistical mechanics is not completely clear.
Nevertheless, in accordance with the correspondence principle, those prop-
erties are present in quantum chaos as well, but on a much shorter random
time scale t,:

At, ~InQ ~ In(wirp) < tr (3)

Here A is the classical Lyapunov exponent characterizing the instability rate.
This random time scale was discovered and partly explained in [10] (see also
[11, 13, 20]). According to the well-known Ehrenfest theorem, the motion
of a narrow wave packet follows an ensemble of classical trajectories as long
as the packet remains narrow, and hence it is as random as in the classical
limit. Since the instability range is limited both from below (the minimal
size of the quantum packet —the coherent state— is of order unity, due to
the uncertainty principle) as well as from above (for bounded motions), the
time interval {, of quantum instability is logarithmically short, in agreement
with the estimate (3). Nonetheless, it grows indefinitely as ¢ — oo, and
therefore a temporary, finite-time quantum pseudochaos converges slowly to
the classical dynamical chaos.

Again, we may consider the conditional limit associated to the random

time scale t,,

t
t, Q — oo, T, = = const; (4)

t(Q)

—_—

which gives rise to the new scaled time 7. Note that the latter differs from
the scaled time g of equation (2).

Specifically, if we fix the time ¢, then in the limit Q — oo we obtain the
transition to the classical instability in accordance with the correspondence
principle, while for Q fixed, and t — oo we have the proper quantum time-
evolution. For example, the quantum Lyapunov exponent Aq is given by
6, 13]

A B < 1
s {0 if 7, > 1.

In the semiclassical region (Q > 1), the time-scale ¢, is much shorter than
the relaxation time £gr. This leads to the surprising phenomenon that quan-
tum diffusion and relaxation are dynamically stable, contrary to the classical
behaviour. Therefore, the instability of motion is in general not important
during statistical relaxation: what is crucial for the statistical properties of
quantum motion, is the correlation decay, that takes place during the short
initial random time scale i,

The dynamical stability of quantum diffusion has been demonstrated in
striking numerical experiments involving time-reversal [3]. In a classical
chaotic system, the initial state cannot be recovered by reversing the time-
evolution of a sufficiently long trajectory, because the unavoidable numerical
errors (not random!) are amplified by the local instability. By contrast, un-
der time-reversal, a quantum state will return to the initial state to a very
high accuracy, after which the wave packet will begin to spread again.

2 Chaos and 'pseudochaos

A much studied model for strongly chaotic motions is the so-called Arnold cat

map, a linear dynamical system on the two-dimensional torus
[2, 27, 44, 7, 32, 23, 21, 42, 9]

2¢;+p: (mod 1)

Jt+1
g +p: (modl). (5)

Pt+1

1[al

The system is exponentially unstable, with positive Lyapunov exponent A =
In(A), where A = (3 + V/5)/2 is the largest eigenvalue of the mapping. The
spectrum of the motion is continuous, implying the decay of correlations.
The canonical variables ¢ and p are real numbers. However, the peri-
odic orbits of the cat map correspond to points with rational coordinates



g =z/N, p=y/N, with N, z,y integers, and z and y reduced modulo N.
Clearing the denominator N, one arrives at the discretized Arnold cat map

2z¢+y (mod N) (6)
ze+y  (mod N).

The phase space is now a N x N lattice on the torus: the dynamical and
statistical properties of the motion are completely changed, and new mathe-
matical tools —mainly from algebraic and probabilistic number theory— are
required for their study [50, 32, 21].

The discrete cat map may describe three rather different dynamical sys-
tems:

Tig1
Ye+1

1

e A quantum system, where the classical trajectories lose physical mean-
ing, but are nonetheless used for the calculation of the time-evolution

of a quantum state. Loosely speaking, the latter corresponds to a un-
separable ensemble of discrete trajectories.

e A restriction of the classical system (5) to a discrete subset of the
continuous phase space. Its orbits are periodic orbits of the continuous
system (5).

e A discrete dynamical system in its own right, important for compu-
tational theories, where arithmetical phenomena —both deterministic

and probabilistic— gain significance at the expenses of metric and topo-
logical considerations.

