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Abstract

Various differential cross sections of high-energy photon splitting in
the electric fields of heavy atoms are calculated exactly in the parame-
ter Za. The consideration is based on the quasiclassical approach ap-
plicable for small angles between all photon momenta. The expressions
obtained are valid for arbitrary transverse momenta of final photons .
The detailed investigation of the process is performed taking into ac-
count the effect of screening . The exact cross section turns out to be
noticeably smaller than the result obtained in the Born approximation.

© Budker Institute of Nuclear Physics SB RAS

1 Introduction

The first successful observation of high-energy photon splitting in the electric
fields of atoms has been recently performed in the Budker Institute of Nuclear
Physics. A crystal of BisGe30O,2 has been used as a target. At the present
time, the data processing is almost completed and preliminary results are
published in [1]. Theoretical and experimental investigation of this nonlinear
QED process is important as a new test of QED in strong external fields.
It also gives a possibility to understand the role and the structure of higher
orders of the perturbation theory with respect to the external field since, as is
shown in the present paper, the exact in Za cross section (Z|e| is the nucleus
charge, a = e?/4m = 1/137 is the fine-structure constant, e is the electron
charge) differs essentially from that obtained in the Born approximation, i.e.
in the lowest order in Za.

The cross section of photon splitting was found in [2, 3] in the Born
approximation. In the same approximation, an essentially simpler form of
the cross section was obtained in [4] with the help of the Weizsacker-Williams
method providing the logarithmic accuracy. Using the analytical results of
[2, 3], the cross section of the photon splitting was investigated numerically
in [5, 6].

The Coulomb corrections represent the difference between the exact ( with
exact account for an external field ) cross section of the process and the result
obtained in the Born approximation. Basing on our experience concerning
Delbriick scattering, we expected a measureable effect in the photon splitting
too. In recent papers [7, 8] general formulae for the high-energy photon
splitting amplitudes have been derived exactly in Za for small angles f, and
f3 between the momenta k; , ks of the final photons and the momentum k;
of the initial one ( w; = |ki| 3> m , m is the electron mass). It is the region
of small angles, which makes the main contribution to the total cross section
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of the process. Additionally, small angles and high photon energies allow one
to apply the quasiclassical approach, developed in [9, 10] at the consideration
of Delbriick scattering (See recent review [11]). This approach is based on
the use of the quasiclassical Green function for the Dirac equation in the
electric field of an atom, which is equivalent to a summation for all orders of
the perturbation theory with respect to the external field. The quasiclassical
approach greatly simplifies the calculation of amplitudes.

First theoretical results concerning Coulomb corrections in the process
of photon splitting were obtained in[8] for large transverse momenta of the
final photons as compared to the electron mass: |ks | = waf2s > m and
ks | = wafs > m. It turned out that in this kinematical region the Coulomb
corrections lead to the significant decrease of the cross section. They become
noticeable starting from relatively small Z and reach several tens per cent
for heavy atoms.

In the present paper we obtain the exact cross section of the process in
a simple form, valid for arbitrary transverse momenta of the final photons .
Using this result, we examine numerically the role of the Coulomb corrections
in various differential cross sections. We discuss the case of a pure Coulomb
field as well as the effect of screening.

2 Amplitudes of the process

As was shown in [7, 8], it is convenient to present the initial expression for
the photon splitting amplitude in the form containing the Green functions
D(z,z') of the »squared” Dirac equation:

Dig; ") = (rﬁl}{’ﬁ*‘z —m?41i0)|z"),

where P = y#(i0, — guoU(r)), U(r) 1s the potential energy of an electron
in an external field, y¥* are the Dirac matrices. Then the amplitude M 1s
splitted into a sum of the perturbation-theory diagrams, containing either
three or two Green functions D(x,z'): M = M® 4+ M®, The term M®) is

given by
(3) i 3 dE i
M = EE 2—:]; Gfl‘l d‘l‘gdl‘ﬁ exp[t(lﬂ g kgrg - k31‘3}} x (1]
Tr{[(-é‘lfn — %2e,p)D(ry,r2le — ug)][{égfcg — 2e3p) D(r2,rs |€)] X

