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Abstract

Considered is the ionization cooling of muon beam in all three -
the longitudinal and two transverse — directions simultaneously in a
scheme, based on bent lithium lenses. An analysis of 3-dimensional
cooling is performed with the use of kinetic equation method. Re-
sults of solution for a concrete beam line are presented together with
computer simulation results. To create the dipole constituent of mag-
netic field in current-carrying rod a special configuration of the rod is
proposed.
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1 Introduction

As it was already shown [1,2,3], the ionization cooling 1s efficient for the
transverse beam emittances and not at all for the longitudinal one. The
natural longitudinal decrement is equal to a derivative of the mean rate of
ionization loss with respect to the particle energy. In a region of logarithmic
grow of loss rate the magnitude of this derivative does not exceed 7% of
transverse decrement, whereas at momentum below ~ 400 MeV/c, where it
is negative, its absolute value grows fast with energy decrease and becomes
of the order of 6, at pec ~ 100 MeV, thus resulting in a strong heating of
longitudinal emittance instead of cooling.

“Meanwhile, to arrive in a limit at minimum 6-dimensional emittance of
cooled beam, the summary decrement dy = 28, + §) is to be about equally
divided between all three directions [2].

Besides that, with no efficient cooling of longitudinal emittance, the en-
ergy spread in a beam is growing, and chromatic aberration in a lens, match-
ing the amplitude functions of low-beta focus at slowing target and that
of rather long-wave accelerator unit, leads to sufficient increase in transverse
emittance, which puts a lower limit to its minimum value, achievable without
an efficient cooling in longitudinal direction. -

Thus, the violent redistribution of summary decrement between the trans-
verse and longitudinal degrees of freedom has to be fulfilled in a scheme for
ionization cooling by way of creation of transverse gradient of energy loss
rate, correlated with dispersion function.




2 Kinetic equation and three-dimensional
cooling analysis '

Kinetic equation for ionization cooling of muons [1] in three-dimensional case
is convenient to be written in cylindrical coordinates R, ¢, z with ¢ taken as
independent varable:
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Here Ry stands for a beam line curvature radius, while r = R — Rp — for
the radial coordinate of particle with respect to the beam axis, r and & are
two-dimensional vectors of transverse coordinate (r, z) and angle (,,0.), and
ec denotes an acceleration rate.

To extract the free radial motion we make a change of variables p =

P - Tﬁ??}—f and ¢, =6, — ¢ %, where ¢ is the coordinate dispersion function
while ¢’ is the angular one.? By that the derivatives % and R?T in above

equation just turn into % and 3.-3: , while derivative % transforms into a
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Being integrated — after change of variables — over spreads of energy and
longitudinal particle coordinate As = vAt, the equation (1) transforms into
one, describing the free transverse motion only, where from the differen-
tial equations for the mean square characteristics of free radial motion -
(p*),{p¥,) and (¥?) — are got in a form:
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2To be precise, the change of variables is to be p = r — ¢‘i‘—f - xAs and ¥y = 0 —
1,'5'%?5 — x'As to make an account for possible correlation between the radial coordinate

and angle and the longitudinal coordinate, which we neglect.
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Here s substitutes for ¢Ro, kr = k + 'f%ﬁ' with k = ﬁ%; dp stands for the

natural transverse decrement, dg = fﬁ* where ¢ denotes the mean rate of

energy loss, § = — (%‘E‘-' ~, while o?, stands for its mean square straggling,
101
g5 = (&ﬁi)im' The radial gradient of £ is presented by n, = %—gf,

Average value of £ is taken equal to the acceleration rate, £ =¢&p = ec.

In the right hand side of the third equation stands the mean square rate
of multiple Coulomb scattering in radial direction, expressed through the
characteristic energy Ej (~ 20 MeV) and radiation length Xo.

The equation for radial emittance, got with the use of system (2), reads:
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with 3, standing for radial betatron function.
The radial decrement is defined from this equation as:

)

and equilibrium emittance as:
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which, after substitutions made: EZ/Xo = 47Z(Z + 1)e*nL., do = -ﬁﬁ—, £o =

2nZe’n L; and '-Tft — 27\“2641’1('}’2 8 1), reads:
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Here . denotes the logarithmic factor in the mean square angle of multi-
ple Coulomb scattering, calculated for an effective depth of slowing medium
8, = -ﬂ};, while L; is the logarithmic factor in the mean rate of ionization

Epgg =

loss of energy, L; = ln% —2B% - 8.