The motion’s spectrum for the mapping (6) is not only discrete, but
equidistant, which implies periodic recurrences for all trajectories of the quan-
tum state [27, 23]. In ergodic theory the systems of this type considered to be
regular and can possess at most the weakest statistical property, ergodicity.
For this reason there is growing consensus that the quantum manifestations
of chaos must differ from the classical ones. This has led many to believe
that ‘true’ chaos can only exist in classical mechanics (the authors of [37],
however, take a different view -—see section 6).

The aforementioned position is unsatisfactory in that the érue physics is
quantal. Hence, the only true physical chaos is the quantum chaos. Since
the latter is certainly rather different from the former, as explained above,
the quantum chaos was termed pseudochaos (see, e.g., [17]) to emphasize the
difference.

It turned out that there are many examples of pseudochaos 'beyond’ the
quantum mechanics, in the classical limit (see, e.g., [17, 18]). A very im-
portant one is the computer. Even though the digital computer is a very
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specific dynamical system its properties are extremely i}'nporta,nt in view of
the ever growing interest to numerical experiments covering now all branches
of science and beyond. Particularly, many studies of classical chaos have re-
lied crucially on the findings of digital computers, where in fact pseudochaos
is all one normally observes (see section 3). Therefore it seems to us that
the debate over quantum chaos should be broadened to include considera-
tions about the pseudochaos in discrete systems, with particular reference to
computer representations of continuous systems. ‘

The computer is, in a sense, an ‘overquantized’ system in that any quan-
tity is discrete, while in quantum mechanics only the product of two conju-
gated variables has that property. The large ‘quantum’ parameter Q is here
given by the largest representable integer N, whereas ti}e short_tlme scale
t, ~ In N (3) is the number of computer digits [20]. Owing to fl;ﬁizreteness,
any dynamical trajectory in a computer becomes eventually periodic, a well-
known phenomenon in the theory and design of pseudorandom number gen-
erators, from which the term pseudochaos was borrowed [17]. (Precautions
are necessary to exclude such computer artifacts in numerical experiments,
see, e.g., [31, 47, 22, 40, 43}).

The question of randomness in discrete systems may be approached fmm
an algorithmic angle, whereby one attempts to quantify the cnmputatlonad
effort necessary to predict the value of dynamical observables, for instance tbe
points of a trajectory. The amount of computations is typically measurled in
terms of either the size or the running time of an ‘efficient’ program which is
capable of performing the required calculations. One immediately identiﬁfjs
two extreme situations. On one hand, the smallest of programs may still
be as large as the data it generates, which would render such ::omputatinn
as ineffective as storing a result known beforehand and printing it. On the
other hand, the fastest of programs may still take as long as the system being
simulated, in which case the computation would be as ineffective as observing
the physical system —itself an analog computer— evolve. In either case, we
have a terminal obstruction to predictability.

The word random is routinely linked to incompressibility of information:
a sequence is termed random when the shortest program tl'fa,t g&r?er_ates ?t has
(essentially) the same size as the sequence itself. Developing this idea is th.e
main concern of algorithmic complezity theory, whose application to dynami-
cal systems has legitimated the use of the locution deterministic mm{omness
in continuous systems [35, 16, 56, 54] (for a clear infD!EIﬂ&l presentation, see
[23]). Unlike time-asymptotic ergodic theory, tl'us: algont_hmlg theory does in-
clude (and indeed originally developed) the notion of ﬁmte-tame. randomness,
which is crucial for our discussion (see section 1). Particularly, in both (clas-
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sical) chaos as well as pseudochaos, an orbit can be algorithmically random.

