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Abstract

By different methods we show that for dynamical chaos in the stan-
dard map with critical golden curve the Poincaré recurrences P(r) and
correlations O(7) asymptotically decay in time as P o C/7 o 1/ .
It is also explained why this asymptotic behavior starts only at very

‘large times. We argue that the same exponent p = 3 should be also
valid for a general chaos border.
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During last two decades the local structure of phase space in chaotic
hamiltonian systems and area-preserving maps had been studied in great
detail [1, 2, 3, 4, 5]. These researches allowed to understand the scaling
properties in a vicinity of critical invariant curves where coexistence of chaos
and integrability goes on to smaller and smaller scales in the phase space. The
most studied case is the critical golden curve in the 21 maps with the rotation
number rg = [111..] = (v/5—1)/2 for which the scaling exponents were found
with high precision, and the phase space structure was shown to be self-
similar and universal [2]. The most studied map with mixed integrable and
chaotic components is the standard map [6] where the golden curve is critical
at the chaos parameter K = K = 0.97163540631... [2]. It was conjectured
that for K > K all invariant Kolmogorov-Arnold-Moser (KAM) curves are
destroyed [2]. Later on, the upper bound for the critical perturbation K,
corresponding to the destruction of the last invariant curve, was proved:
K; - K4 < 0.01[7}.

While the local structure of divided phase space is now well understood,
the statistical properties of dynamics still remain unclear in spite of simplicity
of these systems. Among the most important statistical characteristics are
the correlation function decay in time C(7) and the statistics of Poincaré
recurrences P (7). The later is especially convenient for numerical simulations
due to its natural property P(r) > 0 and statistical stability. The first studies
of P(r) in a separatrix map showed that at a large time the recurrences decay
as a power law P(r) o< 1/7P with the exponent p ~ 1.5 [8]. Investigations
of other maps also indicated approximately the same value of p [9, 10] even
though it was remarked that p can vary from map to map, and that the
decay of P(r) can even oscillate with In7 8, 9, 10, 11]. Such a slow decay
of Poincaré recurrences was attributed to the sticking of trajectory near a
critical KAM curve (8, 9, 10, 11, 12, 13]. Indeed, when approaching the
critical curve with the border rotation number 7 , the local diffusion rate
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Dy, goes to zero as Dy, ~ |ry—ry,|*/2 ~ 1/¢2 with & = 5 [12] where r, = Pufon
are the convergents for r, determined by the continued fraction expansion.
The theoretical value a = 5 was derived from a resonant theory of critical
invariant curve [12, 13] and was confirmed by numerical measurements of the
local diffusion rate in the vicinity of the critical golden curve in the standard
map [14]. Such a decrease of the diffusion rate near the chaos border would
give the exponent p = 3 if to assume that everything is determined by the
local properties of principal resonances p,/g, given by the convergents of
ry [12, 13, 15, 11]. However, the value p = 3 is rather different from the
numerically found p & 1.5. Moreover, the special simulations for the standard
and separatrix maps with the border rotation number r, = r, have given a
different behavior of P(r) and different p [8, 11] in spite of the fact that the
local structure of the golden critical curve is universal. Various attempts
were undertaken to resolve this difficulty. In [16] the authors argued that a
contribution from non-principal resonances can reduce the exponent down
to p = 2. Other arguments based on disconnection of principal resonance
scales were proposed in [11], while Murray discussed a possibility that larger
times are required to see p = 3 decay [17]. During these years different
Hamiltonian systems were studied where the values of p &~ 1 — 2.5 have been
found [10, 18, 19, 20, 21].

The analysis of Poincaré recurrences is interesting not only by itself but
also because they are directly related to the correlation function of dynamical
variables [9, 10, 11, 12, 13, 14, 15, 16]: -

C(rympu(rymrP(r)/ < T >~ 1/7P71 (1)