As it is seen from (4), the equilibrium radial emittance gets an increase,
caused not only by the decrement reduction, but also by an influence of the
energy loss straggling. Amplified by square ratio of dispersion function to .



betatron one, this becomes significant for free radial motion and puts a limit
for dispersion function magnitude as follows:

s ﬁ\/(ﬁl_w_
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This means, for instance, § < 3, at particle momentum ~ 200 MeV/c. With
high value of field gradient (kR2 >> 1) the dispersion function is found as
Y = ru%, where H, denotes the bending field, while H,, — the maximum
focusing one ( Hm = m%), and rp is the aperture radius. When Hy ~ Ho
the above condition is easily satisfied.

To consider the longitudinal motion we integrate the equation (1) over
free transverse coordinates p and z and over angles ¥, and 0,. Having made
an account for velocity spread Av =v-vg = %%“"p—f and then omitting index
»(” in Ro and vg, one gets:
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In presence of radial gradient of £ it has a form: { = ¢(E)(1 + nr), which

after integration over p transforms into € = (§o +§'AE) (1 + mﬂ:%ﬁ), where
an account is made as well for dependence of mean rate of energy loss on

particle energy.
Let us also make an account for acceleration rate dependence on deviation
of particle longitudinal coordinate from the equilibrium one & = &g + g5 As.
The equations for mean square characteristics of longitudinal motion

AE?, AEAs andAs?, got from Eq.(5), read:

S8E7 | 9AE? [5' +éL (n+ %q)] + 2ec,AEAs = 0,
$BFEs 4 KFBs [+ 6% (1+%)] - 5B (k- %) +ectB?=0,  (6)
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From this system an equation for the longitudinal emittance
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e, = VAE? As? — AEAs ? is found in a form:
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where from the equilibrium emittance is defined as

"'Et
€Leq = mﬁz (7)

with &, being the longitudinal decrement,
w it ip S
s=€+al (1+3). ®)
and A, — an amplitude function for longitudinal motion, defined with expres-

sion: Eﬂ—:‘- = 58 4
In rather hypothetical approach of homogeneously distributed accelera-

tion rate this function is 3, = \/ £ (;15- — %), while in a real case, where the
1]

linear accelerator sections succeed the energy degraders (with small enough
pulsation of mean energy) the amplitude function is found as:

" - E’E[L_F.l_(l_.},z%)] 1 (9)
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Symbol X here stands for the ratio €o/ep, 1. A= .j‘—w tgpa, with A being

a wave length of accelerating voltage and ¢, — an acceleration phase (g0 =
e sin @,).

The equilibrium mean square energy spread, also for small enough pulsa-
tion of mean energy, is found as

Z

{Tl
AE?,, zat' (10)
! _

The longitudinal decrement (8) is composed of derivative £’ of the mean
rate of ionization loss with respect to the particle energy and of fraction
Aé = 8ot (n+ L), transferred from the radial direction. This fraction is not
equal zero even by = 0, i.e. with no gradient of energy loss rate, however,
the ratio }% ~ ;15, defining here the value of Ad, is to be much less than unity
to provide with a small value of transverse amplitude function g, ~ R/v.
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In a real beam line, where the dispersion function is not constant trough,
the free radial motion and the longitudinal one can not be easily separated
from each other. Their mutuel behavior is defined with a system of equations,

got from (1):
&(r?)

5t = 2(rer) =0,
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This is to be completed with an equation for the beam energy variation:
oE
s eeg = —&o.

The dispersion function’ and its derivative are found using the variables of
above system as: ¥ = pv(rAE)/{(AE?) and ¢/ = pv{0, AE)/{AE?).

The axial motion is described by equations, similar to the first three of
above system with R put infinitely large. Besides that, when it is not inde-
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pendent of radial motion, several more equations are to be added, describing
the correlations between them.

Out of above consideration there are left the single Coulomb scattering
by a large angle and the asymmetry of energy loss distribution around the
mean value, described by the Landau curve, while the first process is taken
into account in the Moliere distribution of scattering angle. The difference
of these two distributions from the Gaussian one is mostly observed at large
deviation of scattering angle or energy loss from the mean values, which takes
place rather seldom. Due to that these processes only slightly effect the mean
square parameters of a beam, but manifest themselves in the main in a loss
of particles by a finite acceptance of cooling channel. This is to be studied
with computer simulation.