The incompressibility of information, and the resulting obstruction to
predictability, are directly related (indeed equivalent) to the complete inde-
pendence of different sections of a random symbolic orbit (section 4). These
sections of orbits are independent not only statistically, but also algorithmi-
cally (dynamically), that is, they cannot be calculated from one another by
any finite procedure (algorithm).

Whilst the above meaning of randomness is quite established theoreti-
cally, in practice one’s inability to compute is often related to excessive com-
putational time, or excessive storage requirements. Besides numerical ex-
periments with chaotic dynamical systems, examples abund in cryptography,
where finding computationally intractable problems is the main task. There
one typically looks for problems that can only be solved in non-polynomial
time [38], which make them unassailable (see section 3). An example of stor-
age problems is the computation of the mysteriously unpredictable digits of a
radical (e.g., v/2). Even though this can be done by small and fast programs
(i.e. Newton’s method), during the computation such programs become as
large as the output, due to the necessity of storing all intermediate data [48].
(Note that in a theoretical setting the latter problem does not occur, since
Turing machines feature infinite storage capacity.)

An important observation is that complex phenomena, which are best
described in probabilistic terms, routinely emerge alongside any of the com-
putational difficulties mentioned above. In the rest of the paper, we shall
articulate some of these issues, in the context of quantum and discrete dy-
namics, using the discrete cat map (6) for exemplification. Conforming to
current usage, we shall reserve the word ‘chaos’ to denote the kind of asymp-
totic obstruction to computability in dynamical systems that derives from
excessive program size, while the term (algorithmically) ’random’ may dis-
cribe both chaos and pseudochaos.

3 Time complexity and period functions

The importance of time complexity in discrete dynamics originates from the
proximity of the latter to number theory and computer science. In this sec-
tion we discuss some obstructions to computability that emerge in irregular
discrete dynamical systems such as (6) and (8). These problems stem from
algorithms with excessive (non-polynomial) runnning time.

We note that the two-dimensional mapping (6) can be rewritten as the
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single congruence [44]
Ce+1 = A (mod N) (7)

where both A > 1 (the largest eigenvalue _Df (6)) and { = (A—1)z+y are afge;
braic integers ! (transforming (6) into (7) is akin to writing a two-dimensional
map in complex coordinates). Equation (7) is structurally identical to

Tl = b I (mud N) (8)

where now b > 1 and z are ordinary integers. This analogy is strong when
N is coprime to b, in which case (8) is invertible. The mapping (8) —the
discrete version of the so-called Bernoulli shift [41]— forms the basis for an
important class of pseudo-random number generators ([33], volume 2). In
addition, it is a source of the discrete logarithm problem, a computationally
intractable problem which finds widespread use in cryptography [34].

The discrete logarithm has a simple dynamical interpretation: it is the
time required to reach a given point z in a trajectory, starting from the initial
condition zg. By choosing z¢ = 1 in (8), one sees that £ = b* (mod N, which
implies that ¢ is the ‘logarithm’ of 2 (mod N) to the base b. By the same
token, the discrete logarithm is also closely related to the Poincare’ recurrence
times in these systems (sections 1 and 5).

The running time 7" of the fastest algorithms known to date is non-
polynomial in the input size log(N)

T = exp (/IoB(0) + <), )

Here c is a constant, and the base b and size N are chosen in such a way that
the orbit length be of order N (see below). The closer the run time is to a pure
exponential (which in (9) would imply T = O(N)), the closer is the problem
to be solvable only with the ‘wait-and-see’ algorithm, which amounts to null
predictive power. Note that in the computation of the discrete logarithm
there are no difficulties as to program size. .

For this reason, the distinction between polynomial and non-polynomial
time is the criterion used in computer science to discriminate between tractable
and intractable problems. The cryptographical significance of the discrete
logarithm lies in the fact that it is a trapdoor function: encription (the expo-
nential, i.e., computing a point in the orbit) can be performed in polynomial

1 An algebraic integ"er is a root of an irreducible polynomial with integer coefficients and
first coefficient equal to 1.
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time, while decription (the logarithm, i.e., computing the recurrence time)
cannot.