[(é;_jts — 2e4p)D(r3, 11 |¢ + wa]]} + (kb o k5, e3 & e3) .
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Here €} and ¢} 5 are the polarization vectors of the initial and final photons,
é = ety, = —ev, and the operator p = —iV differentiates the Green function
D with respect to its first argument. The term M (2) reads

_ de T
M@ = 4¢3 j 5T f drydra 'I‘r{exp[i(klrl — kory — kara)] e5e3 x
[(—é1ky — 2e1p) D(r1,72 | — w1)] D(ra, 11 )] + (2)

exp[i(klrl = kgrz = kal'.'l )] Blea p oo
D(r1,r2 & — w2)] [(€3k2 — 2e5p) D(ra,rile)] + (kz € k3, €2 & Ea]]} :

As was pointed out in [7], the effect of screening is important only for
the lowest (Born) approximation in Za. Therefore, we start from the case
of a pure Coulomb potential U(r) = —Za/r and then multiply the Born
contribution to the amplitude by the atomic form factor to take the effect of
screening into account.

It is convenient to perform the calculations in terms of the helicity am-
plitudes
M a0, (K1, k2, ks). We direct the 2 axis along k; and introduce the vectors
fy = kyy /we and f3 = kay /w3 (|f2,3| < 1). The z component of the po-
larization vectors e; can be eliminated owing to the relation e;k; = 0 which
leads to €, = —e ki /w. After that within the small-angle approximation
one can neglect the difference between the vectors (ez 3). and the polariza-
tion vectors of photons, propagating along the z axis and having the same
helicities. Therefore, the amplitudes M;ll;?)q(khkz,kg) contain only the
transverse polarization vectors e and e*, corresponding to the positive and
negative helicities, respectively. It is sufficient to calculate three amplitudes,
for instance, M+__(k1,k2,k3) F flr’f+++(k1,k2,k3} and M++_ (kl,kg,ka).
Other amplitudes can be obtained by the substitution

M+—+(k1:k2, ka} - M++— (k1=k31 kZ) )

M_x, s (ki, k2, k3) = Myan,(ki, ko, k) (e & €7),

where A denotes the helicity opposite to A.

It was shown in [7] that the main contribution to the term M (3) is given
by the region where z; < 0 and at least one of z5 and z3 is positive. Similarly,
the main contribution to the term M (2) is given by the region z; < 0 and
zo > 0. General formulae for these terms at arbitrary relations between the
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electron mass and the transverse momenta of the final photons are presented
by Eqs. (9-14) and Eqs. (16-17) in [7]. Performing an integration by parts
in the expression for the term M(®) as it has been done when deriving Eqgs.
(18-19) in [7], but keeping now the terms containing the electron mass, we
obtain for the amplitude M of the photon splitting

M= M, +M; +6M (3)

where M; corresponds to the contribution to M(®) from the region z; < 0 <
zq, z3, while My corresponds to that from two regions z; < z3 < 0 < z3 and
z1 < 73 < 0 < z3. The quantity dM is a sum of the term M) and the
integrated terms arising when M(®) is integrated by parts.

For the term M, we have

Lig oo oo L
ied dRs
M ot ) 15?73{-&’1&#2&#3]5&2”3{!6_/&}{1_/ dRz/ RiR (4)
0 0 0 0

212 o
fqug dqs Ta,ag0, € F Im (3—2) + (w2 @ wa, ks © kz, A2 & A3),
3

where q, ; are two-dimensional vectors lying in the zy plane, k3 = w2 —
€, k3 = w3+ €, L = Rawaka/waks,

¢ = [(1 . ) Q* 4 e’ RaRs f33 b (K295 — K3q3, &)

B By 2 2R w1 0 (5)

(Ld:;Eng - wgﬂgﬁg} i“]’i!.2
w1 R (Qfﬂ:ﬂ 9 {Rl + R) 3

R=R2—R3, fg;;:fg—fg, Q=q2+q3, ﬁ=u2f2+w3f3.

