Sherian Branch of Russian Academy of Science
BLUDKER INSTITUTE OF NUCLEAR PHYSICS

kd
SGG

ILA. Gaponenko, A.A. Salnikov

v

INFORMATION MANAGEMENT SYSTEM
FOR SND EXPERIMENT

Budker INP 98-39

hitp://www.inp.nsk.su/publications

NWIHOTEKA i
B srvra sacouel

. i
g €0 Al Eﬂi
| H H_Jff;gaégg ;

Novosibirsk
1998

Information management system
for SND experiment

I.A. Gaponenko and A.A. Salnikow

Budker Institute of Nuclear Physics SB RAS
630090 Novosibirsk, Russia

Abstract

This preprint describes the information management system de-
signed for the on-line system of SND experiment. It was built with
the client-server model, optimized for the access time, and comprises a
vital part of the DAQ. We present here basic design issues, program-
ming interface together with some examples. The system was used
successfully in the DAQ of the SND and CMD-2 experiments.

(O Budker Institute of Nuclear Physics SB RAS

1 Introduction

The idea of IMAN? appeared during the development of the on-line system of
the SND experiment[1]. The processes comprising the on-line system needed
to exchange the information at the rate different from the event processing
rate, this information is basically an “environment” of the data taking and
processing (beam conditions, rates, luminosity, etc.) Access to this informa-
tion should be extremely fast, ideally without any impact on the data taking.
Starting with these requirements the information system called IMAN was
designed and implemented. Below we describe the system in details, includ-
ing its architecture, short description of the client-side API, and also give
some primitive examples of the code using this library.

2 Architecture overview

IMAN is built using the client-server model and therefore consists of two
parts — server and client library. The server is a stand-alone process running
under the contral of VMS operating system, serving the requests from other
processes (clients). The communication part of IMAN supports two trans-
ports between the server and client processes — VMS mailboxes and socket
library (TCP/IP). This provides the maximum access speed for the clients
running on the same host as the server process, and also supports clients run-
ning at the remote hosts. See figure 1 for the sketch of the interconnections
between different processes.

IThe name IMAN can be though as the abbreviation of “information management”.

3

Information in the server is stored in the memory segment which is mapped
to the file on disk (see figure 2.) This memory segment holds all information
in the position-independent form, allowing mapping of the file content at any
address in the server’s address space. The control over the memory in this
segment is performed with the original position-independent memory alloca-
tion scheme. Paging mechanism of VMS provides low overhead for saving
information together with high reliability. Thus server is able to access all
information very fast without the complicated file access methods.

The backup scheme for the data was designed and implemented using the
same paging mechanism and memory allocation scheme, and is also extremely
fast. It produces the exact copies of the data, which can be reused in the
case of the program or computer crashes. Backups are made periodically, at
the moments when the system’s load is low, and practically do not disturb
the normal operation of the whole system.

Information in server is stored in the native VAX/VMS formats for the in-
teger and floating point numbers. When the data are sent across the network
the integer numbers are converted to the “network byte ordering”, client part
of the library converts these data in the client’s native format. Floating point
numbers are sent in the VAX/VMS representation, and also converted into
the client’s native format by the special architecture-dependent functions in
the client library.

To simplify data exchange algorithm and further increase the exchange
speed, the amount of data passing between the client and server is limited
to 2048 bytes. This limits the amount of the data which the items may
contain. The sum of the domain name length, item name length and the
item data should be less than 2040 bytes (some bytes are spared to the
control information.)

3 Information inside IMAN

IMAN allows storage and further retrieval of small pieces of information.
Each such piece is referred later in this paper as “item” and has some es-
sential characteristics — name, type and length. Items are grouped together
in domains — named collections of items — which have only one characteris-
tic, the name. Each item belongs exactly to one domain, so every item has
unique path consisting of domain name and item name (see figure 3.) For
example, domain named “STATUS” can have items “MAGNETIC FIELD”,
“CURRENTS”, “LUMINOSITY”, etc.

TCP/IP

“"}. A0 '.'::“'-‘.i-.:?':?.‘;- e . ¥ e M
TCP/IP

i

e R
%‘\#ﬂ&\\\\\\\%ﬂ%&&&&u

VAXIVMS

Figure 1: Sketch of the client-server model and the connection using two
different transports.

Server process address space
Program code Program data Mapped memory

segment
MOV R6,RO i = 19665,

-0 | "
CALL XdgR fname = “iman™;

,,,,,,,,,,, T

File on disk| (el el = }={] |

Figure 2: Mapping of the server address space onto the disk file using
VAX/VMS paging scheme.

——{(Doman T)——{(fem)
-—[Emain&} { ltem 1]
_(Pomain3 }——(fem 1)

Figure 3: Hierarchy of the information storage in the IMAN.

3.1 Names for items and domains

All names in IMAN can be maximum 255 symbols long, all characters, except
NUL, are considered legal, upper and lower case letters are different (as they
truly are). Name, before it goes to IMAN server, is translated applying
certain rules:

1. All TABs and newline characters are substituted with blanks
2. Leading and trailing blanks are removed
3. Multiple subsequent blanks inside name are replaced with one blank

Thus in FORTRAN program the names ’Some item’ and > Some item g
will be considered equivalent. Although any control characters are legal in
names, it could be wiser to avoid their usage in names for simple reason that
printing of such names can give amusing results for the unskilled users.

3.2 Item type's

The type of item defines what kind of information you store and receive for
this item. Ttem type can be one of the following®:

2The types were defined for the present-day 32-bits computers and, generally speaking,
are not portable.

CHAR This type stores symbolic information such as FORTRAN CHARAC-
TER’s or C strings.

BYTE ForrraN BYTE or C char.

SHORT ForTraN INTEGER*2 type or C short.
LONG ForTrRAN INTEGER*4 type or C long.
INT ForTraN INTEGER type or C int.

REAL ForTRAN REAL*4 type or C float.
DOUBLE ForTRAN REAL*8 type or C double.

The type of the item is specified at creation time and cannot be changed
until this item is deleted and recreated again. -

3.3 Item length

The item can be not only a single element of above type but also an array. The
item length specifies how many elements of given type are there in the item.
For instance, item of type INT and length 5 can store array of 5 INTEGER’s
in FORTRAN. Items of all types, except CHAR, have fixed length, this means
that length of the item is specified at creation time and cannot be changed
later. Items of type CHAR have floating length, this means thaf the length
of the item changes with data stored in it. When storing data for the items
of type CHAR, trailing blanks are stripped. Thus length of the CHAR type
item may not have the same length as character variable which you specify
when storing item data. For example, if a character variable with length
grater than 1 has all blanks except the first non-blank character, only this
first character will be stored and resulting item length will be 1.

Information for items is always stored or retrieved in one piece, you cannot
change or get one element of the lengthy item.

4 TIMAN client library

IMAN client library consists of the number of functions which perform basic
operations with items and domains, such as creation and deleting of domains
and items, storing and retrieving item data and querying item type and
length. Following sections describe this functions in details.

Functions in client library can be divided in two groups:

7

1. For “everyday” use. These functions operate with existing items and

domains and perform such operations as changing item data, retrieving
item data, changing current domain. These functions are:

TMAN Putltem
Change item data. Changes data stored with specified item.