Here p(7) is the normalized probability for a trajectory to remain in a given
region for timet > 7, proportional to the measure p, and < 7 > is the average
recurrence time. This relation can be understood as follows. By definition,
P(r) = N./N where N is the total number of recurrences and N, is the
number of recurrences with time ¢ > 7. Therefore, for the total motion time
T =<t > N we have P(7) =< 7 > N; /T ~< 7 > u(r)/T where, due to
ergodicity of motion, the measure y(7) (probability to stay) is proportional to
the ratio of time the trajectory spends in the region (T, &~ 7N;) to the total
time T (u(7) ~ T7/T). Inside the sticking region the dynamical variables

are correlated so that C(r) = u(r) [8, 10, 11, 12]. Since the correlations

are directly related to a diffusion rate (D, ~ [ Cdr) the exponent p < 2
can lead to a superdiffusive dynamics [10, 11, 12, 13]. For the standard map

such a behavior was indeed observed in [10, 11, 22]. All this shows that the
asymptotic decay of Poincaré recurrences is a cornerstone statistical problem

To understand the asymptotic properties of P(r) we used, for the first
time, a new approach based on the direct computation of the ezit times frem
a vicinity of the critical golden curve in the standard map

y=y—K/(2r)sin(27z) , T=z+7 (2)

with parameter K = K,;. The properties of this curve had been studied
in great detail [2]. In particular, the positions of unstable fixed points of
resonances py/qn are known to high precision [2].

To determine the exit time 7, from the scale g,, we placed 100 trajectories
in a very close vicinity of an unstable fixed point and computed the average
exit time. For each trajectory the exit time is determined as the time after
which the trajectory crosses the exit line. The exit line was fixed as y = 1
for the trajectories from the side of the main resonance ¢ = 1 or as y =
0.5+asin(2nz) for the trajectories from the other side of the critical curve. In
the later case the exit line was chosen in such a way to cross the two unstable
points of resonance ¢ = 2 (a = 0.0773...). This allowed us to take into account
the deformation of the ¢ = 2 resonance. The average exit time 7,, from a given
scale qn is related to the distance of this resonance from the critical curve and
is proportional to this distance (measure) p, = |ry; — ra| = 1/v/5¢2 squared
divided by the local diffusion rate D, : 7, ~ p2/D, ~ g,. This gives
B pnfpg ~C ~ 1/7% and p = 3 where pg & |ry — ro| is the normalizing
constant (the total measure of the strip between the critical curve (rg) and
the exit line with the rotation number rg).

The numerical data for dependence of p, on 7, are shown in Fig.1. From
both sides of the r, curve the exit times converge to the asymptotic depen-

dence ?
fn = (/122 VB, Tu=T,qn, T, =211x10 (3)

This dependence corresponds to the scaling near the critical curve [2, 12].
Indeed, the local diffusion rate in y on the scale ¢, is D, & AD; /¢, where
Do = K?/8n? is the quasilinear diffusion rate [23] and A ~ 0.0066 is an
empirical constant which is quite small due to a slow diffusion inside the
separatrix layer [14]. As a result the sum of transition times between the
two scales from r, to r,_o is approximately equal to the total exit time:
Ta & 3, Irn — rn=2|?/Dyn =~ 1.4 x 10%g,. This estimate gives the value of
74 close to (3) and allows us to understand the physical origin of its large
numerical value. It is interesting to note that the data of Fig.1 show that
the convergence of 7, to its asymptotic value can be satisfactory described
as |1, /gn7y — 1] & 1/¢n. This indicates a certain similarity between the ratio
Tn/qnTy and the residue R, for periodic trajectories which converges to its

5



4 5 6 7 8 5 10
log m

Figure 1: Exit times 7, from scales r, with i, = |rg—rn|for ¢n = 3,8, ..., 6765
(black circles) and gn = 5, 13, ...,4181 (open circles). The straight line shows
asymptotic behavior (3). Error bars are less than the symbol size. Logarithms
are decimal in Figs.1-3.

critical value in a similar way [2]. A physical reason of this similarity is the
following: R, is related to the trajectory stability, and the larger it is the
more rapidly the trajectory escapes from the scale ¢,. Due to that for odd
n(gn = 1,3,8,...) the time 7, is smaller than the asymptotic expression (3)
(Rp > Rer = 0.250.... [2]) while for even n (gn = 2,5,13,...) it is larger than
(3) (R < Rer [2]). Due to universality of the critical golden curve structure
it is natural to expect that the relation (3) and the time 7,4 are universal for
all area-preserving maps as well as Rer (note that g is the period of unstable
periodic trajectory on the scale n).

