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1 Introduction 3

The BFKL equation [1] is very popular now, mainly due to recent experi-
mental results on deep inelastic scattering of electrons on protons obtained
at HERA [2]. which show growth of the gluon density in the proton-with
decreasing of the fraction of the proton momentum carried by gluon. It can
be used together with the DGLAP evolution equation [3] for the description
of structure functions for the deep inelastic ep scattering at small values of
the Bjorken variable z (see, for instance, [4] and references therein). The
equation was derived for scattering amplitudes in QCD at high energies /s
and fixed momentum transfer v/—% in the leading logarithmic approximation
(LLA) which means collection of all terms of the type [asIns]". This ap-
proximation leads to a sharp increase of cross sections with c.m.s. energy
/5. In fact, calculated in LLA, the total cross section oLL4 grows at large
c.m.s. energies as a power of s:

B
gee

LL
ot ~ M, o (1)

where w} is the LLA position of the most right singularity in the complex mo-
mentum plane of the t-channel partial wave with vacuum quantum numbers
(Pomeron singularity), given by

wB = L Nn2 2)

for the gauge group SU(N) (N = 3 for QCD) with gauge coupling constant
g (ay = :) Therefore, the Froissart bound o, < const(ln s)? is violated in
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LLA. The reason of the violation is that the s-channel unitarity constraints
for scattering amplitudes are not fulfilled in this approximation. The problem
of unitarization of LLA results is extremely important from the theoretical
point of view. It is concerned in a lot of papers (see, for example, [5] and
references therein).

The violation of the Froissart bound means that LLA can not be applied
at asymptotically large energies. But in the region of energies accessible
for modern experiments it seems that the most important disadvantage of
LLA is that neither the scale of s nor the argument of the running coupling
constant a, are fixed in this approximation. These uncertainties diminish the
predictive power of LLA, permitting to change strongly numerical results by
changing the scales. From the practical point of view, since the results of LLA
are applied to the small # phenomenology, it is extremely important to remove
these uncertainties. Another important problem is the determination of the
region of energies and momentum transfers where LLA could be applicable.
To solve these problems we have to know radiative corrections to LLA.

Therefore, the radiative corrections to the BFKL equation are very impor-
tant, as they give the possibility to fix the argument of the running coupling,
to define the scale of energy and to determine the region of applicability of
the results obtained. My talk is devoted to these radiative corrections.

The outline of the talk is the following. In Section 2. I remind the deriva-
tion of the BFKL equation in LLA and the solution of this equation. In
Section 3, T discuss the general form of corrections in the next-to-leading
logarithmic approximation (NLLA) and present the two-loop correction to
the gluon Regge trajectory and the contributions to the NLLA kernel from
the one-loop correction to the one-gluon production and from the two-gluon
and quark-antiquark pair production in the Reggeon-Reggeon collisions. In
Section 4, all the contributions are collected together, the cancellation of in-
frared singularities is performed, the estimate of the shift of the Pomeron
intercept and the next-to-leading contributions to anomalous dimensions of
twist-2 operators near j = 1 are presented.

2 The BFKL equation in LLA

Despite the fact that the BFKL equation was obtained more than 20 years
ago. till now a simple detivation of this equation does not exist, though
attempts to do it continue (see, for examlpe, [6]). In the original derivation
[1] the key role was played by the gluon Reggeization in QCD [7. 8]. In fact.
the derivation can be performed without large difficulties if we adopt the
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Reggeization. It is worthwhile to stress here, that the gluon Reggeization

“in QCD means something more than usually assumed. Namely, it means

not merely that there i1s the Reggeon with gluon quantum numbers. negative
signature and trajectory

i(t) = 1+ w(t) (3)

passing through 1 at ¢ = 0, but also that only this Reggeon gives the leading
contribution in each order of the perturbation theory to amplitudes with the
gluon quantum numbers in channels with fixed momentum transfers. Due
to this property it is not difficult to calculate the leading contributions to
the imaginary parts of elastic scattering amplitudes with arbitrary quantum
numbers in {-channel at large s and fixed ¢ using the unitarity condition. Full
amplitudes are easily restored through their imaginary parts. The BFKL
equation emerges from the representation of the amplitudes in the particular
case of the forward scattering with vacuum quantum numbers in ¢ - channel.

For the elastic scattering process A+ B — A’ + B’ the gluon Reggeization
means that at large s and fixed t, with

s=(pa+ps). t=¢". ¢=pa—pa, (4)

the amplitudes with gluon quantum numbers in {-channel have the factorized

form &) )
wit wit
AR’ § & 5 —ill i
(As)ap = Laag {(_—t) * (ﬂ:t) ] BB : (5)

where I',, , are the particle-particle-Reggeon (PPR) vertices. In LLA for the
deviation of the gluon trajectory from 1 we have [8]

yﬂt E dD—-—?kL
@2m) P~V 2 J k(q-k)3

i

w(t) =w(t) =

(6)

where ¢t = ¢ ~ ¢2 and D = 4 + 2¢ is the space-time dimension. A non-zero
€ is introduced to regularize Feynman integrals. The integration in Eq.(6)
is performed over (D — 2)-dimensional momenta orthogonal to the initial
particle momentum plane. The PPR vertices can be presented as

Thyia = g{A'|T*|A)T ar4 . (7)

where (A’|T*|A) stands for a matrix element of the colour group generator
in the corresponding representation (i.e. fundamental for quarks and adjoint
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for gluons). In LLA the helicities Ap of each of the scattered particles P are
conserved., so that in the helicity basis we have

Bk = P00 =dnne (8)

The s - channel unitarity relation for the imaginary part of the elastic
scattering amplitude A4 5 can be presented as

Ims-A‘iJ}gHJ = %Z Z jA‘jg_HI (Ai-‘éﬂ_t_n)‘ d¢ﬁﬁ‘+n= (9)
2=0 {7}

where I'm, stands for the s - channel imaginary part, A‘:ng“ is the amplitude
of production of n particles with momenta k;, i = 1,...n in the process
A+B = A+B+n, 2_ (7} Teans sum over the discrete quantum numbers of
the final particles in this process, d®; 5., is the element of the final particle
phase space. We admit all particles to have non zero masses (reserving the
possibility to consider each of them as a group of particles) and use light-
cone vectors p; and ps such that momenta of the initial particles A and B
are equal pa = pr + (m%/s) p2 and pp = p2 + (m%/s) p1 respectively and
s = 2(p1p2). Using the Sudakov decomposition

ki = Bip1 + aipa + kir ;. s0if; =k — kI =k} + K, (10)
where the vector sign denotes (here and below) transverse momenta, we ob-
tain

? P S i e i
. e Dé 4 i 4 e :
LA S(Qﬂ i s .‘:n&) i 8 ﬁzuﬂ)
n+1 i B kR
a2 j : dﬁn 1 dag d.ﬁ d i
i (i={} * J—) 2fn 41 200 i=1 25 :I;{[} [QW}D']‘ f [ )
with the denotations

i = s B Rl (12)