IMAN _Getltem
Get item data. Retrieves data stored with specified item.

IMAN _GetItemType
Get item type and length. Returns type and length for specified
item.

IMAN _SetDomain (VAX/VMS only)

Set current domain. All operations on items are performed for
domain set with this function. If you did not set domain any
operation on item will result in IMAN_SETDOM error code (see
Appendix A.)

. Rarely used functions. These functions perform management opera-
tions such as creation and deletion of domains and items, receiving list
of existing items and domains. These functions are as well available for
users but they are also gathered in simple management task IMAM,
which is built on top of the client library and has well-defined user
interface and built-in help. See Appendix 5. These functions are:

IMAN CreateDomain
Create domain. Creates one empty domain with specified name.

IMAN Createltem
Create item. Creates item in current domain and specifies its
name, type, length and data it contains.

IMAN DeleteDomain
Delete domain. Deletes specified domain and all items in it.

IMAN Deleteltem
Delete item. Deletes specified item in current domain.

4.1 Client library on VAX /VMS.
4.1.1 Linking.
To gain access to the client functions you should link to the client library

~ and, optionally, to the file with messages for the VAX/VMS error handling

facility. Client library is a shareable image and resides in directory pointed
by logical name IMAN. So to link against IMAN library you should create
option file for the linker and place reference to shareable image and message
file like in example below.

$ EDIT LINK.OPT

IMAN: IMAN_MSGS.0BJ ! IMAN message file, optiomal
IMAN:IMAN_SHARE/SHARE ! IMAN shareable library

~Z

* EXIT

$ LINK SOME_OTHER_STUFF,LINK.OPT/OPT

You can also use existing option file with contents just as in example
above, which resides in IMAN directory. In this case you can type

$ LINK SOME_OTHER_STUFF, IMAN:IMAN.OPT/OPT

4.1.2 Checking for errors.

Most functions in IMAN library return condition values which conform to
VMS programming standards and specifies whether this function finished
successfully or not. In latter case you can also retrieve information about
error occurred in function call. Condition values returned by the library
functions are defined in the files IMAN: IMANDEF . FOR for FORTRAN programs
and IMAN:IMANDEF.H for C/C++ programs. All condition values returned
by the library functions are described in details in Appendix A.

You can also retrieve the message describing error in standard VMS
way with functions 1ib$signal () or sys$getmsg(), this requires including
IMAN message file IMAN : IMAN_MSGS . OBJ during linking procedure. 1 strongly
recommend for programmers to test the condition value réturned after each
call like in example below:

integer *4 stat
integer *4 IMAN GetItem

stat = IMAN _GetItem (’Some item’, data)
if (.not. stat) call lib$signal (%val(stat))

g

4.1.3 IMAN functions.

~ In this section all functions of the IMAN client library are described in al-

phabetic order. For each function its calling sequence in VMS format and
FORTRAN format, types of parameters and possible return codes are pre-
sented.

IMAN _BeginBatching

Sets batching mode of communication.

VMS format:
TMAN BeginBatching

Fortran interface:
CALL IMAN BeginBatching

Description:

In default operating mode the client closes connection to server after
each call to client routine. This produces some overhead for open-
ing connection again before next call. It simplifies programming but
can be unwise when an application performs many operations with the
database. This routine changes behavior of the communication part so
shat it will not close connection before return to the user and client re-
mains connected to the server until explicitly detached with the routine
IMAN _EndBatching.

IMAN _CreateDomain

Creates one new empty info domain with the specified name.

VMS format:

IMAN CreateDomain domain

Arguments:

domain

type: character string
access: read only
mechanism: by descriptor - fixed length

This argument specifies name of the domain to be created.
10

Fortran interface:

INTEGER *4 STAT

CHARACTER =*(*) DOMAIN

INTEGER *4 IMAN CreateDomain

STAT = IMAN_CreateDomain (DOMAIN)

Return codes:

IMAN _SUCCESS
Successful completion.

IMAN_TOOLONG
Name specified is too long.

IMAN _DOMEXIST
Domain with such name already exists.

IMAN_SERVMEM
IMAN _PROTOCOL
IMAN_SERVERBUG

IMAN_BUG
See Appendix A for description of this errors.

IMAN _Createltem
Creates new info item with specified type and length in current domain.

VMS format:
IMAN Createltem item, type, length, data

Arguments:

item

type: character string
access: read only
mechanism: by descriptor - fixed length

This argument specifies the name of the item to be created.

11

- | TMAN_SETDOM

type: character string o . -
i n to
access: read only Current domain is not set yet. Use function IMAN _SetDomai

mechanism: by descriptor - fixed length establish current domain.

This argument specifies the type of the item to be created. See IMAN_NODOMAIN

section "Item types” about possible item types. | Current domain does not exist.
length IMAN_TOOLONG

type: longword E Specified data or name are too long.

access: read only IMAN _ITEMEXIST

mechanism: by reference ‘

: : ; . Item with such name already exists.
This argument specifies length of the item in units of item type. It

is ignored for the item type "CHAR” but must be specified (any IMAN _SERVMEM
number). Item length for the type "CHAR” is determined by the IMAN_PROTOCOL
]Eﬂgth Uf the Stri'ﬂg }"U'll Spﬂ‘ﬂify to store With thE itEIIl. SEE SBC‘EiUIl MANSERVERBUG
"Ttem 1 h” also. '
R iai IMAN _BUG
data

See Appendix A for description of this errors.
type: unspecified ;

access: read only

mechanism: by reference IMAN DeleteDomain
This argument declares the initial data stored with the item. For
the type "CHAR” this argument should be fixed-length descrip-
tor, for other types - address of array or single element of the VMS format:
corresponding type.

Deletes specified domain and all items in it.

IMAN DeleteDomain domain
Fortran interface:

Arguments:
INTEGER *4 STAT domain
CHARACTER *(*) ITEM type: character string
CHARACTER *(*) TYPE ' access: read only
IHTEgﬁg.ALENGm mechanism: by descriptor - fixed length
B i T Gkt e To This argument specifies name of the domain t‘s::a be deleted.
STAT=IMAN_CreateItem(ITEM,TYPE,LENGTH,DATA) Fortran interface:
Return codes: . INTEGER *4 STAT
CHARACTER *(*) DOMAIN :
IMAN SUCCESS . , INTEGER *4 IMAN_DeleteDomain
Successful completion. STAT = IMAN_DeleteDomain (DOMAIN)

12
13

Return codes: IMAN _SUCCESS

IMAN _SUCCESS Successful completion.
Successful completion. IMAN_SETDOM

IMAN _TOOLONG Current domain is not set yet. Use function IMAN_SetDomain to

s establish current domain.
Name specified is too long,
IMAN_NODOMAIN

IMAN_NODOMAIN
Domain with such name does not exist. Current domain does not, exist.
IMAN_PROTOCOL : i g
Specified item name is too long.
IMAN SERVERBUG
IMAN_BUG IMAN_N O_ITEM
See Appendix A for description of this errors. Iteny'with such name does ot exist.
IMAN_PROTOCOL
IMAN_SERVERBUG
IMAN Deleteltem IMAN BUG
Deletes specified info item in the current domain. See Appendix A for description of this errors.
VMS format:
IMAN Deleteltem item ' IMAN _EndBatching
Arguments: Resets batching mode of communication.
item VMS format:
type: character string IMAN EndBatching
IR St nosy - Fortran interface:

mechanism: by descriptor - fixed length

This argument specifies name of the item to be deleted. CALL IMAN_EndBatching

Fortran interface:

INTEGER #4 STAT Description:
CHARACTER *(*) ITEM This routine cancels the effect of the IMAN_BeginBatching routine and
INTEGER *4 IMAN _Deleteltem closes connection with the server.