The function T for different polarizations 1s:

8
R, R?

TJ.r_‘ = (eQ)(eQ;)(eQ3), (6)

4 * L]
'T.|,..|.+ = —R—I—R-'E— (E‘i‘ -t ::_Z) (EQ)(E Q!){e QS) - o

2m2w1 « | @2 s
R € (E—EQE*R—HQ:; ,

4 K = :
Tt TR (—? + ;f;) (eQ)[(eQ;)(e"Qs) —iR] +

€
2m3wy Wi Wa
2o (ar ™ 39
4 K3 £ » :
Tyos = o (24 ) (cQ(e"Q)(eQ) ~ i1 +
2m3ws Wi Wa )
Ko E(EaRQ3+ ER]Q :

where Q, = Q + €Raf23 and Q3 = Q + e Raf23.
The term M is given by

e (= ]

a0 L
ie3 dRs
= d dR, | dR = 1
(M2)a102s 1673w waws fEHgH:E E] lf 2./ RaR > (7
0 0 0 0

¥ Lo
// dq, dqs T, x,n, € ° Im (%3) + (w2 w3, ko & ks, A & A3),
3

where L = Rjwskz/wi€ , R = Ry + Rs , and the functions & and T can be
obtained from ® and T in (5),(6) by the substitutions

Qs =03 , @i ¥EW , WS 5T O e,
Hl & Hy Rz — —Hs f;}g > *-f3 " fg - —fg J (8)
so that
P T Ty sy Ty P T8 ey,

Tyy- = Typi(e o e’).
For the last contribution to the amplitude M (3) we obtain

" de;; p %Za
[JM]MMM = _m]de_/Rfﬁg /qugdanhh;alm (Q‘_a) {9
0 0
where
1 K2K3 iy ¥d Ko€? ivs
Fo .2'=0: Fi-4g=(eq) [/ds-w—%g—e l_fdeugmge ] :
— 'y 0
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'y

Fiyy = (E'Q)] de
0
F++_ = F+_+(h-'2 = W3 , f? ) fﬁ] ’

'
ER -
22EI¢2+(w3Eiwﬂﬁf2E’f3) 1

1 1 Q2 WoldaKa K3

= fg st
Y=y YR ow?  123%
b 2
(k2q, — K3q3, A) _m 7 s
(o8] 2
1 1. Q% wyosnee s
= + 22 faRy — 10
¥ (Rl RE] 2 T Y
(K2qy —€qg, A)

2
™m
- Ry + Ry).
o 2 { ’ 2)
The expressions derived are still rather complicated and require further
transformations. Let us pass from the variables q,, q3 to Q = q, + q4 and
q = q, — q3 and use the identity (see Eqgs. (22,23) in [7])

a4 < AT

d : 2l d . e
f%exp(m—;—qﬁ)lm(iq—FQl) — a exp(—ti] lm(|3+&l) :

Additionally, the parametrization

; Q2 Py dx _R]Hg -
E}cp(iz—ﬂl-} o IRI[ﬂEKP(_' G iQx), (12)

where x is a two-dimensional vector, is used to calculate the term M,.

After that 1t i1s easy to take first the integrals over R), Q, and then
over R» and R3. The calculation of the terms M, and éd M is carried out
analogously. Performing, finally, the shift x - x — q/2, we obtain only two
kinds of integrals over q to be taken:

szﬁj’dq (q+_q_) 1 Re(q__!_)zizaz
or \¢2 ¢/ [m®+ (x—q/2)%? 7.