3 The ultimate 6-dimensional emittance

Having obtained the analytic expressions for all equilibrium emittances, we
can now evaluate the ultimate value of 6-dimensional equilibrium emittance
552.] = €y eq€z,eq€1,eq> BChievable with the use of current-carrying rod focus,
and find the optimum correlation between the parameters, determining this
value,

An optimization is applied, first of all, to the rod radius rp and product
¥n* (n* = n+ &). With fixed magnitude of magnetic field at the rod surface,
restricted by a value of the order of 10 — 20 T [4], an achievable field gradient
is defined by the minimum available value of ro, restricted from below by
an evident relation r3 > (r?) = €reqfr + €:eq0.. If to denote with R;
a permissible ratio of ro to the r.m.s. transverse coordinate of particles,
R, = —& g a—:%, the ultimate value of rg is got, using (4), in a form:

i

me? (Z + 1)L
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Here m stands for the electron mass and @ — for the particle velocity in e
units. We have also supposed, that the decrease in transverse decrements in
favor of the longitudinal one is equally divided between both of them, and
that the dispersion function meets the condition of its smallness (see (4)).
An expression for ultimate value of transverse amplitude function by that



reads:
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With this expression used for transverse emittances definition, the equi-

librium 6-dimensional emittance appears to be inversely proportional to a
‘ 3 r - + L L] -

product (1 - ﬂg_) (ﬂ;ﬂ* + g;) . It is to be maximized to minimize the 6-

emittance, which defines the optimum value of ¥7* as:

and the decrements as:

T gam 6, = 16
where é_ = 26y + £’ denotes the summary decrement.

The optimum longitudinal decrement here occurs to be by 1.5 times less
than the transverse ones, whereas in the case, where the ultimate value of
betatron function is independent of the transverse emittance magnitude, the
optimum values of decrements are equal each other §, =4, =4, = %55.

With all substitutions made the ultimate value of normalized 6-dimensional

. 6 a3 3
emittance, defined as ffule — %—fr}uufhuhfh“u, is found equal:

(@ _16( R \'m*(Z+1)° (L)
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At low enough particle momenta the sum 1+ %g:: is equal to 2 (1 4 f—) :

This compensates a high degree dependence on particle velocity in (12}, so
- : (*+1)y3

that the energy dependent factor in reality appears to be v ey Near

its minimum, at pc = IQGM eV/c, the value of EE_E? 18 estimated as

] 2 =
6) . Rt A 3
EE‘HFN ] 4100 (Fﬂ:) — cm
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with H,. to be taken in Tesla, A — in cm and egeq — in MeV/em. Denoted
with —— here is an expression from square brackets in (12),

(-1 §

1 1 1 Y
=—+—(1-9"5]).
CEeff €Ey &] ( ¢ R)
Second term in the sum may be neglected in most practical cases. Its contri-

bution to fﬂ’ ~ at pe ~ 100 MeV is about equal to 20% when the acceleration

rate is ~ 1 MeV/cm.

The numerical result strongly depends on a considered reliable ratio of
rod radius to the r.m.s. size of a beam. For Ry = 2.5 (ro = 3.50,) by

H,, 210, A= 1.6 (A =10 cm, tg @, 2 1) and ego = 1, the ultimate value of

6-dimensional normalized emittance fiﬁlgl w is got equal to ~ 1.2-107° em?.

At particle momentum 200 MeV /c and with more moderate accelerator

parameters — A = 5 cm and ecesr = 0.5 MeV /cm - this value is: £$1, N~

4.0-10"%cm?.
Now we are to define, how close can we approach to above values.

4 Beam line for 3-d cooling

The first problem for such a beam line consists in organizing the proper ex-

" change of cooling rates in a real scheme. A creation of transverse gradient of

electron density in conductor without a disturbance of conductivity homo-
geneity looks rather problematic, while with no gradient of n. the value of
Yn* = % & L can satisfy the condition of efficient transfer of decrements
only by a small value of v, inconsistent with small betatron function. Re-
ally, with »2 = 1+ kR? = %‘:}L%, the value of ¥n* is of the order of 0.1 by
Ho ~ H,, and R being by the order larger than ro. This is far {rom opti-
mum even by £ = 0 and does not compensate the negative contribution to
longitudinal decrement from &' at momentum below ~ 300 MeV /c.