Among the most complex objects found in discrete dynamics are the pe-
riod functions P = P(N), which characterize the maximal (or average) period
of the orbits, as a function of the system size N [46, 30, 32, 8, 52]. They play
an important role in quantum chaos as well (see section 4). As a rule, period
functions feature very large fluctuations, which in modular systems such as
(6) or (8) have a crisp arithmetical significance. For instance, in the case (8),
P(N) is the period of the digits of the rational number zo/N, expressed in
base b, a problem first considered by Gauss ([25], section VI).

One has the bounds

log(N +1)] < P(N) S N -1

where |z] is the floor function (the largest integer not exceeding z), and the
maximum is attainable (not necessarily attained!) only if N is prime, and
provided that b is not a square. In the latter case one has a space-filling orbit,
reaching every point apart from zero. For the cat map, the corresponding
bound is [9]

|log(A)] +1 < P(N) <3N.

The maximal period is now O(N ), rather than O(N 2), so that space-filling
orbits cannot exist: this is an arithmetical consequence of area-preservation
[44]. (However, one can still construct linear dynamical systems of the cat
map type, which are invertible on a toral lattice even if their determinant is
not unity, and which have a space-filling orbit [51]).

The fluctuations of P(N) call for averaging. However, rigorous studies
of such averages are notoriously difficult, related as they are to a class of
number-theoretic problems, centered around the so-called Artin’s conjecture
[45]. Various euristic estimates are known, but the ‘actual’ asymptotic for-
mula for the average order of P
B N
{PNN) = N Z P(ﬂ] eh lﬂg(N)[1+(}{])}lgg]ﬂglgg{N]

n=1

(10)

can only be proved assuming the validity of the so-called generalized Riemann
hypothesis (see [37], and references therein). The wide gap existing between
what is believed to be true and what can actually be proved, underlines the
difficulties in developing an ergodic theory of discrete chaotic systems. By
contrast, the ergodic theory of the continuous version of (8) is much simpler.
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Unsurprisingly, the computation of the period-function of the maps (6)
and (8), turns out to be non-polynomial, for it requires performing the prime
decomposition of N. The run time for factorization algorithms is similar to
that of the discrete logarithm. For this reason, factorization —the inverse of
multiplication— is another well-known trapdoor function [34].

The link between non-polynomial time problems, and probabilistic phe-
nomena in discrete dynamical systems is largely unexplored. For the cat
map, the discrete logarithm is associated to two types of fluctuations, namely
those of Poincare’ recurrence times mentioned above (see also section 5), and
spectral fluctuations [7]. Within this context, of note is a recent result (53]
establishing a central limit theorem for the propagation of round-off errors in
uniform spatial discretization of planar rotations (harmonic oscillator). No
polynomial-time algorithm has yet been found for the corresponding period
function, which features wild fluctuations ([62], see also [39]).

4 Discrete pseudochaos

In this section we review the main construction of the algorithmic theory
of continuous dynamical systems, and then characterize the extent to which
the asymptotic chaos found in continuous dynamics is suppressed in discrete
dynamics. The context is that of a discrete dynamical systems with N states,
where the period function P(N) introduced in section 3 plays a key role. An
alternative approach developed in [36, 37] will be discussed in section 6.

The origin of the algorithmic theory of dynamical systems can be traced
to the introduction of the notion of symbolic trajectory, due to Hadamard
[26]. We start from a partition of the phase space into M cells, each labelled
by an integer m. We then consider a trajectory z = z; in correspondence to
some discrete instants of time, again labelled by the integers. At the time {,
we record the label m; of the cell to which the trajectory belongs, thereby
constructing an infinite sequence of symbols

o = ﬂ'(xu} = (mﬂ,ml,m,mt,...}. (11)

(In an invertible system, & can be made doubly-infinite.) Such symbolic tra-
jectory is a coarse-grained representation of the original trajectory, obtained
by projecting the latter onto a finite set.