R (x—l—ﬁ./?_x—&/?) R (x+ﬁ/£+x—&/2)}_h
Ct [ e C4 L

P e W thin / dq feq, eq_ e*(x — q/2) o (o Woa
L= 2r ?-zar qz [m?2 + (x— q/2)2]2  \ q_ 55
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2 2
m? cos T (i—i) Fi+sinr (l—ﬂi—i) Fs, (13)
i Cy

where the notation

gy =gk, r:i=1r1n,2-i-(x:!:4::1/2)2 La=

is introduced. The functions F; and F, are given by

F = f 5 . j’;)a - cos (2Za arcsinh(az)) , (14)
0 £

T 9% gin(2Za arcsinh(az))
— n ¥ arcsinnliarxr —_—
. ]o 1+ V1 + a%2?

We explain in Appendix I how the integrals in (13) have been actually taken.
The representation (13) is very useful since a dependence of the functi.ons
F, and F» on x is expressed by the single variable a. This greatly simplifies

numerical calculations. e
Finally, we obtain for the helicity amplitudes of photon splitting

My =[x (00) [ o [ o0 (i + o) *
o (w((fﬂ?) B sz)gﬁ:‘;}fa))] . ( fot ) ’
¥ P =Nfdx f:’ ;f; [(EG)(S;E; «3) ({e*a)_ m'-’u;:,::lx{}?*fza)) +

wlwamgGle* {a -t fg;‘gi.dgﬂg/wl) W3kK9 (E*G)
+
Dl wg’Dg
2¢ (k3 + k2) (e*f3) (ea) + m*(2ex2 — wiw2)]

wiwskaGi (€"¢) ( wy ¢ wg ) 15
2 D3 ] T\ o )’ =

T Nfdx {f:* de [fcgug (eG) AL e

[ews A +

2A| wiDy
KowowsGy (eb)
D,

23 (k2 + €2) (efa3) (e*a) + m? (wiw2 — 2K243)] +




(k3 + £?) (e*G) (os) i miw3ky (efs) _ wawskaGhe(a+ fawig/wo) 2
[e*fg) woD3 Dy

0
wak3 | (eG) . *
j;wa de 55 [w191 [— (.u;:é + E-‘i?a) B + 2k5 (h% -+ Ez) (e*fa3) (eb) +

WQGI {Eb) (‘E‘G)
— B
D, +* w:aP:-:r[ wak3 D +

WQGI; ieb)]} |

m? (wiws — 2K2k3)] +

2k3 (k3 + £2) (e*f2) (eb) + m? (waw3 — 2ek3)] +

e — W

where the following notation is used

a:x—ﬁ/g-i-ﬁigfg, b‘-_"‘x-f-ﬁfg—h:afg, C=X+ﬁ/2—£f33,

T
N = e-d0 , A=m?+a%, B=m?+b?,
ﬂ2&2u1w2w3
2
Kga — Kg WoldaKa K3 o :
D, = Al — ————15, - 1
= (xR a) g g (16)
Kz + € ¥ WiwaK3z€
'Dg:(x— - ﬁ.) ——-—1 gzgfg,
2w3 E
2
Ko — € WiWgKo€ o
Dy = A f
3 (I+ 2w2 ) "

As was pointed out in [7], the quantity A? in the coefficient NV should be
interpreted as the squared total momentum transfer:

SRR T o

52=(k2+k3—k1)2=¢2+53=(ku"!-k:aj_}z-i--( e R ) :
4 o s

(17)

Since the functions G and (| are independent of the energy ¢, the in-
tegrands in (15) are rational functions of ¢, where all the denominators are i
quadratic forms of this variable. Therefore, the integrals over ¢ can be ex-

pressed via elementary functions. Resulting formulae being rather cumber- j

some are not presented here explicitly ( some details of this integration are
described in Appendix II). Performing the integration over ¢ in (15),we ob-
tain in fact a twofold integral over x for the amplitude of photon splitting
since for a given Za, the functions F; and F; (see (14)) can be tabulated
separately. In the limit m — 0 the amplitudes (15) coincides with those ob-
tained previously in [8]. Additionally, it has been checked numerically that
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in the limit Za — 0 our results (15) agree with those, obtained in [5, 6] in
the Born approximation.