STAT = IMAN_Deleteltem (ITEM)
IMAN_GetItem

Return codes: Retrieves information stored in the item.

14 15

VMS format:
IMAN Getltem item, data

Arguments:

item

type: character string

access: read only

mechanism: by descriptor - fixed length

This argument specifies the name of the item.
data

type: unspecified
access: write only
mechanism: by reference

This argument receives data stored with the item. For the type
“CHAR” this argument should be address of fixed-length descrip-
tor, for other types - address of array or single element of the
corresponding type.

Fortran interface:

INTEGER *4 STAT
CHARACTER *(*) ITEM
. DATA
INTEGER *4 IMAN_GetItem
STAT=IMAN_GetItem(ITEM,DATA)

Return codes:

IMAN_SUCCESS
Successful completion.

IMAN_SETDOM

Current domain is not set yet. Use function IMAN _SetDomain to
establish current domain.

IMAN_NODOMAIN
Current domain does not exist.

16

IMAN _NOITEM

Item with such name does not exist.
IMAN_TOOLONG

Specified name is too long.
IMAN_TRUNC

Length of item exceeds user supplied character variable length.
Result is truncated.

IMAN_PROTOCOL
IMAN_SERVERBUG

IMAN_BUG
See Appendix A for description of this errors.

IMAN _GetltemType
Returns type and length of the specified item.

VMS format:
IMAN GetItemType item, type, length

Arguments:

item
type: character string
access: read only
mechanism: by descriptor - fixed length
This argument specifies name of the item.
type
type: character string
access: write only
mechanism: by descriptor - fixed length :
This argument receives type of the item. See section "Item types”
about possible item types.

length

type: longword
access: write only
mechanism: by reference

This argument receives length of the item in units of the item type.
17

Fortran interface:

INTEGER *4 STAT

CHARACTER *(*) ITEM

CHARACTER *(*) TYPE

INTEGER LENGTH

INTEGER #*4 IMAN_GetItemType
STAT=IMAN_GetItemType(ITEM, TYPE,LENGTH)

Return codes:

IMAN SUCCESS
Successful completion.

IMAN_SETDOM

Current domain is not set yet. Use function IMAN _SetDomain to
establish current domain. :

IMAN_NODOMAIN

Current domain does not exist.
IMAN NOITEM

Item with such name does not exist.
IMAN_TOOLONG

Specified name ig too long.
IMAN_TRUNC

Length of item type string exceeds user supplied character variable
length. Result is truncated.

IMAN_PROTOCOL
IMAN SERVERBUG
IMAN_BUG
See Appendix A for description of this errors.

IMAN _ListDomains

Lists all existing domalns.

VMS format:

IMAN ListDomains context, domain, retlen

18

Arguments:

context
type: longword
access: read-write
mechanism: by reference
This argument specifies a list operation context value. Before jﬁrs‘t
call to the routine it must be set to zero. After each call it 18
updated and should not be changed by the user.

domain
type: character string
access: write only
mechanism: by descriptor - fixed length
This argument receives name of the domain.

retlen
type: longword
access: write only
mechanism: by reference
This argument receives length of the domain name.

Fortran interface:

INTEGER *4 STAT

INTEGER CONTEXT

CHARACTER (=) DOMAIN

INTEGER RETLEN

INTEGER *4 IMAN ListDomains

STAT=IMAN_ ListDomains (QBHTEIT ,DOMAIN,RETLEN)

Description:

This routine returns names of the existing domains. It should be called
repeatedly to receive names consequently. Before first ca_all to the rou-
tine context variable must be set to zero. When routine finds next
domain name it returns code IMAN_SUCCESS and updats-:s the con-
text variable. When there are no more domains to list routine returns
code IMAN NOMORE, empty domain name and zero RETLED'I. Xi'nu
can zero the context variable to reset search context 0 the beginning
of domains list at any time.

19

retlen
Return codes: type: longword
_ access: write only
IMAN _SUCCESS mechanism: by reference
Successful completion. This argument receives length of item name.
o il Fort interface
i :
Successful completion. No more domains in the list. —
IMAN_TRUNC INTEGER *4 STAT
Length of domain name string exceeds user supplied character - INTEGER CONTEXT
variable length. Result is truncated. | CHARACTER *(*) ITEM
IMAN_PROTOCOL INTEGER RETLEN
: INTEGER *4 IMAN ListItems
IMAN SERVERBUG STAT=IMAN_ListItems (CONTEXT,ITEM,RETLEN)
IMAN_BUG
See Appendix A for description of this errors.
Description:

This routine returns names of existing items in the current domain.

IMAN ListItems .
It should be called repeatedly to receive consequent names. Before
Lists all existing items in the current domain. first call to the routine the context variable must be set to zero. When
routine finds next item name it returns code IMAN_SUCCESS and updates
VMS format: ' the context variable. When there are no more items to list routine
IMAN ListItems context, item, retlen returns code IMAN NOMORE, empty item name and zero RETLEN. You
can zero the context variable to reset search context to the beginning
Arguments | of items list at any time.
context Return codes:
type: longword
access: read-write IMAN_SUCCESS
mechanigsm: by reference Successful completion.
This argument specifies a list operation context. Before first call ' IMAN_NOMORE
to the routine it must be set to zero. After each call it is updated Successful completion. No more items in list.
' and should not be changed by the user. AN TRENG
e | j Length of item name exceeds user supplied character variable
type: character string | length. Result is truncated.
access: write only
IMAN_SETDOM

mechanism: by descriptor - fixed length

This argument receives name of item. Current domain is not set yet. Use function IMAN _SetDomain to

establish current domain.
21
20

IMAN NODOMAIN
Current domain does not exist.

Return codes:

IMAN_TOOLONG IMAN SUCCESS
Specified name is too long. Successful completion.
IMAN_PROTOCOL IMAN_SETDOM
IMAN_SERVERBUG Current domain is not set yet. Use function IMAN _SetDomain to
IMAN_BUG establish current domain.
See Appendix A for description of this errors. IMAN NODOMAIN
N Current domain does not exist.
IMAN Putltem IMAN_NOITEM
Changes information stored in the item. Item with such name does not exist.
VMS format: IMAN_TOOLONG

Sk Specified name or data are too long.
IMAN PutItem item,data

IMAN_PROTOCOL
Argument_s: AR B
item IMAN _SERVMEM
type: character string IMAN BUG

access: read only

mechanism: by descriptor - fixed length

This argument specifies the name of the item.
- IMAN _SetDomain

type: unspecified
access: read only

See Appendix A for description of this errors.

Sets current domain.

mechanism: by reference |

This argument specifies a new data to store with the item. For
the type “CHAR?” this argument should be an address of the ﬁ?ced—
length descriptor, for other types - address of the array or single
element of the corresponding type.