In the unitarity condition (9) the contribution of order s, which we are
interested in, is given by the region of limited (not growing with s) trans-
verse momenta of prodiced particles. Only this region is considered in the
following. Large logarithms come from integration over longitudinal mo-
menta of the produced particles. Therefore in LLA, where production of
each additional particle must give the large logarithm (In s), they are pro-
duced in the multi-Regge kinematics (MRK). By definition. in this kinematics
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their transverse momenta are limited and their Sudakov variables a; and f; ,
i=0=n+1, are strongly ordered (in another words, the produced particles
are strongly ordered in the rapidity space). Let us take, for definiteness, that

Qp41 2> On > opal.-.- 2 00, JBU b }81 > ﬁ? P ﬁn+1- (13)

In this case the — functions in Eq. (11) give us

Qn41 = 1: ,@{] gk (14)
and therefore e . : :
pi +my Pg +mg

ag =~ —‘LS—A: By = B_.S__i_ (15)

In MRK the squared invariant masses s;; = (k;+k;)* of any pair of produced
particles i and j are large. In order to obtain the large logarithm from the
integration over §; for each produced particle in the phase space (11), the
amplitudes in the r.h.s. of the unitarity relation (9) must not decrease with
the growth of the invariant masses. It is possible only in the case where there
are exchanges of vector particles (i.e. gluons) in all channels with momentum
transfers ¢;. ¢ =1-+n+1, with

i—1 n+l i—1
¢ =pa—) _kj= ~(pa— Y _ ki) = ﬁfm—ﬂi-lpz—z kiv: o =qi=-@"
=0 I=i j=0

(16)
Due to the gluon Reggeization the amplitudes of such processes in LLA have
simple multi-Regge form:

AE‘FH : n p. 8; W(ti} ].
AT = hE H Vereis (Bi: 9i+1) (;) t
=1

'[tﬂ 1
v oo z +)1"“’:*’“ (17)
thy1 \ SR BB ’

where sg is some energy scale, which is irrelevant in LLA,

Bi-1
Bi

w(t) and '}, , are the gluon Regge trajectory and the PPR vertices given by
Egs.(6) :and (7). (8) respectively: 7£'Ea+1 (gi.¢i+1) are the effective vertices of
production of particles P; with momenta g; — gi41 In collisions of Reggeons
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(i.e. Reggeized gluons) with momenta ¢; and —g¢;41 and colour indices ¢;
and ¢;4; correspondingly. In LLA all produced particles P; must be gluons:
therefore, the masses of produced particles are equal zero. The Reggeon-
Reggeon-gluon (RRG) vertex has the form [1]

'fff:i“(?i: i+1) = HT:ic;Hf;(ki)C“(qu:'?-'): (19)

where T;{.i,‘._ﬂ are the matrix elements of the SU(N) group generators in the
adjoint representation, d; is the colour index of the produced gluon, e(k;) its

polarization vector and k; = ¢; — ¢;41 its momentum;

CH*(Qi+1:94:) = —¢i — ¢i+1 + Pl(;;}l + ?pliZ) o P?(i_—;i + ?ﬁ . (20)
B 1

The amplitude A%4/;" entering the unitarity relation (9) can be obtained
from Eq. (17) by the substitutions A —+ A’ . B — B’ ,¢; = ¢; = ¢i —q. where
q=pPA—PAa =1L E

Let us introduce the operators Pr for projection of two-gluon colour states
in — channel in the unitarity condition (9) on the irreducible representations
R of the colour group and use the decomposition

T, (T%, )" = crleici|Prlcipiciys)- (21)
R

b i 41

We’ll be interested in the singlet (vacuum) and antisymmetrical octet (gluon)
representations. For the first of them

15 y i
eic;Veipre;

(eicf|Polessrcipr) = —5— (22)
and for the second
P fac.-c:faci 150,
(cici[Palciy1ciy,) = N = (23)
so that one can easily find
L Bie N e -‘;ﬂ (24)

Using the decomposition (21) we obtain from (19)
Z‘r.fi-.-_,,l{{Ii:qa'+1){'}’£}:+l{'l'i= Qi+1))'
G;

8

= Z(ﬂiﬂEiﬁﬂ|¢£+1¢$+1)2(?F)D‘1£f~m(fﬂ:*ﬁ+1?ff): (25)
H 5

where the sum is taken over colour and polarization states of the produced
gluon and

(R)(z = g'cr
KNG i1 9) = —Wc"(qt‘ﬂ:f}i}@{qiﬂ —q.9i — q)

9 -J'z = .2 2 —Q e 2
9CR (‘L (‘h+l "1—} +'§':+1(‘?t q-) _62)_ (26}

L (@ — Giv1)?

The decomposition (21) corresponds to the decomposition of the elastic
scattering amplitude A4 2 in (9):

ALE =Y (Ar)4s - T
g3 |

where Ag is the part of the scattering amplitude corresponding to the definite
irreducible representation R of the colour group in ¢ -channel. It is convenient
to consider its partial wave fr(w, .j')ﬂff defined by

falw. 04 = | ﬁ“i;(i) Im, (Ar)15 - (28)

¥Fo Sﬂ

The amplitude itself is expressed trough the partial wave as

it @ PEree L % ek S gl
(AR)4R = 5= fé gl ((E) —r(g) )fﬁtwfﬂiﬂﬂ . (29)

where 7 is the signature and coincides with the symmetry of the representa-
tion R. For the gluon representation the Born contribution must be added
into the r.h.s. of (29). The term with r takes into account the contribution
to the amplitude from the u -channel imaginary part. Pay attention that the
only antisymmetrical representation contributing to the decomposition (21)
is the representation with the gluon quantum numbers. Therefore, only for
this representation the contributions of s- and u- channel imaginary parts do
not cancel each other. It means that in each order of perturbation theory the
amplitudes with the gluon quantum numbers in ¢; -channels are dominant.




Let us calculate the contribution f}tﬂ}(u, -ﬂﬂ}fl into the partial wave com-
ing from production of n gluons. Using Eqgs.(11). (13)-(15), (18). we have

5 = 8¢ kf = 5t é'l?q_‘niil-lf

i=1 i=1

ds or Py ds; dP2gis
?dq’Aﬁ+n e ;‘:[1 2s; (2m)P-1 (30)
and from Eqgs. (28), (9). (17) and (25) we obtain

f . DAF
2 1 f ’ﬁ dP-2g,, ds; (51‘ )M{hH-wU:] -
(2m)P-2 f \ 2+ ;% (@i —)* & \sr 72 p2

————"5 . - . = A
x ﬂ—+2 Z ffi} (H*’C:{-H}(Q:‘:f}ﬁﬁrﬂ) I“*IB}* (31)

= 3 i
d1" n41 i=1

-l

The index v here enumerates the states in the irreducible representation H,
so that

(ciciPrlcisrciyr) = 3 (cici | PrIv)(v|PRIci+1¢i41) (32)