3 Cross section

In the small-angle approximation (|f2], |f3| < 1) the cross section of photon
sphtting has the form

dz (ﬂ(gl tﬂ(gJ_
Brdwiz(l—z)’

do = |M|? (18)

where r = wy/wy, so that wz = w;(1 — z). As was mentioned above, in the
general case of a screened Coulomb potential the lowest in Za (Born) part of

the amplitude should be multiplied by the atomic form factor. The Moliére
representation [12]| for this form factor reads

3
1 — F(A2%) = A? e,
(A?) ﬁgauﬁf’ (19)
where
=010 jormgp=006, any =036, ' B =-Bebg; (20)

bi=6 , ba=12 , b3=03, fo=mZ3/121.

To illustrate a magnitude of the Coulomb corrections, the exact and Born
differential cross sections do/drdks; dks; are plotted in Fig.1 depending on
|k21|/m for |kai| = 2m and the azimuth angle (the angle between the vectors
ko, and k3y) é = 0, . The calculations were performed for a screened
Coulomb potential at z = 0.1, w; = 1GeV. The value Z = 83 (bismuth) was
chosen since bismuth atoms determine the cross section of photon splitting
in the experiment [1]. A wide peak for azimuth angle ¢ = = is due to small
momentum transfer A. There is a narrow notch in the middle of this peak
(at |kay|/m = 2 ) where the condition A} = ko + ka; = 0 is fulfilled.
The width of the notch 1s about max(A,/m, By /m). Recall that A, is the
longitudinal component of the momentum transfer defined by (17), and 5
(20) characterizes the effect of screening. In our example fy is larger than
A; , so the width of the notch is roughly By/m = 3.6-10~2. Let us note
that for w; >> m the differential cross section, expressed in terms of ks, |
ks;, # and w; depends on the energy w; only via A,. Due to this, the
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differential cross section is independent of w; outside the notch vicinity. The
behavior of the cross section at small A is determined by the Born amplitude
which is proportional to 1/A in this case. That is why the exact and Born
cross sections coincide within peak region. Outside this region the Coulomb
corrections essentially modify the cross section. The points of discontinuous
slope on the curves in Fig.1 are related to the threshold conditions for real
electron-positron pair production by two photons with the momenta k, and
ks:

(k2 + k3)? = wowaf3s = 4m? . (21)

In Figs. 2-4 the differential cross section m?g; 'do/dz dkay is shown
depending on ky; /m for a screened Coulomb potential at wy/m = 1000,
Z = 83 and different =z,

o®(Za)?
4r2m?

oo = =0.08%8:107°.2" b

Solid curves represent the exact cross sections, and the dashed curves give
the Born results. The cross section exhibits a thresholdlike behavior in the
vicinity of the point kay = kip = 2/z(1 — 2)m, where both conditions
A = ko, +ksz; = 0 and (21) hold. Under these conditions the peak in
the cross section do/dzdks;dks, seats on the boundary of the kinematic
region where real electron-positron pair production by two photons with
the momenta k, and ks is possible. The cross sections do/dr dka, drop
rapidly for k21 > m (ox 1/k3). The dotted curves in Figs. 2-4 show the
difference between the Born and exact cross sections, i.e. they give the
Coulomb corrections taken with the opposite sign. Again, as is seen from
Figs.2-4, the Coulomb corrections to the cross section integrated over ka,
noticeably diminish the magnitude of the cross section. Above the threshold
(k2. > ken) this difference reaches tens per cent while below the thresh-
old the exact cross section is several times smaller than the Born one. It
can be explained as follows. Above the threshold the main contribution
to the cross section do/drdks) is given by the integration region where
max(k?, /w1, B0) € A < kzy. As a result, the Born cross section 1s log-
arithmically amplified as compared to the Coulomb corrections. Far below
the threshold where kg, < k;s, it follows from the condition A < kg that
ks, & ko, < m, and the amplitude is suppressed as a power of k3 fm?.
Therefore, below the threshold the main contribution to the cross section
do/dz dky, is given by the region k3, ~ m, where the exact in Za ampli-
tude drastically differs from the Born one. It is seen from Figs.3,4 that in
accordance with previous discussion a position of the peak is the same for
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do/dx d’k,, d’k,, (b/MeVv*)