The convergence of the points in Fig.1 from both sides of the critical
curve to the same asymptotic dependence (3) supports the above-mentioned
conjecture K; = Kg. Moreover, our results allow us to considerably improve
the accuracy of this conjecture as compared to that in Ref.[7] mentioned
above. Indeed, the scaling of the critical perturbation K — Ker ~ 1/qn
(2, 11, 17] implies that K; — Kg < 1/gn < 2% 10~* (see Fig.1).
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The relation (3) determines the measure of chaotic region at which a
trajectory is stuck for a time 7 ~ 7,,. Then, according to {1), the exponent of
Poincaré recurrences is p = 3, and correlation C(7) & y decays as the inverse
square of time. However, this asymptotic decay starts in fact only after a
very long time 7 > 10° due to the large value of ;. This strong delay of
asymptotic behavior is responsible for the nonuniversal decay observed for
P(7) in [10, 11] at K = K,. Apparently, to reach the theoretical exponent
p = 3 one should go to much longer times.

For a test of these theoretical expectations we made extensive numerical
simulations of P(r) at K = K, with the recurrences to the exits lines defined
above on the both sides of the critical ry curve. The results are presented in
Fig.2 and show a clear change in the decay of P(r) for 7 > 10° (side ¢ = 1)
and 7 > 107 (side ¢ = 2). To check the relation (1) we computed P(r) from

* the data of Fig.1 taking the recurrence time 7 = 21, and P(1) = By < T >4

pin /T where ¢ = 1,2 mark the side of the critical curve. With the average
recurrence time < 7 >1& 24.5 (or < 7 >3~ 61) and the fitting constants
B; ~ 1 (or By = 10) the data in Fig.1 satisfactorily describe the variation of
P(r) in the interval of 6 (4) orders of magnitude. This gives an additional

- gupport for the asymptotic theoretical exponent p = 3. Notice, however, that

the exponent of P(r) decay at side ¢ = 1 still does not reach the asymptotic
value p = 3. Also, the expected values of By = 1/poq (B1 = 2.6, By = 8.5,
see Eq.(1)) are somewhat different from the above fitting parameters which
characterizes the accuracy of Eq.(1).

Another check of the relation (1) was done by computing the diffusion rate
in phase 2 = z + (J+ y — 22,)/2 with 2, = 0 (¢ = 1) and 2, =1/2 (¢ = 2).
Similar approach was used in [22]. The diffusion rate is D, = (Az)%/At, and
its dependence on time is determined by the decay of the correlation function
of y(t). According to (1) we have D¢(r) = DegGqy [TP(T)/ < 7 > dT =
D.,G, [ C(r)dr where Dy = |rg — rq|2/3 = 0.049 (0.0046) is the quasilinear
diffusion rate [23] for ¢ = 1 (2) side, and Gy, G, are some constants. The
correlation C(7) was computed from the piecewise linear interpolation of
data in Fig.1 assuming that it remains constant up to the first exit time 7
(C(0) = C(™n1) = kn1/po). This follows from the data in Fig.2 which are
well approximated by the relation:

Pqﬁﬁqmpql.{‘r}q

(4)

where the latter expression is found from Eq.(1). Again, there is a difference
between numerical A; = 2 (A ~ 3.1) and analytical A; ~ 3.2 (A2 ~ 9.3)
values of A, due to approximation (1).
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Figure 2: Poincaré recurrences in the standard map at K = K, from the
side of resonance ¢ = 2 (upper thick curve) and ¢ = 1 (lower thick curve,
shifted down by 3 for clarity). Open and full circles show the values of P(7)

recalculated from the data in Fig.1 (see text). The thin straight lines give

the asymptotic decay with theoretical exponent p = 3; the initial decay with
slope p = 1 (Eq.(4)) is shown by the thin straight lines. Data for P(r) are
obtained from 10 trajectories of length 10!

For p = 3 the rate D, should be finite. The time dependence of D, was
computed from 100 trajectories initially located near the unstable fixed point
of period ¢ = 1,2. Dependence on 7, and the comparison with its computa-
tion from P(7) and from exit times 7, = 7/2 via the above integral relation,
are shown in Fig.3. Both methods give a reasonable agreement with D.(7),
especially in the case of P(r), thus further confirming the approximation (1).
The fitting parameters are G; & Gy & 2, G; ~ 3.0, G2 ~ 1.6. For 7 > 107
the asymptotic value p = 8 leads to a saturation of D, growth in time. Even
though the asymptotic diffusion rate is constant the distribution function is
non-gaussian since the higher moments diverge. For smaller r the diffusion
rate D.(7) grows approximately linearly that corresponds to an intermediate
value of p = 1.