[

and .
R. '] f-': v -
1B =313, (F3.) @alPab)

A

R, L ek N o
bR e (15’;) (V|PRlcns1Chs1)- (33)
B

The sum here is taken over the discreet quantum numbers of the states A,

B.
For the singlet representation the index v takes only one value, so that
we can omit it and have’

¥l 5(.‘1’:’ ¥
{cc'|Pol0) = Nk (34)
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whereas for the antisymmetrical octet (gluon) representation the index v
coincide with gluon colour index and

.f acc’

N
where fupe are the structure constants of the colour group. Therefore, we
obtain

(cc'|Psla) =

(35)

I(u) e HECP
PP e

where Cp is the value of the Casimir operator in corresponding representa-

tion, i.e. Cp = N;.;l for quarks and Cp = N for gluons;

180 = —ig? L (PIT 1P e = e T, (57
The integration over s; in Eq.(31) is performed from some fixed (indepen-
dent from s) value to infinity. Note, that the essential integration region
in Eq. (29) is w ~ (Ins)™!, so that in LLA we can omit terms of the
type winsg, win l-r'f, as well as w(t;)Insg. w(t})Insg. It corresponds to
the statement that in LLA the scale of energy is not fixed. Therefore, inde-
pendently from the lower limit of the integrations over s; we obtain

(P,1P)51PJAPT (36)

(n) (. YAE' 1 /"HH d°%qiy
h'-1 e | e 7. 7:
R \w:Y)4B (27)P-2 e (w — w(ts) — w(t§))q:% (g — 9)°

Tt
x 3 1Y) (H KB, éeﬂ;ﬂ) 5. (38)
v i=1
Let us present the partial wave in the form
fﬂ{u:fﬂfﬂﬂ’ e ! | ; [ #dﬂ:ngJ_ ddﬂ:2qm.
2m)P-2 J §2(§a—9)? 4578 — 1)
x 3 NG (Ga, T: D) 55 - (39)

Then for the function GLR] (which can be called Green function for scattering
of two Reggeized gluons) we obtain

oc n41 dD—Eq.L
NG, d8:9) = ;
G (Ga.4B:9) = nzﬂf (H 323 — )2 (w — wlti) — W{t:')))
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(HK{ }(th Fit1} *ﬂ) (ga — *ﬂ ip '[fi'B " "ﬂ

i=1
x8P~D(g11 —ga1)6 PP (gns1L — gBL)- (40)

It is easy to see, that the sum in the r.h.s. is the perturbative solution of the
equation

Gy, d2:9) = 72§ — D26 PD(qh - ¢2)

+/ *f ¥ KB (G, @ : GG . 2: 9). (41)
¢ (@ —*ﬂ

where the kernel
KR )(qi 2! ‘f) (‘“({h.i_)

+u((gn — O NAHGE - DP (@ — @) + KG9 (42)

consists of two parts; the first of them, so called virtual part, is expressed
in terms of the gluon Regge trajectory and the second, related with the real
particle production, is given by Eq.(26).

Let us consider the partial wave fg}

scattering off the particle B defined as

(w: 1, §)B for the Reggeized gluon
I{R )

"?(QB q)?’

where the impact factor Igg] is given by Eq.(33). This partial wave satisfies
the equation

(43)

r

Vi, DB = f dP~%q5, GG, 73 )

dD—E ! ]

o ] R. q =

W }?V}(WQE'ME)B _I( u] +/ = §2{ > - ?E(H}(m:ﬂ;ﬂf}tp)(w;ﬂ‘ﬂﬂ ;
4

[t is easy to see that for the case of the gluon representation the solution of
this equation is

o I{S a)
fs (W:q1.9 = —-'—"- 45
g ( q1 -))E W{QJ_) ( )
Therefore Eqgs. (39), (43)-(45) give us
; D-2
g aise) 1 f d“"°q11  ,(8.a) 1
b - q e ! = - I f T
sl-@as” = lwa Gmp=1 | @ -7 P v —w(d))
—mw(t)
r I - i a 4
A At[ [.u(t)) B'B ( ﬁ)
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Exactly the same result one gets substituting Eq.(5) in Eq.(28). So, we have
a kind of "bootstrap”: we input the existence of the Reggeized gluon and
obtained it as the solution of the equation derived from the unitarity. '

Strictly speaking, this "bootstrap”, although being very impressive and
meaningful, can not be considered as a rigorous proof of the gluon Reggeiza-
tion. For such proof we have to reproduce not only the form (5) of the elastic
amplitudes, but also the Reggeized form (17) for all inelastic amplitudes. It
was actually done in LLA in Ref. [9], so that in this approximation the proof
of the gluon Reggeization really exists.

Let us turn now to the most interesting case - vacuum quantum numbers
in t -channel. From now, only this case will be considered, with additional
simplifying restriction of the forward scattering, i.e. A'= A, B' = B, ¢ =
0. Instead of the imaginary part of the forward scattermg amphtude we’ll
consider the total cross section g4p5(s),

Im, AAB

oap(s) = —AB (47)

From Eqgs.(29). (39) we obtain

d+ioc g, 1 P&
o dD-—‘}E‘ dD_2 (

.b _—'ﬂ
(I’A(QA)G {- -) B{-‘EQB): {48)
‘IA 9B
where
Balfa) = I4) = 5= Zl Sal’s Ta=—Pi:
&5 (i) = 1) = Gl Zirf-‘BF is = -7 (49)
and
S o’ 0 :
Gw ('5'1: q2) -(-q;..q: } [ (50)

491792
The PPR vertices I';, , are defined in Egs.(7), (8) and the Green functions

G G (71, §2: §) in Eqs.(41), (42). Let us note that for quarks and gluons the
impact factors ®p(dp) don’t depend really on gp in LLA. We indicate this
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dependence having in mind possible generalizations to the cases of scatter-
ing of other objects and corrections to LLA. The Green function G.(q1. g2)
satisfies the equation

H B O (A j P K DC.GH) ()

where
K(§1. §2) = ;.?q;.g?* ) = 2u(~52) 8 P-D(§; = @) + Knlds §2) - (52)
1

Here w(—q 2) is the gluon Regge trajectory given by Eq.(6) and the integral
kernel K, (q1. §»). related with the real particle production, is given by Eq.(26)
atg=0:

K41, :0) 1 4
K (qﬁl:“f? = e == - - I.T 1 {QI.?‘;\"]F
s : ey 2(27)P-1(N2 — 1)q,% >’ Z ciez 2

Cy TC?rGI

z. g’N 2
@2x)2-1 (g ~@)"
Taken separately, the virtual (6) and real (53) contributions to the kernel
(52) lead to infrared singularities. Indeed,

(53)

g°’NT(1—-¢)2
(4w)2+e ¢

wi(=§?) = - il (54)
whereas the real contribution (53) gives the term of order 1/¢ after integra-
tion around the point §; — > = 0. These singularities cancel each other in
Eq.(51). Let us demonstrate it for the kernel averaged over the azimuthal
angle between §; and g. In fact, only the averaged kernel is relevant until we
don’t consider spin correlations because in this case the impact factors enter-
ing Eq.(48) depend only on squared transverse momenta. It’s clear therefore
that the high energy behaviour of cross sections is determined by the averaged
kernel. '