Fortran interface:

INTEGER *4 STAT

CHARACTER *(%) ITEM

. ve-DATA "

INTEGER %4 IMAN_PutItem
STAT=IMAN_ PutItem(ITEM,DATA)

22

VMS format:
IMAN SetDomain domain

Arguments

domain

type: character string
access: read only
mechanism: by descriptor - fixed length

This argument gpecifies name of current domain.

Fortran interface:

23

INTEGER *4 STAT

CHARACTER *(*) DOMAIN
INTEGER *4 IMAN_SetDomain
STAT=IMAN_SetDomain (DOMAIN)

Description:

This routine sets a current domain name. It does not check if such
domain exists, so if you set non-existing domain name you will get
return code IMAN_SETDOM later from calls to the routines which operate
on items.

Return codes:

IMAN _SUCCESS
Successful completion.

IMAN_TOOLONG
Specified name is too long.

4.2 C(Client library on UNIX.
4.2.1 Differences from VAX/VMS library.

The library for UNIX was implemented in C language, and can be used in
C or C++ only. The names of the routines are basically the same, but the
format of the data is changed, for example FORTRAN strings are replaced
with the C strings.

Contrary to the VMS library, UNIX version requires manual connection to
the server with the IMAN_Connect function. Almost all functions performing
data exchange with the server require also so called “connection id” obtained
from the IMAN _Connect call, which is a standard C file descriptor.

Another difference consists in the absence of the IMAN_SetDomain function
in the UNIX library. Instead, the domain name must be specified in each
function call requiring this information.

4.2.2 Linking. :
To gain access to the client functions you should link to client library in the
following way:

€C =Limandir -liman ...

24

where imandir is the path name of the directory where the libiman.a
file resides.
4.2.3 Checking for errors.

Most functions in IMAN library on UNIX return condition value, which are
listed in the imandef . h include file. We strongly recommend for programmers

to test the condition value returned after each call like in example below:

#include "imandef.h"
int stat ;

stat = IMAN GetItem (fd, "Domain", "Some item", data) :
if (stat) {
/* error condition occurred */

¥

4.2.4 IMAN functions.

In this section all functions of the IMAN client library are described in al-
phabetic order. For each function its calling sequence, types of parameters
and possible return codes are presented.

IMAN_Connect

This function establishes a connection between client and server processes
and returns a file descriptor for this connection.

Interface:

int IMAN Connect(comnst char* host, int port);

Arguments:

host zero-terminated character string, read only
This argument specifies name of the host on which server is run-
ning.

port integer number, read only

This argument specifies the port number at which server is ex-
pecting connections from clients.

Calling example:
25

int fd;
fd = IMAN_Connect ("vxsnd", 5234) ;
it (fda <0) 4

/% error condition */

}

Return values:

This function returns a file descriptor for the connection with the server
process, which is a positive number. In the case when connection to
gserver fails, it returns a negative number, one of the following codes
(defined in imandef .h file):

IMAN _SERVERHOST
Error while resolving server host name.

IMAN _SOCKET
Error while creating TCP /IP family socket.

IMAN_CONNECT

Error while trying to connect to server. Usually means that no
server is running or wrong port number.

IMAN _Close

Close connection to the server opened previously with the IMAN_Connect
function.

Interface:
int IMAN Close(int fdescr);

Arguments:

fdescr integer number, read only

This argument specifies the file descriptor for the connection opened
previously with the IMAN_Connect function.

Czlling example:

int stat;
stat = IMAN_Close (fd) ;

26

Return values:
This function always returns 0.

IMAN_CreateDomain
Creates one new empty info domain with the specified name.
Interface:

int IMAN CreateDomain(int fdescr, const char* domain) ;

Arguments:

fdescr integer number, read only

This argument specifies the file descriptor for the connection opened
previously with the IMAN _Connect function.

domain zero-terminated character string, read only
This argument specifies name of the domain to be created.

Calling example:

int stat;
stat = IMAN_CreateDomain (fd, "Domain") ;

Return codes:

IMAN_SUCCESS
Successful completion.

IMAN_TOOLONG

Name specified is too long.
IMAN_DOMEXIST

Domain with such name already exists.

See Appendix A for description of other types of errors.

IMAN Createltem
Creates new info item with specified type and length.

27

Interface:

int IMAN Createltem(int fdescr, const char* domain, const

char* item, const char* type, int length, const voidx data b i

Arguments:

fdescr integer number, read only
This argument specifies the file descriptor for the connection opened
previously with the IMAN_Connect function.

domain zero-terminated character string, read only
This argument specifies name of the domain in which the new item
to be created.

item zero-terminated character string, read only
This argument specifies the name of the item to be created.

type zero-terminated character string, read only
This argument specifies the type of the item to be created. See
section "Item types” about possible item types.

length integer number, read only
This argument specifies length of the item in units of item type. It
is ignored for the item type ?CHAR” but must be specified (any
number). Item length for the type ”CHAR?” is determined by the
length of the string you specify to store with the item. See section
"Item length” also.

data varying type, read only
This argument declares the pointer to the initial data stored with
the item. For the type ”CHAR?” this argument should be a pointer
to the zero-terminated string, for other types - address of array or
single datum of the corresponding type.

Calling example:

int stat;

int datal = 512; /* data to store */

float data2[5] =*{12,13,17,28,345};

stat = IMAN Createltem(fd, "Domain", "Iteml",
nINT", 1, &datal) ;

stat = IMAN Createltem(fd, "Domain", "Item2",
"REAL", 5, data2) ;

28

Return codes:

IMAN _SUCCESS
Successful completion.

IMAN _NODOMAIN
Specified domain does not exist.

IMAN_TOOLONG
Specified data or name are too long.

IMAN_ITEMEXIST
Item with such name already exists.

See Appendix A for description of other types of errors.

IMAN DeleteDomain

Deletes specified domain and all items in it.

Interface:

int IMAN DeleteDomain(int fdescr, const char* domain);

Arguments:

fdescr integer number, read only

This argument specifies the file descriptor for the connection opened
previously with the IMAN_Connect function.

domain zero-terminated character string, read only
This argument specifies name of the domain to be deleted.

Calling example:

int stat;
stat = IMAN DeleteDomain ("Domain") ;

Return codes:

IMAN_SUCCESS
Successful completion.

29

IMAN_TOOLONG
Name specified is too long.
IMAN _NODOMAIN
Domain with such name does not exist.

See Appendix A for description of other types of errors.

IMAN Deleteltem

Deletes specified info item.

Interface:

int IMAN Deleteltem(int fdescr, const char* domain,
const char* item);

Arguments:

fdescr integer number, read only
This argument specifies the file descriptor for the connection opened
previously with the IMAN_Connect function.

domain zero-terminated character string, read only
This argument specifies the name of the domain in which the item
resides.

item zero-terminated character string, read only
This argument specifies name of the item to be deleted.

Calling example:

int stat;
stat = IMAN DeleteItem (fd, "Domain", "Itemi") ;

Return codes:

IMAN _SUCCESS
Successful completion.

IMAN NODOMAIN
Specified domain does not exist.