A solution may be found in insertion of wedges with higher electron den-
sity between the bent sections of current-carrying rod. If a length of bent
section is I, and a wedge length (by the bottom) — Al, this is equivalent

to creation of an effective density gradient, whose relative value is found as

follows:
(1 dne) jor § ne,, Al
Neff = | —
eff

ne dr = ro 2n., +Aln.,
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A choice of material for wedges is restricted by a necessity of low nuclear
number, because an effective value of Z sufficiently depends on Z,,:

Zoft = Z1i + Nesito (2w — Zii) .

At optimum yYn.g by Ho ~ H,, and p < 300MeV/c this means Z.g >
%{Zw + Zi;). Among pure elements the beryllium and carbon seem to be
practically the only candidates.

Insertion of wedges violates the homogeneity of current-carrying rod focus.
This restricts the stability region as jr < % <+ 1)w - ﬂarctg%% and
creates the betatron functions modulation, resulting in an increase of the
maximum beam size. The rod radius is to be also increased, which means
the field gradient reduction and the equilibrium emittance enlargement. This
puts a limitation to the ratio Al/l, whose value practically can not be taken
sufficiently more than ~ 0.2, and thus the product ¥n.g still remains far from
optimum.

The next step consists in amplifying the effect of wedges in a way of in-
crease of dispersion function value at them. This i1s achieved when between
two subsequent wedges the beam gets a parallel shift by means of two subse-

quent deflections trough the same angle ¢ in opposite directions (see fig. 1).

N
ARESN

Figure 1:
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In this case the dispersion function at wedges has its maximums by abso-
lute value, equal to ¥, = & | (1 ~ cosvgg)/ cosvéo |. When phase advance
v¢g is chosen between m/2 and , the value of ¥, appears to be several times
larger than the average value in rods | ¥ | = R/v?.

With wedges made of beryllium and v¢o = %w, the value of Al/l for
optimum ¥1eg by Ho ~ Hy, is estimated equal to ~ 0.14 at beam momentum
200 MeV/c. When Hg < Hy, the value of Al/l for optimum 91 is enlarged
in proportionality with Hy, /Hp.

The bending field Hy in figure 1 is supposed to be the external one,
produced by a special dipole. However, it can be produced in a rod itself,
and two possibilities are presented below how to fulfill this.

The first, the evident one, consists in a use of a rod of enlarged cross
section with the central trajectory of particle beam being shifted from the
central line of the rod in direction out of the bend center (see fig. 2). The
dipole field is proportional to a shift magnitude, Ho = &r%f,i. To get it equal
to the maximum focusing field H,, the shift is to be equal to a half of the
rod radius, which in this case has to be two times larger than ro in figure 1.
Simultaneously two times higher has to be the field at rod surface and four
times — the current. Besides that, the skin-depth has also to be enlarged by
two times, which means four times more current pulse duration.

The current is higher by ~ 3 times only and pulse duration conserves its
initial value when the enlarged rod has an elliptic cross section with the big
half-axle (directed along R) equal to ~ 2rp and the small one, defining the
necessary skin-depth value, — to ~ ro. A demerit here (not the crucial one!)
consists in the different magnitudes of radial and axial field gradients, that
is, as well, of k, v and phase advance v¢o. This narrows a choice of the last
value, and aggravates an asymmetry between the radial and axial cooling.

Second option is presented in fig. 3. The rod of enlarged radius here is
composed of two insulated from each other conductors, supplied with cur-
rents of opposite direction. The first conductor is a lithium rod of radius ry,
placed inside the enlarged rod and shifted from its central line in direction to
the bend center. The residual part of enlarged rod represents the second con-
ductor, producing inside the first one a homogeneous dipole field of defined
above value.

To get equal values of dipole and focusing fields by the same current den-
sities in both conductors, the current through the inner rod has to be by three
times less than that through the outer one. Meanwhile, it is important to
supply the conductors in series, and to achieve this the inner rod is connected

13
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to a cylindrical envelope, which shunts two thirds of the current. Skin-depth
in this case is also defined by value of rg.

A choice between two above options is defined as by technology prob-
lems as by geometry aspect. The first one, though comparatively simple in
technology, does not look adequate the problem for sufficiently large beam
emittance so that the diameter of conductor is comparable with the length,
while in the second the current commutation problem is a complicated one

[5].