Performing expansion ih ¢ and keeping only the terms giving non-vanishing
contributions at € = 0 in (51), we obtain for the averaged kernel

2e
2 Io? — Gy
T e Q' N 2 |'f."2 G {h 1 5
Kr (G0 02) = = ' ' ' o

r(Q'l.‘H) {Q:IT}D-I |¢"12 _._{fz""l (fﬂﬂr[(ﬁz:‘ﬂz} | F‘)

14

Instead of the dimensional regularization we can introduce the cut off |§;* —
52| > A? in the kernel K,(¢1.¢2) changing correspondingly the virtual part.
We obtain

e N B . g eURT= = A ;
K(G’ls"h]:g (“‘?lngl_{qlz'fhz}+ 1 : 2l ) : (56)

473 l‘ﬂE = 979

The representation (56) permits to find easily such form of the kernel for
which the cancellation of the singularities is evident. For this purpose it is
enough to present
- 7 ] ]—Qd_-*21_)‘2 =2
'3 q - QI q q

4y =93

}‘?

with ¢(1) = 1. Evidently, the mentioned form is not unique. The one adopted
in [1] and used in literature is

RO L Nay f .. f(d°
fdﬂ 242 K[m:%]f(?z?) = qu; [1@'2(_2;'2

=+ 3
-2y 1
- )l — 7= ==)| - (58)
f{ 1 ]022 l‘?zg-_ q12| \/[q12}2+4['{}22)2 ]

In the following we’ll use another choice:

f d2=2g, K(d:. @) (82)

Na, [ dg,’ [ —2 min(@’; §1°) ;-2
= e | F(@)) = 27y (@) - (59)
T |45 — @' : (¢ + 'h?) 1

Of course, the representations (58) and (59) are equivalent. Both of them
make explicit the scale invariance of the kernel, due to which its eigenfunc-
tions are powers of §,2. We'll take them as (¢,%)~! and denote the corre-
sponding eigenvalues as %‘?u'-xﬂ{'y}:

New B@)™" * 160

/ 402, K(7L NG =
so that [1]

xB(1) = 2¢(1) —4(y) - ¢(1 - 7). ¥(0) =T (1/T(1)- (61)
15




The set of functions (§,2)?~! with y = 1/2+ v, —oc < ¥ < oc is complete,
so that we have

o '{s)“__/‘HimE i =
A i 278 o 2942 (0 MoexB(1/9 +41))

d*qay d* qBL | S & — 2\ —ip—3/2 » 2\iv=3/2
o [TAL [T (L) @a(a)@f) ™ 0a(~15)0)
(62)
The cross section exists only if the impact factors possess a good infrared
behaviour: otherwise it turns into infinity. In fact, it is infinite for scattering
of colour particles, as it should be, and finite for colourless ones. because for
them

®p(fp) ~ dp (63)
for small §p. The maximal value of x®(y) on the integration contour in
Eq.(62) is x(1/2) = 41n 2, that corresponds to the maximal eigenvalue of the

kernel w8 = 4N(a,/m) In2. At w = = w¥ the partial wave has the branch
point that leads to the growth (1) of the cross section.

3 The Next-to-Leading Approximation

The next-to-leading logarithmic approximation (NLLA) means that all terms
of the type a[a, In(1/z)]" have to be collected. It was argued in Ref. [10] that
in this approximation we can use the approach which coincides in the main
features with that used in LLA. In general, the programme of the calculations
is analogous to that in LLA. The final goal is the elastic scattering amplitude.
It has to be restored from its s- and u-channel imaginary parts. The s-
channel imaginary part is given by the unitarity relation (9). Evidently,
Egs.(27)-(29) expressing the elastic scattering amplitudes in terms of their
s-channel imaginary parts remain unchanged. In the multi-Regge kinematics
(MRK) in NLLA, as well as in LLA, only the amplitudes with the gluon
quantum numbers in the channels with momentum transfers ¢; do contribute.
It was mentioned after Eq.(29) that in each order of perturbation theory
these amplitudes are dominant, because only for them there is no cancellation
between s- and u - channel éontributions. Moreover, for the same reason only
in these amplitudes the leading terms are real, whereas in other amplitudes
they are imaginary. Therefore, the appearance in the r.h.s. of the unitarity
relation (9) of amplitudes with quantum numbers in {;-channels different from
the gluon ones leads to loss of at least two large logarithms and therefore can
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be ignored in NLLA. Evidently, it is a peculiar property of NLLA. In the

approximations next to NLLA such amplitudes do contribute.

As before, the key point in the calculation of the amplitudes contributing
in the unitarity relation is the gluon Reggeization. In MRK the real parts of
the contributing amplitudes {only these parts are relevant in NLLA because
the LLA amplitudes are real) are presented in the same form (29) as in
LLA. So. in this kinematics the problem is reduced to the calculation of
the two-loop contribution w{?)(t) to the gluon Regge trajectory w(t) and the
corrections to the real parts of the PPR- and RRG- vertices. Let us note here,
that the PPR-vertices, as well as in LLA, enter the expressions for the impact
factors (see Eq.(33)). but not the expression for the kernel (see Eq.(42).(26)),
so that the corrections to these vertices appear at the intermediate steps of
the calculations only. The one-loop corrections toghe PPR vertices were
calculated in Refs. [L1, 12]. Though they are necessary for the calculation
of the corrections to trajectory and RRG vertex, they don’t enter the kernel
explicitly, therefore I don’t present them here. ;

But in NLLA, contrary to LLA, MRK is not a single kinematics that con-
tributes in the unitarity relation (9). Since we have a possibility to loose one
large logarithm (in comparison with LLA), the limitation of the strong order-
ing (13) in the rapidity space can not be implied more. Any (but only one)
pair of the produced particles can have a fixed (not increasing with s) mnvari-
ant mass, i.e. components of this pair can have rapidities of the same order.
This kinematics was called [10] quasi-multi-Regge kinematics (QMRK). We
can treat this kinematics including, together with the one-gluon production,
production of more complicated states in the Reggeon-Reggeon (RR) colli-
sions, namely gluon-gluon (GG) and quark-antiquark QQ states, as well as
production of "excited” states, i.e. states with larger number of particles,
in the Reggeon-particle (RP) collisions in the fragmentation region of one of
the initial particles. Therefore, the partial wave (28) can be presented in the
same form (39), but with modified impact factors and RR Green function. In
the definition of the impact factors (33) we have to include radiative correc-
tions to the PPR vertices and the contribution of the ”"excited” states in the
fragmentation region. The equation (41) for the RR Green function remains
unchanged, as well as the representation (42) of the kernel, but the gluon
trajectory has to be taken in the two-loop approximation:

w(t) = wM(t) + P(2), (64)

and the part, related with the real particle production, must contain, together
with the contribution from the one-gluon production in the RR collisions,
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contributions from the two-gluon and quark-antiquark productions. The one-
gluon contribution must be calculated with the one-loop accuracy, whereas
the two-gluon and quark-antiquark contributions have to be taken in the Born
approximation. In the following we consider only the case of the forward
scattering and present the part of the kernel related with the real production
in the form