Figure 1: Differential cross section do/dzdk;; dks; vs |kay |/m in a screened
Coulomb potential for different azimuth angle ¢ between vectors ks; and
kay; Z = 83. z = 0.1, w; = 1GeV, k3; = 2m. The dashed curve (Born
approximation) and the solid curve (exact cross section) correspond to ¢ = .
The dash-dotted curve (Born approximation) and the dotted curve (exact
cross section) correspond to ¢ = 0.
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we=i.5

m'G,  dO/dxd’k,,
[}

Y
S

Ky /M

Figure 2: m20; 'do/dzdks) vs |kyy|/m for a screened Coulomb potential,
wi/m = 1000, z = 0.5, Z = 83, oy is given in the text. The dashed curve
corresponds to the Born approximation. the solid curve gives the exact result,
and the dotted curve shows the difference between the Born cross section and
the exact one.
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Figure 3: Same as Fig. 2 but for z = 0.2.
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Figure 4: Same as Fig. 2 but for z = 0.8.
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z = 0.2 and z = 0.8. Nevertheless, the magnitudes of these two cross sections
are significantly different , especially below the threshold. The explanation
is the following. For the region k3z; ~ m, which makes the main contri-
bution to the cross section do/dz dks; below the threshold, and koy € m
the invariant s = (ks + ,l'eg)2 ~ mzr/(l —z). So, 8 &€ m? at £ < 1 which
leads to the suppression of the cross section below the threshold (see Fig. 3).
This is not the case for 1 — z « 1 (see Fig. 5). However, the cross section
do/dz for z = 0.2 should coincide with that for z = 0.8 and this was checked
numerically.

Let us consider now the magnitude of the Coulomb corrections to the
cross section do/dz integrated over the transverse momenta of both final
photons. The main contribution to this cross section is given by the region
where |kyy|, |kar| ~ m. The Born contribution to do/dz contains large
logarithm resulting from the integration over small momentum transfer region
max(B8, m*/w1) € A « m. For fy > m?/w; the cross section do/dz is
independent of wy, while for By €« m?/w, it slowly grows (as Inw;/m) when
wy increases. Since the Coulomb corrections to do/dx are determined by
the region of momentum transfer A ~ m, they do not depend on w; for
w1 3> m. They also are insensitive to the effect of screening. In Fig. 5 the
exact (solid curve) and the Born (dashed curve) cross sections oy Ydo/dz are
plotted as functions of z for w;/m = 1000, and Z = 83. As it should be, the
curves are symmetric with respect to the replacement z —+ 1 — z. Dotted
curve shows the Coulomb corrections taken with the opposite sign. Note
that their dependence on z is very weak. If x — 0 or £ —+ 1 then the cross
section do/dz increases rapidly. However, the cross section do/dz should
vanish at z = 0 and # = 1 due to the gauge invariance of QED. Actually,
the cross section do/dz begins to decrease very close to the z interval end
points (§z ~ m?/w?). Therefore, the contribution from these z-range to the
total cross section o is negligible. In our example { Z = 83, w;/m = 1000
), the exact result for o is 3.9 - 10~*b while the Born approximation gives
4.8 - 10~*b, the difference being 23%.