30

IMAN_TOOLONG

Specified item name is too long.
IMAN_NOITEM ‘

Item with such name does not exist.

See Appendix A for description of other types of errors.

IMAN _Getitem

Retrieves information stored with item.

Interface:

int IMAN GetItem(int fdescr, const char* domain, const char¥
item, void* data);

Arguments:

fdescr integer number, read only
This argument specifies the file descriptor for the connection opened
previously with the IMAN_Connect function.

domain zero-terminated character string, read only
This argument specifies the name of the domain in which the item
resides. :

item zero-terminated character string, read only
This argument specifies the name of the item.

data unspecified type, write only
This argument receives data stored with the item. For the type
“CHAR” this argument should be address of the string of the
sufficient length, for other types - address of array or single element
of the corresponding type.

Calling example:

int stat;
float data[5];
stat = IMAN GetItem(fd, "Domain", "Item2", data) ;

3l

Return codes: length integer, write only

IMAN SUCCESS This argument receives length of the item in units of the item type.
Successful completion. Calling example:

IMAN NODOMAIN
Specified domain does not exist. int stat;

IMAN_NOITEM J ‘;z:rlzig:ﬁ?] ‘
Item with such name does not exist. stat = IMAN_GetItemType(£d, "Domain", "Item2", type,

TMAN_TOOLONG ' &length) ;

Specified name is too long.

IMAN_TRUNC

Length of item exceeds user supplied character variable length. Return codes:

Result is truncated. " IMAN_SUCCESS
See Appendix A for description of other types of errors. Successful completion.
IMAN_NODOMAIN
IMAN _GetItemType Specified domain does not exist.
v i i1 b ot ih i IMAN_NOITEM
BRITEE BYPe NG (816 0, 108 shecliler e, Item with such name does not exist.
Interface: IMAN_TOOLONG
int IMAN GetItemType(int fdescr, const char* domain, const Specified name is too long.
char* item, char* type, int* length); IMAN_TRUNC
Arguments: Length of item type string exceeds user supplied character variable
- length. Result is truncated.

fdescr integer number, read only

This argument specifies the file descriptor for the connection opened See Appendix A for description of other types of errors.

previously with the IMAN_Connect function. : b
domain zero-terminated character string, read only IMAN ListDomains

f:;ﬂ igument specifies the name of the domain in which the item Lists all existing domains.
itern zero-terminated character string, read only _ Interface:

This argument specifies the name of the item. int IMAN ListDomains(int fdescr, int* context, char* domain
type zero-terminated character string, write only)3

This argument receives type of the item. See section "Item types”
about possible item types.

32 33

Arguments:

- See Appendix A for description of other types of errors.
fdescr integer number, read only

Thig argument specifies the file descriptor for the connection opened ;
previously with the IMAN_Connect function. ' IMAN ListItems

context pointer to integer number, read-write Lists all existing items in the specified domain.

This argument specifies a list operation context value. Before first I e
call to the routine it must be set to zero. After each call it is ' :

updated and should not be changed by the user.

domain zero-terminated character string, write only
This argument receives name of the domain. Arguments

int IMAN ListItems(int fdescr, const char* domain,
int* context, char* item);

Calling example: fdescr integer number, read only | |
This argument specifies the file descriptor for the connection opened
previously with the IMAN_Connect function.

int stat;

int Eﬂﬂtﬂl‘!t; domain zero-terminated character string, read only
char domain[256] ; This argument specifies the name of the domain in which the items
gstat = IMAN ListDomains(fd, &context, domain) ; cuntile

context pointer to integer number, read-write

This argument specifies a list operation context. Before first call
. ; o " to the routine it must be set to zero. After each call it is updated
This routine retun'ls names of the existing domains. It should be called A should not be o ed by the user.
repeatedly to receive names consequently. Before first call to the rou- -
tine context variable must be set to zero. When routine finds next

Description:

item character string, write only

domain name it returns code IMAN _SUCCESS and updates the con- This argument receives name of item.
text variable. When there are no more domains to list routine returns 5
code IMAN_NOMORE, empty domain name and zero RETLEN. You " Calling example:

can zero the context variable to reset search context to the beginning

of domains list at any time. int stat;

int context;
char item[256];
gstat = IMAN ListItems(fd, "Domain", &context, item) ;

Return codes:

IMAN _SUCCESS

Successful completion.
IMAN.NOMORE Description:

Successful completion. No more domains in the list. This routine returns names of existing items in the current domain.
IMAN_TRUNC it should be called repeatedly to receive consequent names. Before

first call to the routine the context variable must be set to zero. When
routine finds next item name it returns code IMAN_SUCCESS and updates

35

Length of domain name string exceeds user supplied character
variable length. Result is truncated.

34

the context variable. When there are no more items to list routine
returns code IMAN_NOMORE, empty item name and zero RETLEN. You
can zero the context variable to reset search context to the beginning
of items list at any time.

Return codes:

IMAN _SUCCESS
Successful completion.

IMAN_NOMORE
Successful completion. No more items in list.

IMAN_TRUNC

Length of item name exceeds user supplied character variable
length. Result is truncated.

IMAN_NODOMAIN
Specified domain does not exist.

IMAN _TOOLONG
Specified name is too long.

See Appendix A for description of other types of errors.

IMAN _Putltem
Changes information stored with item.

Interface:

int IMAN PutItem(int fdescr, const chars domain, const char=*
item, comst void* data);

Arguments:

fdescr integer number, read only
This argument specifies the file descriptor for the connection opened
previously with the IMAN_Connect function.

domain zero-terminated character string, read only

This argument specifies the name of the domain in which the item
resides.

36

item zero-terminated character string, read only
This argument specifies the name of the item.

data unspecified type, read only
This argument specifies a new data to store with the item. For
type “CHAR” this argument should be address of the zero-terminated
string, for other types - address of array or single element of the
corresponding type.

Calling example:

int stat;
float data[5] = {12,13,17,28,345};
stat = IMAN_PutItem(fd, "Domain", "Item2", data) ;

Return codes:

IMAN_SUCCESS
Successful completion.

IMAN _NODOMAIN
Specified domain does not exist.

IMAN _NOITEM
Item with such name does not exist.

IMAN_TOOLONG
Specified name or data are too long.

See Appendix A for description of other types of errors.

5 IMAM management task

3.1 IMAM management task on VMS

IMAM is a simple task built on top of IMAN client library for interactive
control of IMAN functions. It has command-based user interface and built-in

help facility. To start IMAM you simply type

$ RUN IMAN:IMAM
IMAM>

37

“IMAM> ” here represents program prompt. In response to it user may type
any of the commands described below. Usually commands map to specific
client library functions. Follows an alphabetic list of all commands with brief
description.
CREATE

CREATE command creates one new item inside current domain (see
SET/DOMAIN command). Format:

CREATE/TYPE=type ITEM NAME INITIAL DATA

type is keyword one of the CHAR, BYTE, SHORT, LONG, INT, REAL,
DOUBLE. ITEM NAME specifies name of the item to be created. It is speci-
fied according standard VMS rules - name consisting of characters other
than uppercase letters, digits, dollar sign ($) and underscore (_) must
be surrounded by quotation marks ("). INITIAL DATA specifies data
to be stored with created item. Its format depends on type of created
item. For type CHAR this should be string of characters (again in
standard VMS format), for other types this is a comma-separated list
of numbers.