Ke(di.q2) = KE’E&“’""(&L §2) + Kpada(d. @) + Kﬁ%’é‘g(ﬁ: g2)-  (65)

Here there is a subtle point. Calculating the two-gluon production con-
tribution to the kernel (as well as the contribution to the impact factor from
the gluon production in the fragmentation region) we meet divergencies of
integrals over invariant masses of the produced particles at upper limits (let
us call such divergencies ultraviolet). These divergencies correspond to the
uncertainties of the lower limits of integrations over s; (see Eq. (31)) in
MRK. which were not important in LLA, but can not be ignored in NLLA.
Of course, the reason for the divergencies is the absence of a natural bound
between MRK and QMRK. In order to give a precise meaning to the corre-
sponding contributions and to treat them carefully we introduce an artificial
bound (which, of course, disappears in final results). The discussion of the
separation of the MRK and QMRK contributions presented in subsection 3.3
is based on the paper [13].

In the next subsections we’ll discuss various contributions to the kernel.

3.1 The Reggeized Gluon Trajectory

The two-loop corrections to the gluon trajectory were obtained in Refs.
[14. 15]. They were expressed in terms of discontinuities of QCD scatter-
ing amplitudes with gluon quantum numbers in {-channel calculated at large
energy /s and fixed momentum transfer \/—t in the two-loop approxima-
tion. The processes of the quark-quark, gluon-gluon and quark-gluon elastic
scattering were considered. Independently from the process, it was obtained
for the case of n;y massless quark flavours:

2 (D-2)

gy f‘f R FE DG T 66

W' (1) (2m)D=1 q_.lg([i.-l_q-)g[ (41:9) (¢1.41)] . (66)
where t = ¢? = —¢ % and*

2A7272 (D-2) ~ 9
L g’N3j / d q2 [ ( g ) ;
Flgy.q) = - e | — | = 2¢(D =3
(41.9) 4(27)2-1 | ¢t (42 — §)? . (@1 — ¢2)2 v )
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iy (3_#_?_) + 2¢ (%—2)-#!13(1}"'{9_3)2(3_4) +4(D—D1i12;—3)]

2g°NnyT (2 - 2) 12 (2) ()3
(4m) 5T (D) :

Eqgs. (66) and (67) give us a closed expression for the two- loop correction to
the gluon trajectory. The independence from the properties of the scattered
particles. which appears as the result of remarkable cancellations among var-
ious terms, sets up a stringent test of the gluon Reggeization beyond the
leading logarithmic approximation.

The two-loop correction to the trajectory contains both ultraviolet and
infrared divergencies. The former ones can be easily removed by the charge
renormalization in the total expression for the trajectory. Since the trajectory
itself must not be renormalized, we have only to use the renormalized coupling
constant g, instead of the bare one g . In the M'S scheme

(67)

11 2n,\ §
9= Gukt [ +(3 3N ) 2| (68)
where ?N['[l )
. 2 SR
9= lamyrre (69)

and calculation of the integrals in (66), (67) gives [15]:

=~y € =7 2
FINETIES /1 . iy e 9u |(11 _2mp\ ([, 70\ _
it} = g"(yg) £{1+ € [(3 3N ! 6
9y € 9 2
g2\ (11 ;r__g) (m 117 3
(pz) (ﬁ+(ﬁ T e | i i

% (-3 (F-5) )} "

The remarkable fact which occurred is the cancellation of the third order
poles in € existing in separate contributions to the gluon part of {(66). This
cancellation is very important for the absence of infrared divergences in the
corrections to the BFKL equation. As result of this cancellation, the gluon
and quark contributions to w(?)(t) have similar infrared behaviour. Moreover,
the coefficient of the leading singularity in ¢ is proportional to the coefficient
of the one-loop # function. This means that infrared divergences are strongly
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correlated with ultraviolet ones. The correlation is unique in the sense that it
provides the independence of singular contributions to w/(t) from ¢ 2. Indeed,
expanding Eq. (70) we have

o 2 g Py i e 1 2
w(t) =—g;‘: (E-I-Eln (%)) “ﬂﬁ [(i_ Eﬁf) (Eﬂ- —la? (1_2))

67 wx* 10n 1 j2 404 56 n
+ (? 2o 7!’——”{) (; +2In (?u_ﬂ)) A i ﬁ?f] £ 1
Eq. (71) exhibits explicitly all singularities of the trajectory in the two-loop
approximation and gives its finite part in the limit ¢ — 0. Let us stress
that the independence of the singular contributions to the trajectory from
¢ ? is necessary for the cancellation of the infrared divergencies in the BFKL
equation.

3.2 One-Gluon Production Contribution

The simplest process for extracting the RRG vertex is production of one
gluon with momentum &; in MRK:

s> 819, [tial, s1=(ki+pz)? 52 = (k1 +pp)°

518 =~ SElg: I = qf s &g?}ﬁ. (72}

It is worthwhile to remind, that the MRK amplitudes beyond the LLA
have a complicated analytical structure. For the one-particle production
amplitude, assuming the Regge behaviour in the sub-channels s; and s;,

from general requirements of analiticity, unitarity and crossing symmetry
one has (see Refs. [11, 16])

AB+1AE €1 _1_ d l ca
AAB ”4I‘EA11TCIC=£2FEB

(@G G
(@@ R @ -

where w; = w(t;) and the right and left RRG vertices R(*#) and L{*®) are
real in all physical channels. Fortunately, as it was explained at the begining
of this section, in NLLA only real parts of the production amplitudes do
contribute , because only these parts interfere with the LLA amplitudes,
which are real. Therefore, for our purposes we can neglect the imaginary
parts and present the amplitudes in the form (17) with

1 GO () +wD(ty) k2
158, (01:92) = Ty 5 {{R+ I) (1— e e

+(R—-L) (74)

2 SR

where w(1)(#) is the one-loop contribution to the gluon Regge trajectory.

The right and left RRG vertices R and L were calculated in Refs. [11].
The calculations were performed in the space-time dimension D # 4, but
terms vanishing at D — 4 were omitted in the final expressions. Unfortu-
nately, such terms should be kept, because integration over transverse mo-
menta of the produced gluon leads to divergency at k;; = 0 for the case
D = 4. Therefore, in the region k;; —+ 0 we need to know the production
amplitude for arbitrary e. The corresponding calculations were performed in
[17].