Representing orbits as strings of symbols opened the possibility of ap-
plying the notion of algorithmic complexity to the study of motions (see [5],
and [18], for an informal introduction). Following Kolmogorov [35], one in-
troduces the complerity C(t, zo) of the i-string corresponding to zg, as the
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iength of the shortest algorithm that computes such symbolic string. The
quantity C is determined up to a machine-dependent additive constant. One
then considers the limit

K(zo) = lim M

t—+00 i

} (12)

and the sequence o(zg) is defined to be asymplotically random (or chaotic)
if such limit exists and is positive [56, 5].

Some strongly chaotic dynamical systems, when represented symbolically
with respect to a suitable partition, have the remarkable property that the set
of symbolic trajectories is complete, that is, it contains all possible sequences
(11). From this it is possible to deduce that most symbolic trajectories are
random [35, 56).

Ergodic and algorithmic theories have a limited but significant overlap,
based on a prominent result linking the exponential instability of motion with
randomness: the Alekseev-Brudno theorem [5, 12, 54]. For almost all initial
conditions zg (with respect to some invariant measure p), we have (cf. (12}))

K(:ﬂn) = h# (13)

where
= Z A; (14)
A0
is called the metric entropy, which has the dimension of a frequency and which
characterizes the rate of exponential instability of motion. The summands
in (14) are the positive Lyapunov exponents. In a two-dimensional map like
(5), the above sum contains only one term and one finds that b, = A.

The remarkable relation (13) links explicitly an algorithmic concept (left-
hand side) to a probabilistic one (right-hand side). The positiveness of the
entropy is then taken as a definition of dynamical asymptotic randomness,
thereby justifying the informal inference of that from ergodic theory.

The limit (13) says that in order to calculate each successive segment of
a symbolic trajectory, one needs new information on the initial conditions of
the trajectory, at a rate determined by the entropy. Consequently, regardless
of how much knowledge one has on the coarse-grained past history of the
motion, its future evolution (¢t > 0) still remains unpredictable. Of course,
this is true for a symbolic trajectory only, as on the ‘exact’ trajectory it is
sufficient to fix a single point.

The remnants of determinism still persist in the symbolic trajectories,
in the form of some dynamical correlations which take place within a short
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dynamical time scale t4, which is determined by the randomness parameter

[19]

we bl o LI (15)

td IIIM

This allows us to follow in time the building up of the asymptotic randomness,
and also to make some estimates for a finite time (see below). Particularly,
we have temporary determinism over the time scale |t| S 4 where strong dy-
namical correlations persist in a symbolic code, so that information about
the future evolution of a trajectory can be inferred from the result of finite-
accuracy observations of the trajectory segment. On this relatively short
time scale the trajectory can hardly be termed random. On the other hand,
for |t| > 14 almost all symbolic trajectories become random, and only a sta-
tistical description is possible. Even though, in principle, the equations of
motion can still be used to derive all statistical properties without any ad hoc
hypotheses, the exact trajectory becomes an elusive entity, which can only
be observed, vet neither predicted nor reproduced in any way.

Estimate (15) may be justified as follows. For a given partition M, the
complexity of an individual point of a symbolic trajectory is Cy ~ In M (the
number of digits needed to specify an element of the partition). Since suc-
cessive points within the interval ~ t; are essentially correlated, the average
complexity per iteration of the map is reduced to (Cy) ~ Cy/tq ~ h. Hence,
tg ~ In M/h, in accordance with equation (15).

The definition of randomness as given in (13) is somewhat weaker than
the original algorithmic definition [35, 56], as the former allows for some dy-
namical correlations over the time scale ¢4. This is inevitable for a continuous
time system. For a map, both definitions coincide if t; < 1 (In M X h}, or if
a very special partition is used [2].