5 Some results of cooling calculation and
simulation

Figure 4 presents the cooling of 200 MeV /c muons in a beam line, composed
of degrader units (see fig. 1), separated with linear accelerator sections,
compensating the mean lost energy. The beam focusing by acceleration is
considered to be the ideal one: the betatron phase advance between two
degrader sections is equal to = for all particles, and the paraxial approach is
valid for particle motion in accelerator.

The curves 1 and 2 show accordingly the radial and axial normalized
emittances in cm-MeV/c and 3 — the longitudinal one in cm-MeV versus the
number of degrader-accelerator cells. The thin lines present the numerical
solution of equations (11), while the thick ones — the result of simulation with
Moliere distribution used for probability of the Coulomb scattering angle and
Vavilov distribution — for that of the energy loss.

Dashed line shows the ratio R; of rod radius to the maximum r.m.s. beam,
got from the numerical solution, while the dashed squares at figure bottom
show the particles (from 100 initial) found lost by the simulation.

Close to constant value of Ry ~ 2.5, is provided through a gradual re-
ducing of rod radius with cooling — by 2% per cell. The initial value of rp is
~ 0.8 cmn, the final — ~ 0.35 cm. Simultaneously with rod radius, its length
is also decreased in proportionality with 1/, to keep constant the phase ad-
vance value vgo = Zm. The wedge length is kept equal to 0.12 of lithium
rod length, Al/l = 0.12. The energy loss per cell is about 30MeV in the
beginning and about 20 MeV in the end. Both the dipole and maximum
focusing fields are equal to 10 T.

The acceleration rate eeg is taken equal to 0.5 MeV/cm, and A to 5 cm.
The initial r.m.s. momentum spread is +4.5% and longitudinal coordinate -
+1 cm,

15
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The magnitude of 6-dimensional equilibrium emittance got in the end
of 40-cells cooling is equal to ~ 4.5 - 10~°cm® in a good accordance with
estimation (12). -

The final radial emittance appears to be by more than two times larger
than the axial one, which proves that more than half of radial decrement is
transferred to the longitudinal direction. The initial longitudinal emittance
is close to the equilibrium value and thus only slightly decreases with cooling.

The effective cooling rate for radial emittance may be characterized by the
square of rod radius reduction, that is by a value of ~ 4% per cell. Comparing
this with the radial decrement one needs to notice, that emittance reduction
by cooling is defined as %% > -4, (1- f—ii), which becomes sufficiently less
in absolute value than —4, when emittance is close to the equilibrium value.

To avoid a significant difference in equilibrium values of radial and axial
emittances by a close to optimum transfer of decrement to the longitudi-
nal direction, the degrader units can be turned around the longitudinal axis
through 90° several times over length of cooling. Figure 5 shows the result of
such a procedure, performed after each eight cells. Close each other magni-

tudes of ¢, and ¢, are got practically without a loss in the final phase density.

6 Reprise

Presented in fig. 6 for a comparison, there is a result of cooling calculation
by the same fields, initial emittances, accelerator parameters and R; value,
as in fig. 4, but without the wedges. Both transverse emittances in this
case are close in magnitude to the axial one in fig. 4, but the longitudinal
emittance is fast growing with length of cooling system. By a finite number
of cells considered, there is not a big loss in 6-dimensional phase density.
An increase in the normalized 6-d emittance, as compared to that in fig. 4,
is described by a factor of ~ 1.5 — 2. However, the longitudinal emittance
growth by ~ 3 times can hardly be considered acceptable with taken into
account the finite size of accelerator separatrix and chromatic aberration in a
lens, matching the amplitude functions in slowing medium and in accelerator.

An increase in transverse beam emittance, caused by chromatic aberra-
tion, is described as:
1 Bace (AE?)
2 Bu (pv)?

As far as caused by cooling reduction of transverse emittance is estimated as

17

&EJ_/E_L =



] ] L,

: c 10 20 0 4
1 ) L | - — =
§ Figure 6:
Figure 5:
- 19

18



being equal to several percents per cell, the magnitude of Aey /e in above
expression is to be of the order of or less than ~ 1%. This puts rather severe
restrictions to the mean square energy spread in a muon beam and to a focal
distance of matching lens.

With r.m.s. momentum spread, kept equal to ~ +4.5%, the one-percent
value of aberrational increase in transverse emittance is achieved by the be-
tatron functions ratio L"*f equal to ~ 10. The value of 3, in our case is
~ 2 cm, thus the B,c. has to be equal to ~ 20 cm, and the focal distance of

matching lens f = V' Bsi1 Bace — to ~ 6 cm.
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