10 v v r - . >

10

log T

Figure 3: Dependence of diffusion rate D, on time (thick curves) compared
with those computed from the Poincaré recurrences in Fig.2 (thin curves)
and from the exit times in Fig.1 (open and full circles) according to relation
(1) (see text). Lower curves and circles are for ¢ = 1 side, while the upper
ones are for ¢ = 2 (shifted up by 4 for clarity).

This slow decay is responsible for an enormously large ratio of the asymp-
totic diffusion rate to its quasilinear value: D.(00)/D. ~ 3 -10% (¢ =
1); 107 (¢ = 2).

The ensemble of data in Figs.1-3 shows that the asymptotic decay of
Poincaré recurrences and of correlations is determined by the universal struc-
ture in a vicinity of the critical golden curve. Thus, the contribution of the
borders of other internal islands of stability is not significant at variance with
[16]. The hypothesis of dynamical disconnection of scales [11] is also ruled
out. On the other hand, our present results are in agreement with the previ-
ous numerical observations indicated that long recurrences are related to the
trajectories being very close to rg curve [10, 11].

The next interesting question is how the value of the exponent p = 3
would be modified for the case of the main border curve r, = [a3, a, ..., a;, ...]
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with non-golden continued fraction expansion. The numerical data for border
invariant curves obtained in [5] show that the elements a; mainly take the
values 1,2,3,4 and the probability to find a; > 4 is rather small. For such
bounded a; values the general resonant approach developed in (12, 13, 11]
still shows that the diffusion rate near the border scales as Dp 1/¢} and
therefore the exit time will scale as T, ~ gn giving the exponent p = 3.
Due to similarity between 7, /¢s and the residue R, discussed above we can
expect that for a typical rp the ratio 7,/gn will not converge to a constant
as it was for r, = ro but will irregularly oscillate in a bounded interval,
similar to the oscillations of R,, (the so—called renormalization chaos, see e.g.
[10, 11, 13, 24]). Due to these reasons we can expect that even in the general
case of non-golden border invariant curves the average asymptotic universal
exponent is p = 3.

Now, if the exponent p = J why the previous computations of differ-
ent groups were giving p ~ 1.9. Our explanation is based on the follow-
ing arguments. First, even for the critical golden curve the asymptotic
regime starts after a very long time which is determined by first resonance
scales. These scales are not universal that explains why p was varying
from map to map. If the border curve is non-golden then the ratio Tn/@n
should oscillate with n and the asymptotic regime will appear even later
than for r, = rg. Also, on the first scales a given map can be often lo-
cally approximated by the standard map with the local order parameter
K & K+ (r —ro)df(r)/dr, where f is some smooth function of the rotation
number [6]. A typical example 1s the separatrix map [6, 10, 11]. In this
approximation the local order parameter is supercritical at the chaotic side
of the border: K — Kepr o jrn — o} x 1 /q2. This scaling is different from the
asymptotic one with K — K¢r 1/qn  |n —rp|t/? [2, 11, 17], and can give a
very long exit time for first scales. Indeed, in the standard map with K > K,
the transition time fromy =0toy = 11is proportional to 1/{K — K,4|? [6, 4]
corresponding to the exit time 7, ~ /|K — Kg4|® ~ q5. According to (1) thas
would give p = 4/3 that is not far from the average p ~ 1.5. In addition,
when being close to the critical curve, as in the standard map with K = Ky,
one should still wait a long time 74 to reach the asymptotic exponent p = 3.

In conclusion, we showed that in the case of the critical golden curve
the asymptotic exponent for the decay of Poincaré recurrences is p = 3. This
implies that the correlation integral converges and the diffusion rate produced
by such a dynamical chaos is finite. However, the higher moments of the
distribution will diverge. Finally, we expect that the asymptotic exponent
should remain the same also in the case of a typical border invariant curve.
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