Let us note here, that whereas the dependence of the Regge factors from
the energy scale sp was beyond the accuracy of LLA, in NLLA it has to be
taken into account, though we can use an arbitrary scale. It means, that the
RRP-vertices, as well as the PPR-vertices become dependent from the energy
scale sg. In the following we’ll show explicitly this dependence, denoting the
PPG-vertices by ['s")% and the RRG-vertices by 715 “* (g1, ¢2). From the
physical requirement of the independence of the production amplitudes from
the energy scale we have:

I'(-'R}'J—I‘f-*’n)ﬂ SR %u(tpp}ﬁwriaiq}ﬂ 1 1-(t 5) 1 SR 5
PP ~ " PP ;7; - b pp +§°"‘ P.P)“ o 1)

where {pp: is the squared momentum transfer from P to P’, and

Hwrtws)
x Jt Gl S
128G (g g9) = 'ril‘c*) (q1.92) (TR)
SR
s VG, 1 8
=288 qnan) (14 Jer +en)n (2£)) (76
Sk
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In Refs. [11],[17] the PPR vertices were extracted from the elastic scatter-
ing amplitudes assuming the representation (5) for them: therefore, the scales
—tpp were used for these vertices. In turn, the production vertices R and L
were extracted from the one-gluon production amplitude using the represen-
tation (73). with the scale in the Regge factors equal the renormalization scale
g%, but with the PPR vertices taken for the scales —tpp5. So, several scales
were mixed in the one-gluon production amplitude. Though such mixing of
scales is not forbidden. it is quite inconvenient when we consider production
of arbitrary number of gluons. Therefore we’ll use for definition of all vertices
the representation (17) with the single scale sg. Then. according to Eqs.(75).
(76), the vertices qélﬂi}g‘(ql,qg) differ from given by Eq.(74) with sgp = u?
and vertices R and L taken from Refs. [11].[17] by their LLA values (19)
multiplied by the factor

-;- (w“?'(:l}lu (”Llfﬂ) +wB(tz) In (_iffﬂ)) : (77)

Therefore we have

* Lu(l}f +,u,(1 i
1667 (1. 02) = Ticagﬁﬂ-f%(h)(Cy{%:fi‘l)[l"' ) 2 { 2) In j,,-z
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(kﬂ?ﬂ kﬂﬂﬂ) l[ 3 ]( - §5°) o2l N) 3

(26} - ¢ — &) [ @4 20 @2+ d@D)) !
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As for the vertices R{*#) and L(*&} geparately, they can be found taking into
account that the combination R — L does not contribute in the LLA (see
(74)) and therefore can be taken in the first nonvanishing approximation.
We obtain

RU® bR =R

22

A1), L
R*A) 4 L*R) = (R4 L) [1 P s T ( i})
2 H

2 )

M(I){fl} = Lu'tl}[tg) SR
(R 5 In (F) : (79)
where R and L are taken from Refs. [11],[17] . So. we have
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(51)
One can check that substitution of (80), (81) into (74) gives (78).

It will be shown in the next subsection, that for the appropriate separation
between MRK and QMRK the contribution K?;EGIWP ¢1.q2) to the kernel is
equal to

K:aﬂe loop

1 CHIR 2
RRG ({Il 92) 2{2?!_)1} I(NE"" 1)—&—-‘2 Z |Tclc? [qlr qg]l y {82}

ql 2 c1.¢2.G1

From Eqs. (78}, (20) we obtain
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(83)

3.3 Separation of the MRK and QMRK contributions
Let us rewrite Eq. (28) for the case of the forward scattering:

]

' i T ds i A
fesan= [ F(E) oanto) (54
using relation (47) and introducing so as the argument of the partial wave
because in NLLA the partial wave becomes dependent on the energy scale.
For the contribution fﬁﬂt}{{“‘? so)ap into the partial wave coming from pro-
duction of n gluons in MRK, repeating the steps leading to Eq. (31) we
obtain ock
Fari(@:50)aB
]

Lok fﬁ-d”“ﬂ- ds; {5 \*" 5i P
-~ (2x)D-2 e o 85 b

SR

L
B+ﬂ I . B'l't" —* .
50 2 (QIESH S L & (*q s
)4 S : A - ) (HKRHG(QI'?I+1:5R)) B -'Eﬂ-l'] f]+
1’ Gt 4 o o .
(85)

In order to give the precise meaning to MRK we introduced here the pa-
rameter sy. By definition, MRK means that all squared invariant masses
are larger than this fixed (not growing with s), but as large as it would be

desired parameter. The contribution fﬁﬁm-[w, so) ap depends on this param-
eter although we don’t indicate this dependence explicitly. The dependence
from this parameter disappears in the final answer for the partial wave. The
impact factors (c.f. (49))

BB+ (§p:sp) = (sm)ej2. =

1 o
*—fﬁﬁz:!rﬁp . gp = —Pp
F.c
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(86)

acquired the upper index B + v for the denotation that they represent the
sum of the Born (LLA) contribution and the virtual correction, as well as the
additional argument to show their dependence from the scale sg used in the
Regge factors in Eq.(17). Remind, that besides the presented contributions,
the total NLA impact factors contain the contributions from the gluon pro-
duction in the corresponding fragmentation regions as well. The part of the

kernel

Gy 1 (3 2)Citae a2
» citig1:Gi
(87)

represents the contribution of the gluon production with the one-loop accu-
racy and also depends on sg. i

It is convenient to change the argument sg for k.2 in Krre(Gi: Gitr: SR)
and for so in @521 (dp: sr) using Eqs.(75), (76). Then after integration over

s; we obtain:
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In the last equality we performed the expansion in {w — 2w;) and have taken
into account the first terms of the expansion only, as it should be done in
NLLA. Let us note for defineteness that for n = 1 in the last factor in Eq.(3.3)
only the two last terms remain, whereas for n = 0 the whole factor is equal
unity, because in this case in Eq. (85) instead of integrations over partial s;
we have an integration over the total s which has to be performed from so to
g

Now let us turn to QMRK. Pay attention. that since the contribution of
this kinematics is subleading. we can ignore the dependence from the energy
scale. In the exact analogy with the PPR and RRG vertices let us introduce

the effective vertices 755, (gi. ¢i41) and 7£§+1[q,-: gi+1) for two-gluon and
quark-antiquark productions in the Reggeon-Reggeon collisions as well as the
vertices I'%. p for production of the "excited” state P* in the fragmentation
region of the particle P in the process of scattering of this particle off the
Reggeon, so that the amplitudes of production of n+1 particles in the QMRK

are given by Eq. (17) with one of the "old” vertices changed for corresponding

"new” vertex. With this definition the contribution fé,”;}i}x (w)ap of the n+1

particle production in QMRK 1s:
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(n41) o . e 1 d gil
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91 j=1 \i=1
n iy (I,{B) o
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where 'I'(PH)(EP) and Kf.ﬂ}(rﬁ:é}.,.l) denote the Born (LLA) values for the
impact factors (49) and the part of the LLA kernel related with the real

gluon production (53), tb{;]{é'p) means the corrections to the impact factors
due to the production of the "excited” states in the fragmentation regions
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and Ko ri (. §j+1) appears as the contribution to the kernel from QMRK.
The last two values depend on the boundary s; between MRK and QMRK,
though we don’t indicate this dependente. Taking into account that the phase
space (11) includes dP=k;/((27)°~12¢;) and that d°k; = dk?dP=1k; /(2¢;).

we have

Y — ]-
F Ay
X Z |T(j::;lcj:il {qu qj"’r'l)i?' (90)

¢j.ci41:F1.P2

Here the sum is taken over colours of Reggeons and all quantum numbers of
produced particles. The produced particles P, P can be quark-antiquark as
well as two gluons; denoting their momenta by {; and I, we have

2¢(D - dP-1;
dpplpg = dkjéi ](kJ £ fl oo fj} H (QH)D_IQE v
i=1 .