CREATE/DOMAIN
This command creates new empiy domain. Format:
CREATE/DOMAIN DOMAIN NAME

DOMAIN NAME specifies name of the domain too be created.

DELETE
This command deletes specified item in current domain. Format :
DELETE ITEM_NAME
ITEM_NAME specifies name of item to be deleted.

DELETE/DOMAIN

This command deletes specified domain and all items in this domain.
Format:

DELETE/DOMAIN DOMAIN NAME
DOMAIN NAME specifies name of the domain to be deleted.

LIST

This command displays list of items inside the current domain. Format:

38

LIST [pattern] |

When pattern is 'spétiﬁed only the names are ‘diaplayed which match
this pattern. Without pattern all items are dls?la.yet_.’t. Ypu may use
wildcard characters in pattern to select group of items.

LIST /DOMAINS

This command displays list of existing domains. Format:

LIST/DOMAINS [pattern]

When pattern is specified only the names are c!japlayed which match
this pattern. Without pattern all domains are dlsplaye'd. You may use
wildcard characters in pattern to select group of domains.

HELP .

This command invokes help facility to display information on selected
topic. Format:

HELP [topic]

PUT

This command changes data stored with specified item. Format:

PUT ITEM_NAME DATA

TTEM_NAME specifies name of the item for which to change stored data.
DATA specifies new data to be stored with item. See CREATE command

on how to specify item name and data.

SET/DOMAIN

This command changes current domain. Format:

SET/DOMAIN DOMAIN NAME
DOMAIN NAME is name of the domain to be established as the current
domain.

SHOW

This command displays all information about specified item. Format:

SHOW ITEM _NAME .
ITEM_NAME specifies name of the item for which information to be dis-

played.

39

3.2 IMAM management task on UNIX

IMAM task on UNIX is a bit simpler than on VMS and does not allow to
update the information in the database, nor to create new domains or items.
The list of available commands can be obtained during the session or from
the following example (assuming all configurations correct and the directory
with the binary is in the shell’s path):

% imam

imam> help

IMAM commands available :

‘ld [regex]’ - list domains
‘cd domain’ - set current domain
‘ls [regex]’ - show item list in current domain
- ‘ex [regex]’ - examine one or more items in current domain

‘help’ or ‘?’ - this message
Tegex - regular expression specifying domain or item name

imam>
Using imam you can quickly examine the set of items in one domain or list

the contents of the database. Note that it uses regular expressions, see ed(1)
for the reference.

6 IMAB - X/Motif browser tool.

In order to utilize the benefits of the GUI, the accompanying X /Motif brows-
ing tool, with the name abbreviated as IMAB, has been developed under
UNIX systems as a part of the IMAN system. While preserving transparent
access to a full set of the IMAN client’s library functions, the browser in ad-
dition has a built-in monitor of the IMAN database contents. The monitor
allows for the periodic checking of the items selected by users, and displaying
them in a separate dialogue window using a simple formatting layout. This
capability can be used for a quick debugging of users’ applications without
writing a complex code where it seems to be sufficient.

More specifically the interface provided by IMAB consists of a main win-
dow (see figure 4), monitor dialogue window (see figure 5), and several small
input di?lngues for modifying different parts of database contents (see fig-
ures 6-8.

40

6.1 Main tool window.

The main window (figure 4) has a number of the active components providing
a general control of the browser’s operation and the navigation in the server’s
database. Among them (going from the top-left corner of the window) are:

¢ Task bar with several “standard” Motif-style pop-down menus: “File”,
“View”, “Tools” and “Help”.

e Server host selection entry.

¢ Two listboxes “DOMAINS” and “ITEMS” containing the lists of IMAN
domains and items (when a domain is selected) respectively.

* An “Update” button bellow the listboxes (see bellow).

o A "Current Selection” box with a complete information concerning the
selected item (when a domain and an item are both selected). This box
has a slider to view the contents of the array-like items.

e “Domain” area with two buttons operating on the whole domains:
“Add” - to add a new domain to the database and “Remove” - remove
currently selected domain (together with all the items it may contain)
from the database. |

¢ “Item” area with a set of buttons operating on the individual items.
The “Add” button brings up a dialogue window (figure 7) with a form
describing the new item, its name, type, and length (when the item
is an array), and an optional list of initialization values. “Remove”
button is used to remove currently selected item from the database.
“Modify” button allows to change the item’s data “on the fly”. The
remaining button “Append them to Values Monitor List” is used to add
the currently selected item to the list of items whose values are fetched
periodically from the server’s database and displayed in the monitor
window.

The mentioned above “Update” button lets the browser to synchronize
the state of currently selected components with the actual contents of the
database. This feature is provided in a case when other applications working
in paralle]l are modifying the database contents (adding/removing domains,
adding/removing/modifying items).

41

6.2 Monitor window.

This dialogue window (figure 5) is brought up from the “Tools” pop-down
menu of the main window. Unlike other dialogue windows grabbing the input,
the “Values Monitor” operates in parallel with the main window.

The main part of the window is a formatted list of items reflecting their
current state. The items are periodically updated with the interval given
(in seconds) below the list. The items are added to the list from the main
window during the navigation session. Three control buttons are provided
in the right bottom corner of the monitor window in order to exclude items
from the monitor list and to change their relative positions in the list.

The appearance of the long (array-like) items may be controlled with a
dlider on the window’s bottom. The slider allows to specify an index of the
first element of the item.

WARNING: Remember, please, that very long, very complex, and fre-
quently updated monitor list may have a serious performance impact on the
IMAN server you are connected to. So, try to avoid making the monitor list
too long, especially with array-like items, or making very frequent updates.

6.3 Other dialogues.

There are also other dialogues which are quite simple and can be understood
without description here. See figures below to get an idea how do they look
like.

7 Installation and Set-up

7.1 Installation on VMS

Installation of IMAN is quite simple. First you need to select directory dedi-
cated to IMAN. It can be any directory, possibly shared with other products
but usual way is to create separate directory for it, for example DISK:[IMAN].
After you selected directory you should copy following files to this directory:

IMAN _STARTUP.COM

Command procedure for starting IMAN. After installation you should
edit this file and change some parameters in it, see below for more
information about these parameters. This file should be executed from
the SYSTEM account, usually as a part of the startup procedure.

42

Figure 4: Main window of the browser tool.

Figure 7: Item creation dialog window of the browser tool.

44

Figure 8: Item data modification dialog window of the browser tool.

IMAN _SERVER.EXE

Server process executable.

IMAN _SERVER.CONFIG

Server configuration file. See the section 7.2 “Server configuration” for
the desription of parameters contained in this file.

IMAN _SHARE.EXE
Shareable client library.

IMAN_MSGS.0OBJ
IMAN messages file.

IMAN.OPT
Option file for linker.

IMANDEF.H

IMANDEF.FOR
Include files with condition values.

45

IMAM.EXE
IMAM executable,

IMAM.HLB
IMAM help library.