The situation is altogether different for discrete dynamical systems. If
the size N of the systems is finite, all orbits are (eventually) periodic, and
the problem is to estimate the complexity of a typical orbit, for times ¢ not
exceeding its period. Note that, for fixed N, the question of asymptotic (long
time) randomness has a trivially negative answer here, since every trajectory
will repeat itself, leading to a logarithmic growth of C(t). Thus, in such a
system only pseudochaos is possible, at most.

" As in the continuum, each trajectory is still determined by its initial point
z0, but specifying the latter requires no more than log(N) bits of information,
whence
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C(#zo,t, N) = O(In N) for 0<t< P(-’Iﬂ{], N) (16)

where P(zo, N) is the period of the orbit through zo.

With reference to the limiting procedure (12) and the estimate (16), one
sees that in the present class of systems the question of randomness is inti-
mately related to the asymptotic growth rate of the period function P(N),
to be averaged over a set of initial conditions whose density approach unity.
In particular, if the orbits have a sufficiently long period, that is, if P(N)
admits a lower bound which grows faster than the logarithm of N for ‘typical’
values of N (that is, possibly excluding a set of zero density), then one would
conclude that the discrete motions are 'non-random’, in the sense that the
share of random motion is negligible, i.e., logarithmic in the period of the
orbit. This is indeed the case for systems such as (6) or (8), as long as one
accepts the conjectured asymptotic estimate (10).

However, from a rigorous viewpoint, the question of the lack of random-
ness of these discrete orbits —as plausible as it is— still remains unsettled
(cf. last section in [37]). It seems though that proving lack of randomness
(i.e., finding a super-logarithmic lower bound for P(N)) should be consid-
erably easier than proving an asymptotic formula for the complexity, which
may well require the full force of Riemann hypothesis!

5 Quantum pseudochaos

As to the quantum version of the mapping (6), there is little to add to the
analysis of the classical version presented in section 4. The time-evolution of a
quantum state (in the Wigner representation W(z,p,1)) is exactly the same
as the classical one [23]. This remarkable peculiarity of a linear quantum
map greatly simplifies the studies of the quantum dynamics and chaos. The
price is the nongeneric global periodicity, whence the difficult problem of the
associated period function P(N) (see section 3).

The main physical distinction of the quantum cat map lies in the strict
restrictions on the quantum state W itself, particularly on the initial con-
ditions of quantum motion. Formally, one can interpret the quasiprobability
W as an ensemble of ‘trajectories’ which is the analog of the classical phase-
space density, apart from possible negative values of W. In this picture, each
quantum ‘trajectory’ represents a nonseparable part of the quantum state,
with a specific W-value, which, nevertheless, follows exactly the classical tra-
jectory! The number Ny of such elements of the ensemble of trajectories
must be sufficiently large: Nw 2 N, with the lower bound corresponding to
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the most localized quantum wave packet, a coherent state. Specifically, the
total number of quantum states is = N, to be compared with the N2
classical states (initial conditions), each of which is physically distinct from
all others. The number of different (periodic) trajectories is much less, being
~ N?/{P), where {P) is given by (10). On the other hand, in the quantum
case the initial state is characterized not only by the initial conditions of
the corresponding ‘trajectories’, but also by different values of W on those.
Again, this is similar to the classical description in terms of the phase-space
density. Besides these quantitative restrictions of the quantum state, there
is an additional restriction concerning the shape of the function W(z,p). In
particular, it is still unknown whether functions W which are non-negative
can exist in the discrete cat map model.

With all the above allowances, the quantum dynamics of the cat map is
the same as the discrete classical one, and so all the estimates in section 4
remain unchanged. In regard to the specific problem of the motion period
in both cases, what is important from our perspective is that no matter how
short is the random time scale (3), the latter does grow indefinitely with N,
thus providing the correspondence principle which is of fundamental impor-
tance in the quantum case, and which is crucial for numerical experiments
on computer.