(91)

Note that in the case of the two-gluon production the gluon identity must
be taken into account by the limitation on the integration region. We can
represent Eq. (90) as the following:

2IrrRORR—2(SRR)O(SA — SRR)
{?ﬁ}ﬂﬁﬁztﬂ-il

Komrr (. j41) = (N* = 1) /d5RR . (92)
where opr—2(k3) is the total cross section of the two-particle production
in collision of Reggeons with momenta ¢; and —¢j4+1. (g5 — gi+1)° = SRnR.
averaged over colours of the Reggeons, and Igr 1s the invariant flux:

Ipp = \/{SRR — ¢} —qi ) —4aigi, = 2\/(%:114-1}? —qg3q?,: ¢ =-¢".
(93)

Analogously, the correction tI!g](q"R] to the impact factor due to the produc-

tion of the "excited” states in the fragmentation region of the particle P at

collision of this particle with momentum pp and Reggeon with momentum

—qr: (pp — qr)* = spr. is given by

D-1
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Here we have taken into account that, with the normalization used the matrix

element for the RR — P, P, transition coincides with the corresponding

effective vertex, whereas for PR — P* differs from such vertex by factor

V2s.

Note, that with the NLLA accuracy the corrections obtained by the ex-
pansion in (w—2w;) in Eq. (3.3) for the case of the (n+1)-particle production
can be presented in the same form as the r.h.s. of Eq. (89) with the substi-
tutions:

o7 L BINEL ) 3
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Therefore from Egs. (3.3)- (90) we obtain that with the NLLA accuracy the
total partial wave can be presented as
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where K,(§1.q2) has the form (65) with Kore=1°P(41, §2) given by Eq.(82),
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and the impact factors have the representation
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Here we used the form (53) of K,(-Hj{uj'l,rfg}.

In the last two equations the MRK boundary sx have to be taken much
larger than typical squared transverse momenta. so that the dependence from
s disappears due to the factorization properties of the Reggeon vertices In
the regions of strongly ordered rapidities of produced particles. Namely, the
two-gluon production vertex is given by the product of the RRG vertices:

1
G3 NG < j
Gy i Vee e, (@ — 1. 0541)  (100)

78182 (g5. g54+1) = Vo,5(95. 95 — f:t){ .

&
at (pgl2) < (peli). (pal) K (palz). where l; and l; are momenta of the
produced gluons, and the vertices for the gluon production in the fragmenta-
tion regions are given by the product of the corresponding vertices without
gluon and the RRG vertices:

: 1
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at (ppl) < (pBP;): (Papi) < (pal). ! is the gluon momentum, gp = p4 —

pi—1;
I, = 15y ———1%(qr. qr — ) (102)
GBB B(qr —1)?

at (pal) € (paps). (pePs) < (PBl). 9r = Pp —PB +1.

3.4 Two-Particle Production Cnntributinns

Investigation of the two-gluon production contribution was started In Ref.[10];
the next step was done in Ref.[18]. The final result was obtained in Ref.[19]
by calculation of differential cross section of the two-gluon production in the
RR collisions and integration of this cross section over relative transverse and
longitudinal momenta of the produced gluons. In a suitable for integration
form we obtain:
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Here we omitted terms which vanish after integtation. The intermediate pa-

—4(1 + €)z(1 - J?)U-i ‘j-i)z] + z(1 — z)q,2 rameter dp is introduced in (103) to exclude divergencies of separate terms.
k7 This parameter should be considered as infinitely small. In the total expres-

e = % sion for the integral the dependence on dr vanishes.
X [2*12 +(1+¢) (?[1 —z)(hfi) = z(1 - 2)§}° - IEE) —ex(l—z)(k? - (i'??)] Note, that taken separately some terms in the r.h.s. of Eq.(103) contain
» ultraviolet” divergencies at large |{1|; but these divergencies are artificial in
z(1 - z)q,* ’ (1+¢) the sense that they cancel each other, so that the total integral is convergent
g 7 ) [ Y (3 + 2¢)z(1 - l‘)] b at large|l;|. In the infrared region for ¢ — 0 all terms have no more than
2720 225252 2324, i logarithmic divergency. All divergencies, " ultraviolet” and infrared. can be
+( T L _.12__; )+ = [—?(I—I}€12€22+{1+f)(1—.7:)[@‘ 2y2 regularized by the same €. Since in the BFKL equation the kernel has to
2(1 - z)xl, 2,°2 17l Kty 3 be integrated over ¢, or equivalently, over kp, and the kernel is singular at

(1+¢) k; = 0. we should be careful in performing the expansion in € . in order

+ , ( SR 0 0n ARNONE | SR 4 e G : s ol ks : o 3
9 z( z) { 2(1 z)q (ki — ¢2°) — =(q7°)° — z(ki — Q'-f 1]') to keep all terms which give _pnnvamshmg contribution in the physical limit
AN ¢ — 0 after integration over k;. The result of the integration in (103) is:
=2(1+€)(2 - z)(1 = 2)§° (1) + 2(1 + €)(1 - 2) ({ﬂfﬂ}?) :
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where I; and I, are momenta of gluons produced in collision of Reggeons with 3 {{ﬁz — q_f'f) 15{}'126*32 o
momenta q; and —qs, I} +12 = ¢1 — g2 = k1.
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with

Ao N 4 dt
W) =on L= [ Fha-o. (106)

The r.h.s. of Eq.(105) exhibits several terms with unphysical singulari-
ties, such as at §;? = ¢,% and (i + §2)? = 0. It is not difficult to see, that
the only real singularity is at k,2 = 0. All others are spurious and singular
terms cancel each other. As for the singularity at Elz = 0, Eq. (105) contains
all terms which give in the physical case ¢ — 0 non-zero contributions after
the subsequent integration over k;. For the terms which are infrared diver-
gent at D) = 4, the region of such small El that is In(1/k,%) ~ 1/e . gives
essential contribution in the integral over kl Therefore, we can not expand
(kz,’p?}‘ in powers of ¢ in such terms. Note, that the calculated contribution
is explicitly symmetrical with respect to substitution §; ¢ —¢2. It is quite a
non-trivial task to notice a reason for this symmetry in the starting expres-
sion (103). Nevertheless, this symmetry is hidden there. It is a consequence
of the invariance of the expression inside the curly brackets in (103), as well
as the phase space element dz/(z(1—2))dl; . under the ”left-right symmetry”
transformation [18], i.e. under the substitution:

72
:EE

(1 - 2)i}2 + 2l2)

1o~ hob zo (107)

The quark-antiquark pair production contribution was calculated in Refs.
[20]. The result is

454 p—2ny 1 k N\i2q1 5 98 o
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4 BFKL Pomeron in the next-to-leading
approximation

Now we have all contributions to the NLLA kernel. Remind, that it has
the same form (52) as the LLA one, where the gluon Regge trajectory in
the two-loop approximation is given by (71) and the part X,(q1, ¢2) related
with the real particle production (65) contains the contributions from the
one-gluon (83), two-gluon (105) and quark-antiquark (108) production in the
Reggeon-Reggeon collisions. Representing this part as the sum

K. (§1.02) = KB (1. ¢2) + KM(G1. 4);

4g2 p=2 1

mHeT(1-€) (51— q)°
of the LLA contribution, expressed in terms of the renormalized coupling
constant, and the one-loop correction Kt )(gl g2). we have for this correction

[21]:
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(110)
where

L(z) = f{, %fln(l —t), ¢m) =Y k" (111)
k=1

The remarkable fact exhibited by Eq.(110) is the cancellation of the infrared
singularities [22] (remind, that separate terms in (65) are singular as 1/€?)
at fixed k¥, = §i — ¢, where we can expand {Ef/,uz)‘ in powers of €. This ex-
pansion is not performed in (110) because for the terms having singularity at
k,? = 0 the region of such small k1, that is In(1/k,%) ~ 1/€ , does contribute
in the integral over k;. The singular contributions given by this region are
canceled, in turn, in the BFKL equation by the singular terms in the gluon
trajectory [22].

As well as in LLA. only the kernel averaged over the angle between the
momenta §; and §5 is relevant until we don’t consider spin correlations. For
the averaged one-loop correction we have:
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(112)

Instead of the dimensional regularization we can use the cut off 13,2 —
§,?| > A? changing correspondingly the virtual part. Using Egs. (52). {71‘,
(109) it is possible to verify that the averaged NLLA kernel at ¢ — 0 1s
equivalent to the expression
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in the two-dimensional transverse space, with A — 0. Of course, the depen-
dence from A disappears when the kernel acts on a function. Moreover, the
representation (113) permits to find such form of the kernel for which this
cancellation is evident, just in the same way as it was done at transition from

(56) to (59). We obtain:
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The y - dependence in the right hand side of this equality leads to the vio-
lation of the scale invariance and is related with running the QCD coupling
constant.

The form (114) is very convenient for finding the action of the kernel on

|

1—1=x

|

B
I

hﬂil

(X
s
oy |

i, - L

the eigenfunctions ¢,>7™") of the Born kernel:
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(115)
were within our accuracy we expressed the result in terms of the running
coupling constant

U‘a{‘fﬂ} ..
1+ 20 (3 2 in (47)
o m N (11 2n Y O
~ a,.{,u ) (1 . s (3 3N) In (ﬂ_2 ) : (116)
x2(7) is given by (61) and and the correction xV(y) is:
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ﬂ:d

For the relative correction 7(7) defined as x(1(y) = —r(7)xP (4) in the
symmetrical point ¥ = 1/2, corresponding to the eigenfunction of the LLA
kernel with the largest eigenvalue, we have [21]

2 1 '
T (1) —. (E - F—f~) In?-g—+ﬂ—+iﬂ+—1~— [/ arctan(v/t) In( : )d—t
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+3C(3}+32 (16+16N3)] 6. 6+095N -+ GNE (119)

It shows that the correction is very large.

In some sense, the large value of the correction is natural and is a conse-
quence of the large value of the LL A Pomeron intercept wB =4NIn?2a, (g%)/m.
If we express the corrected intercept wp in terms of the Born one, we obtain

r(3)
41n2

wp =wp(l — wB) ~ wB(1 - 2.4uB). (120)
The coefficient 2.4 does not look very large. Moreover, it corresponds to the
rapidity interval where correlations become important in the hadron produc-
tion processes.

Nevertheless, these numerical estimates show, that in the kinematical
region of HERA probably it is not enough to take into account only the
next-to-leading correction. For example, if a,(7 %) = 0.15, where the Born
intercept is w8 = 4Na,(¢?)/n In2 = .39714, the relative correction for
ny = 0 is very big:

. 1 72
":%:1_,-(4) (d7) \ _ 0.0747. (121)
Wwp 2 L



The maximal value of wp ~ 0.1 is obtained for ﬂ’,(tf?) ~ 0.08.

But it is necessary to realize that, firstly, the above estimates are quite
straightforward and do not take into account neither the influence of the
running coupling on the eigenfunctions nor the nonperturbative effects [23];
secondly, the value of the correction strongly depends on its representation.
For example, if one takes into account the next-to-leading correction by the
corresponding increase of the argument of the running QCD coupling con-

stant, wp at a,(¢?) = 0.15 turns out to be only two times smaller, than its
Born value.

The above results can be applied for the calculation of anomalous dimen-
sions of the local operators in the vicinity of the point w = J —1 = 0. The
deep-inelastic moments F$7 (¢?) defined as follows

FP (@) = fc ¥ ('SE) (), (122)

g2 § q
where
dg F) a+iocc du & |
B3 A q e 5 -
o= [l o) [ a= () c@d. 0

obey the integral equation of the type (51) with the inhomogeneous term
equal to ®5(¢)/(27¢ ?) and the kernel

=2

g et - = ]- = - S —
K(q1.q2) = K(q1. §2) — §fdﬂ 29 KB(q1.9) In 3:—2-1(?3(@, @),  (124)
1
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The action of the modified kernel on the Born eigenfunctions cj’f ) can be

calculated easily:

/d"" 290 K(q1.02) (%) = i};)— (xﬂ('rH %x‘”h)) ,
(125)

where ]
X)) =xM ) - x(MX'()- (126)

The anomalous dimensions 7. (as) = Yo(a,/w) + a,;71 (o, fw) of the twist-2
operators near point w = 0 are determined from the solution of the equation
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for 4 — 0. For the low orders of the perturbation theory we reproduce the
known results and predict the higher loop correction for w — 0:
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The results presented in this Section were obtained in Ref.[21]. They dif-
fer from the corresponding results of Ref.[24] because the results of [24] were
obtained for so called ”irreducible part” of the kernel and therefore are incom-
plete. After appearance of Ref.[21] the results obtained there were confirmed
in Ref. [25]. :

Finally, let us estimate the change of the maximal value of the anomalous
dimension 7. (a,) which is determined by the position of the extremum of
the function w(v) (127). In LLA this extremum is reached at v2_ . = 1/2
independently from a,. In NLLA, assuming the validity of the perturbative
expansion, we obtain :

1 Ne, RV _ 1, Na,
Tmer =25 T (PP 2

11
Ab L ahd HIuy 0(12)
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