Then this you should edit file IMAN_STARTUP. COM and change the param-
eters in the “configuration section” of this file. First you should change
definition of the symbol iman directory which should be set to the name
of the directory where you have placed IMAN files. Then you should decide
whether you will run server or client part of IMAN or both. According to
your requirements you set value of symbols client and server to 0orl.
If you decided to run client programs on your host then you should adjust
following parameters:

install client — setit to1or 0 according to your decision whether to install
client shareble image or not.

transport -— defines trasport for the communication of client programs with
the server. Can be one of “LOCAL” (for VMS mailboxes) or “TCPIP”
(for TCP/IP protocol). Usually when clients are running on the same
node as server “LOCAL” is the best choice. “TCPIP” must be used
when client is running on different than server host.

host_name — for the “TCPIP” transport defines the name of the host where
the server is running,

port — TCP/IP port number for the communication with server. This value
should correspond to the INET_PORT _NUMBER in the configutation
file of the server with which you wish to communicate.

For the server process there is only one relevant parameter in this file:

queue s defines the name of the batch queue on which the server Drocess
:wﬂl. be executing. When this parameter is empty string then the server
18 started as a stand-alone process.

7.2 Server configuration

If you decided to run IMAN server at your node then, probably, you will need
to adjust the server configuration, wich can be done with the parameters in
IMAN_SERVER.CONFIG file. Follows a brief overview of these parameters:

46

SECTION_FILE

Defines name of file used for section mapping. Default name is
IMAN: ITMAN SECTION_FILE.

BACKUP FILE

Defines name of file used for storing backup information. Default name
is ITMAN: IMAN SECTION FILE.BACKUP.

SECTION_SIZE

Defines the initial size of section file in blocks. If section file does not
exist it will be created by server with size specified by this parameter.
If the file exists and its size is lower than value of this parameter, the
file will be extended. If the file size is grater than the value supplied
for parameter, its value will be ignored. -

SECTION SIZE MAX
Defines maximum size of section in blocks. When server exhausts sec-
tion memory it tries to extend it. To prevent server from unlimited
expansion supply reasonable value for this parameter.

EXTEND SIZE

Defines at how many blocks the section file will be expanded after
exhausting available space.

UPDATE_TIME
Defines the time interval for the explicit updates of the section file.
This time interval is specified in the standard VMS delta time format.
Grater intervals reduce the overhead for updating and can improve
performance, smaller intervals can be safer in case of computer crash.

BACKUP_TIME

Defines the time interval for making backup copies of the section file.
This time interval is specified in the standard VMS delta time format.
Server makes exact copies of section file at the specified periods of time.
Although it saves only part of file which is actually used for storing
information this can take a lot of time for big section files and produce
delays in server responses to client requests.

BACKUPS _KEEP

Defines how many backup copies to keep. Server purges backup files
after each backup. It will keep specified number of most recent backups.

47

HOST_ACCESS_LIST

List of the Internet names of hosts. Only the requests from the clients
running at the hosts included in this list will be accepted.

INET_ PORT NUMBER

TCP/IP port number on which the server will be listening for incoming
connections.

DEBUG_LEVEL
Specifies level of debugging messages. Set 0 to turn it off.

7.3 Installation on UNIX

Installation on UNIX platforms consists in the compilation of the object
library and manager application (imam). Compilation is handled with the
make utility, makefile was written for the GNU version of make. To build
everything simply type:

gmake all

(assuming that GNU make is installed with the name gmake.) This will
produce both library and executable. You can copy them together with the
include file in the appropriate place, like in example:

% cp libiman.a /usr/local/lib
% cp imandef.h /usr/local/include
% cp imam /usr/local/bin

(you may need to rerun ranlib on the library on some systems.)

8 Troubleshooting

Mostly, inconsistencies in the data structures can appear due to broken syn-
chronization between structures in memory and section file. Using paging
facility of system, information corruption in server can occur only when com-
puter, on which IMAN server resides, crashes. In all other cases system will
take care about consistency. of information in server memory and disk file.
Surely, data structures in server memory may become corrupted also due to
bugs in server.

Consistency check of information in server is not implemented yet in this
release. Possibly in next major release we will add some checks to the server

48

code which will detect corrupted information and report such cases. This
version of server tries to implement minimal security of information using
simple backup scheme. Server makes copies of data structures to separate
file in regular time intervals (using parameters BACKUP FILE, BACKUP_TIME
and BACKUPS_KEEP in IMAN_SERVER.CONFIG file). These backups can be freely
interchanged with section file. So if information in section file become cor-
rupted you can try to use backup file instead of original section file. It can
be also recommended to save stable versions of section file (or backup file)
with different name, because backup scheme of server does not guarantee
even consistency of information in backup file and backup files can also be
broken together with original section file.

49

A Error codes

IMAN functions in case of errors do not produce any messages, instead they
return condition value which can be interpreted in standard way (with func-
tions sys$getmsg() or 1ib$signal() on VMS). This condition values are
defined in include files IMAN:IMANDEF.FOR and IMAN:IMANDEF.H on VMS
or imandef.h on UNIX. Table below describes condition values in details
grouped by their severety level. :

Severety: Success.

IMAN_SUCCESS

This code is returned by IMAN functions in case of successful

completion. Reason for this is that IMAN works properly. No
actions needed.

IMAN_NOMORE

No more domains or items. This value is returned in list operations
when there are no more domain or items left to list. Action —
stop calling list routines.

Severety: Warning.

IMAN_DOMEXIST

Wa:nmg Dum.a.in exists. Returned while trying to create domain
with name which already exists. Action - check if such domain
really exists.
IMAN_ITEMEXIST
Item exists. Returned while trying to create item with name which
already exists. Action - check if such item really exists.
IMAN_TRUNC
C}l_a,ra,cter string truncated. Returned by functions which operate
with character strings when returned value is longer than charac-

ter variable supplied by user. Action - provide longer character
variable,

Severety: Error.

IMAN NARG

Illegal number of arguments. User supplied wrong number of ar-
guments to one of the client routines. Action — check your code
carefully.

20

IMAN_SETDOM
Domain is not set. Returned while trying to do operations on
items without previously setting current domain name. Action —
use IMAN SetDomain to set current domain.

IMAN_CLOSED
Server closed connection. After some time of communication IMAN
server closed connection. This is possibly networking problem on
your site or bug in the server. Action — communicate with person
which installed IMAN library on your node.

IMAN_COMM
Cannot communicate with server. Communication part of IMAN
cannot establish connection with server. Possible cause - server is
not running or network is down. Action - communicate with your
system manager to locate possible failure.

IMAN_TOOLONG
Data too long to fit in buffer. Amount of data stored with item and
all names in IMAN are limited in length. An attempt to exceed
limit gives this return value. Action - reduce length of name or
length of data stored with item.

IMAN_PROTOCOL
Protocol crashed. Communication part of IMAN detected errors
in data flow protocol between client and server. Possible reasons
— bug in IMAN library or network problems. Action — commu-
nicate with person which installed IMAN library on your node.

IMAN ITEMTYPE
Illegal item type. Illegal item type specified when trying to create
new item. Action — check the parameter decribing item type in
the call to library functions.