We finally stress that the study of globally periodic systems, natural as
for discrete representations of classical systems, remains a degenerate case in
the quantum problem. In general, the quantum motion is almost periodic,
and it is characterized by quasiperiods or Poincare recurrences. The latter
are extremely long, and are related to very large, and rare fluctuations. The
regular statistical processes are characterized by the relaxation time scale,
whose dependence on N is given by the estimate (1).

6 Ordering of orbits

This final section is devoted to a discussion of the controversy between ref-
erences [23] and [37], with the former disproving and the latter proving the
random character of the quantum cat map.

The authors of [37] observe that the complexity analysis of periodic orbits
depends crucially on the ordering with which the orbits are considered. The
concern for ordering originates in ergodic theory, where one typically com-
putes averages with respect to some invariant measure. The periodic orbits
constitute a natural discrete sample which may converge —in the sense of
probability theory— to a measure. Not only different orderings may cor-
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respond to different measures, but crucially, orderings corresponding to the
same measure may nonetheless give different readings when it comes to com-
plexity. ;

In [23] the orbits are ordered according to the system size N, which is
just the denominator of the rational points supporting the periodic orbits.
In [37] instead, the orbits are ordered according to their increasing minimal
period P, and then lexicographically within the same period. Both orderings
correspond to the Lebesgue measure.

The central question is to establish which portion, if any, of a ‘typical’
periodic trajectory is algorithmically random. As discussed in section 4, the
ordering by system size yield (essentially) a logarithmic compressibility of
information, whence lack of randomness, as long as one accepts the validity
of the estimate (10).

That the ordering by period leads to randomness can be seen from the
following considerations. To find the periodic points xo of period P, one
solves the (continnum version of) congruence (8) for zg, for fixed P. One
finds zp = 2o = bF 2 (mod 1), whence

im »
= 1i

where m is an integer in the range 0 < m < % — 1. When m is coprime
to b¥ — 1, the fraction on the right-hand side of (17) is reduced, whence
N{(P) = b¥ — 1 is exponential in P, so that such point of period P requires
O(P) bits of information to be specified. The set of reduced fractions of the
form (17) has positive density and is uniformly distributed [28], and so its
typical member is random (see also [56]). Consequently, the non-repeating
part of a typical periodic orbit of period P is also random.

On the other hand, when m and b — 1 are not coprime, cancellation
will occur in the fraction representing zg. Such values of m correspond to
periodic orbits of period P that live on much smaller lattices, which carry
most of the weight when enumerated by system size.

The choice between the two orderings depends on the physical system
under consideration. In [37)], the classical version of the model (5) was con-
sidered, whose analysis was based on the properties of individual trajectories.
In this case, the ordering by period emerges from ergodic-theoretic consider-
ations (even though enumeration by system size seems to us preferable from
physical point of view —see section 3).

In quantum mechanics instead, the ordering by system size N adopted by
[23] is plainly unavoidable, being inextricably linked to nonseparable quan-
tum ’trajectories’ (section 5), and to the semiclassical limit N — oco. By
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contrast, the ordering by period corresponds to an artificial collection of dis-
tinct systems, each characterized by a specific value of the parameter N, and
united solely by the existence in each of them of some ’trajectories’ with a
given period P. We see no physical meaning in such arrangement of quantum
‘orbits’. : :

It seems to us that the authors of [37], apparently unaware of the quan-
turmn chaos debate, have applied to a quantum problem a machinery which
is as impeccable mathematically as it is inappropriate physically, and after
deducing with it that the quantum model (5) is chaotic, have accused the
authors of [23, 24] of ‘misinterpretations’. '

We instead believe that the misinterpretation lies with [37], and that their
criticism of [23, 24] is simply irrelevant to the question addressed by J. Ford
and coworkers. = :

Acknowledgements. We are indebted to D. K. Arrowsmith and G. Mantica
for useful discussions.
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