In Fig. 6 the Coulomb corrections do./dz divided by o are shown as
a function of Z for £ = 0.7. Since their dependence on z is rather weak (
see Fig. 5), this curve allows one to estimate the magnitude of the Coulomb
corrections for any z. It can be seen from Fig. 6 that starting from Z ~ 30
the dependence of o 'do¢/dx on Z is almost linear and this quantity is not
described by its lowest in Za approximation (e (Za)?), so that higher order
terms are important.

Thus, the process of photon splitting can be adequately described only
with the Coulomb corrections taken into account. At large Z their contri-
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0o Q2 o4 a8 0g 1.0

Figure 5: The dependence of oy 'do/dz on z for a screened Coulomb po-
tential, wy/m = 1000, Z = 83. The dashed curve corresponds to the Born
approximation, the solid one gives the exact result, and the dotted curve
shows the difference between the Born cross section and the exact one.

Figure 6: The dependence of the Coulomb corrections oy 'doc/dz on Z for
ey
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bution is always essential, though the magnitude of the Coulomb corrections
depends on the type of the cross section, kinematic conditions, and Z. In-
deed, the predictions based on the exact in Za cross section are in agreement.
with the preliminary experimental data of [1}, while the Born results are
noticeably different.

Appendix I

In this Appendix we describe the calculation of the integrals in (13). Let us
consider the integral

dq {a+ 4- 1 gy
BRI o T .
i fﬂw (qi qi) [m2+(x*¢1/2)2]zﬂe q_ g .

where qz =qx A. To transform this integral, we multiply the integrand in
(22) by

1 1
2 9 d
1= fd;r;t‘i (y— ﬁi) = (1'12+ﬁL ]fﬁ&((q—&/y]z—ﬁz(i,/y?—l)) ;
=1 -1

change the order of integration over ¢ and y and make the shift q — qt+A/y.
After that the integral over g becomes trivial, and the integral over the angle
of q can be easily taken by means of the residue technique. As a result, we
obtain

2 A2 : l1+y e
G=-m‘A ldyﬂe o, (yx— A/2) x (23)

~3/2
[mﬁaﬂ + (xA)? - 2xACy + (C? — m* &%) yE] ,
C=m?+x*+A%4.

Let us perform the substitution y = tanhs and then make the shift s —
s +(1/2)Incy/c—, where cx = m? + (xx A/2)*. Finally, we come to the
expression for G in (13) with F, and F» in the form of
i [c:-a dscush 5 cos (ZZ?;)
0 (sinh? s + a?)
Foai /'m dsSinh s sin (22(;2
0 (sinh® s + a?)
17
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where a® = m?A?/cyc_. Making in these formulae the substitution sinh s =

az, we obtain the form (14). The quantity G; can be transformed in the
same way.

Appendix II

A general form of the integral over the energy ¢ reads

f ds— . (24)

A= Ae® + Aje+1, B=Be? + Bie+1

where

and Q is the fifth-degree polinomial in €. To perform the integration, it is

convenient to use the representation

® o i % £ _AIBE+AEBI
AB Al A2 B, (A2B,)’

pive+p5"  g{Ve+ g

A B ’

where the coefficients pE ) and q}:“) satisfy the recurrence relations

(n—-1)

n n—1 Al (n-1 n I
Pg e F& ) - A—EPE }1 P{(-_. ) = IAE
n n-1 Bl n-—1 n q(" i
(0) _ V. ey ALY S Az( — B»)
151 e ) Po y
¥ o S Bz(flz Bs)
1 w ! q W 1

"V = ABy— A1 By, W= (A, - B)V = (A3 — By)?

Thus, the calculation of the integral (24) reduces to the calculation of

standard integral
] e P1€ + Po : (25)
0

Agf 2 + Aie+1
expressed via the elementary functions.
This is the algorithm used in our numerical calculations.
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