IMAN _NODOMAIN
No such domain. This condition appears when user specifies non-
existing name for domain. Action — check if domain with name

specified really exists.
IMAN _NOITEM

No such item. This condition appears when user specifies non-
existing name for item. Action — check if item with name specified

really exists.
51

IMAN_SERVMEM
Server memory error. Server depository memory is limited and
can exhaust when there are too many information stored. Action
— remove all unneeded items or contact with person who installed
IMAN on your site on subject of increasing memory limit.

IMAN SHORTBUF
Client buffer too short. Inconsistency in buffer lengths between
client and server. Action — report this to person who installed
IMAN on your site.

Severity: Fatal

IMAN_TRANSPORT
Wrong transport name. Transport name as obtained from logical
name IMAN TRANSPORT is not legal transport name. Action —
check logical name IMAN_TRANSPORT.

IMAN_SERVNAME
Cannot resolve server host name. Communication part of client
library can not resolve host name on which server resides. This
is possibly due to network problems when operating in multihost
environment or errors in configuration while compiling IMAN. Ac-
tion - communicate with person which installed IMAN library on
your node.

IMAN_ILLPORT
Ilegal port number. Logical name name TMAN_PORT specifies port
number which is lower than 1024. Action — contact IMAN man-
ager at your site.

IMAN_CREATSOCK
Cannot create socket. Communication part of IMAN cannot cre-
ate socket for communicating with server. Possible cause is in
networking software. Action - communicate with person which
installed IMAN library on your node.

IMAN_SERVERBUG
Bug in server. Client part of IMAN detected some inconsistency in
data received from server. We hope you will never get this return
code. Action — report this to person who installed IMAN on your
site.

52

IMAN_BUG
Bug in IMAN. Client part of IMAN detected some conditions
which cannot be interpreted in reliable way. We hope you will
never get this return code. Action — report this to person who
installed IMAN on your site.

B

Programming examples

Next follow some simple examples of code dealing with IMAN client functions.

B.1 Get item data from server

B.2

program Examplel

integer*4 stat
integer+4 iArray(5)
integerx4 IMAN GetItem, IMAN_SetDomain

—————— First we need to set current domain ———-——-
stat=IMAN_SetDomain(’Domain #1?’)
if (.not. stat) then
call 1lib$signal (Yval(stat))
stop
end if

——-- Assume there exist "Iteml" of type INT and length 5 —-—-
stat=IMAN_GetItem(’Iteml’,iArray)
if (.not. stat) then
~call lib$signal (val(stat)) B.3
stop
end if

end :
Change item data

program Example?2

integer*4 stat

integer*4 iArray(5)
integer*4 IMAN_PutItem, IMAN_SetDomain

54

—————— First we need to set current domain -==----
stat=IMAN_SetDomain(’Domain #1’)
if (.not. stat) then

call 1lib$signal (Yval(stat))

stop
end if

—-— Assume there exist "Iteml" of type INT and length 5 ---
iArray(1l) = 1

stat=IMAN_PutItem(’Iteml’,iArray)
if (.not. stat) then
call lib$signal(Yval(stat))
stop

end if

end

Set batching mode
program Example3d

integerx4 stat
integer*4 iArray(5)
integer*4 IMAN_GetItem, IMAN SetDomain

call IMAN_BeginBatching

atat=IMAN_SetDomain(...)

if (.not. stat) then
call 1lib$signal (%val(stat))
stop

55

, int context ;
end if char item[256] ;

£4 = IMAN Connect ("hostname", 3255) ;
it (1d < 0) 4

stat=IMAN_GetItem(’Item2’,...) exit (errmo) ;
}

stat=IMAN_GetItem(’Iteml’,...)

stat=IMAN GetItem(’ItemN’,...)
while (1) {

c Close connection to server stat = IMAN ListItems(fd, "Domain", &context, item ¥ 3
call IMAN_EndBatching if (stat != IMAN_SUCCESS) break ;

printf ("Item: %s\n", item) ;
end }

B.4 Programming IMAN on UNIX IMAN Close (fd) ;

int fd ;
int stat :
int data[5] ;

fd = IMAN Connect ("hostname", 3255) ;
ifF ¢80
exit (_Brrnn 3

}
/*

assuming that item with the name "Iteml” in the domain

"Domain" of the type "INT" and length 5 exists References
74 ;

(1] D.ABukin et al., Data Acquisition System of SND Ezperiment, Pro-
ceedings of the International conference on Computing in High Energy

IMAN_Close (fd) : Physics - CHEP97, Berlin, April 7-11, 1997.

stat = IMAN GetItem(fd, "Domain", "Iteml1", data) :

B.5 Getting the list of items

int fd ;

int stat ;
87

56

B Programming examples 54

Contents Bl Getitem dntn IR IEE . o v s e 4 e 54
: Be Change Bepn g8l - -0 L i e s ovn v sy s 54
1 Introduction 3 B.3 Set batching'mddE®. /.5 NPT, Tuh L v i s v e 55
X - B4 ProgrammingIMANoa UNEX¢..4 56
2 t 3
TR Sary N B5 Getting the Hist'of Taths™ 5 55 Uois/ il | L 56
3 Information inside IMAN 4
3.1 Names for itemsanddomains 6
R Y T I T TTTTTTTTYTY 6
Bl R e T e T e Lt e D T r g
4 IMAN client library 7
4.1 - Clent library on VAX/VMS: . .7 40, J0 0 L Ve, . . 9
7 B T T E R T Y 9
432 Checdngforeerors: . . v o v s susowiles 9
B1.3 IMANTOCEONS . o o ¢ i i S i 606 5E 205 4 10
4.2 Ghisnt Ubrnryon UNEX.o o (200 spqll AN, | 24
4.2.1 Differences from VAX/VMS library. 24
L T S S W SN o) 8 S 24
fad Chenp for exrort. . . cvvv ve v wn s ens 5o 25
e RN TR . . - s v s D e e e S 25
5 IMAM management task 37
5.1 IMAM management taskon VMS 37
5.2 IMAM management taskon UNIX 40
6 IMAB - X/Motif browser tool. 40
6.1 Maintoolwindow. ''u.... 41
O B TN IR . . - & o 5 5 i R i v R 42
6.3 Kher-dinlopies.o b e s RS CETEE 42
7 Installation and Set-up 42
FRR U T T R S P AP D S S 42
T8 5 DECYRE COBBEDERISNE | . [0 o« 6 ivald B el 46
ok SO BB TINEE oo i s S 48
8 Troubleshooting 48
A Error codes 50
59

08

I.A. Gaponenko, A.A. Salnikov

Information management system
for SND experiment

H.A. I'anonenxo, A.A. Caavnuxos

PacnpenenieHHas cucreMa o6MeHa mHbopMannen
(IMAN) gas skciepumenTa CHJII

Budker INP 98-39

OTeercreennnii 3a Bainyck A .M. Kyupasues
Pabora nocrynmima 20.05. 1998 r.
Cnano B Babop 22.05.1998 r.
Ilonnmcano B mewates 22.05.1998 r.
®dopmat oymarn 60x90 1/16 O6vem 2.8 new.i., 2.3 yu.-usm.i.
Tupax 90 sk3. BecnnaTno. 3akasz N° 39
O6paborano Ha IBM PC u ornewarano Ha
poranpuate UAP um. I''U. Bynkepa CO PAH,
Hoeocubupcx, 630090, np. axademuxa JTaspenmvesa, 11.

