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Abstract

Edge effects in the depinned phase of flux lines in a thin
superconducting cylindrical shell with columnar defects and
electric current along the cylinder are investigated. Far from
the ends of the cylinder vortices are distributed almost uni-
formly (delocalized). Nevertheless, near the edges these free
vortices come closer together and form well resolved dense
bunches. A semiclassical picture of this localization after
depinning is described. For a large number of vortices their
density p(z) has square root singularity at the border of
the bunch (p(z) is semicircle in the simplest case). How-
ever, by tuning the strength of current, the various singular
regimes for p(z) may be reached. Remarkably, this singular
behaviour reproduces the phase transitions discussed during
the past decade within the random matrix regularization of
2d-Gravity.
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Statistics of ensembles of flux lines in high-T, superconductors has been a
subject of numerous experimental and theoretical investigations (see for re-
view Ref. [1]). An important modification of the superconductor is achieved
by creation of artificial disorder in the form of columnar pins produced by
heavy ion irradiation. The vortex distribution in the cylindrical supercon-
ductors with columnar defects and longitudinal electric current has attracted
a renewed interest recently [2]. The current creates a transverse magnetic
field, which attempts to wind vortices around the cylinder. For low current
the vortices are trapped by the fluctuations in the density of defects and
do not curl (transverse Meissner effect [3]). With the increase of current the
transition to depinned phase takes place. The mapping of this transition onto
the delocalization transition in 1d non-Hermitean quantum mechanics [2] has
caused an immediate and wide interest [4]. However, as it was pointed out
in Ref. [5], even after the transition to complex spectrum eigenfunctions of
corresponding non-Hermitean Hamiltonian still exhibit the features of both
localized and delocalized states. Physical consequences of this ”localization
after depinning” for vortices in the thin-shelled cylinder will be the subject
of this paper. Our main prediction is illustrated by the Fig. 1. The depinned
fraction of vortices is practically uniformly distributed over the surface far
from the ends of cylinder. However, while approaching the ends, vortices
come closer and form well resolved localized bunches. The density of vortices
in this bunch at the edge coincides with the density of eigenvalues for the
ensembles (Gaussian or non-Gaussian) of orthogonal random matrices. The
phase transitions emerging while tuning the parameters in these random ma-
trix models were a subject of intensive investigation in the past decade in the
context of problems of 2d-Gravity [6]. As we show in this paper, experimen-
tal investigation of vortices in cylindrical samples may open the way for the
direct observation of such transitions in real low-dimensional systems.
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Figure 1: The vortex distribution on the cylinder ([ = 0). The Hamiltonian H
has one eigenstate localized in the usual sense due to a strong local fluctuation
of V(z). In the typical transverse section far from the ends of the cylinder one
vortex is trapped by this localized level. while others are almost uniformly

distributed. However. near the ends these free vortices come closer together
and form well resolved dense bunches.

Ly

The classical energy for a flux line in the cylinder may be written as an
action of equivalent particle [7]

L- 11 fdz\? dr

The length and period of the cylinder are L, and l. z 4+ [ = z. The potential
V(z) accounts for the interaction of vortex with the columnar defects and
h is proportional to the longitudinal current. All our results are valid for
random V (z). However. in order to enhance the effect it is better to prepare
the sample with smooth and inhomogeneous at the scale Az ~ [ density of
columnar pins. The partition function for classical vortex now takes the form

of quantum evolution operator in imaginary time

dr . (1)

Zr (%2, 21) = fm:e”ﬁs = (zo|e PP |2y) | (2)

where § = 1/T is the inverse temperature and we have introduced the non-
Hermitean Hamiltonian

11 & ’ |
H=-z (Ea—h) +V(z). (3)

Thus the electric current in the cylinder acts like an imaginary vector poten-
tial zh. The path integral in Eq. (2) includes strings with given end points z,
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and z». In order to find the partition function for vortex with free ends one
has to integrate over z; 5 [2]. The evolution operator Eq. (2) may be written
in the form

ZLr{I"Es Il) e Z'p:ﬁ‘ (I2)'={’1L (tl }E_ﬁEiLf ’ E4)

where the left- and right- eigenvectors are defined via Hyf = g¢p® and
HTyL = ey, The solutions are normalized via fé Yy ¢fide = &;;. In this
paper we will consider only the case h™! « I « I,. In particular this means
that only the ground state contribution survives in the sum in Eq. (4).

Interacting vortices in this approach are equivalent to the interacting
bosons. Moreover, we will consider only the case of strong d-function re-
pulsion of vortices(bosons).

Interesting for us physical information is contained in the slow harmonics
of the potential V' (z). Therefore, in this paper we will restrict our attention
on the case dV/dz « V. Also we will consider the case of strong depinning
current h? > V. '

W= E%E)- , O :ﬁf:(ﬁQ(V — )= h)dz’ + . - (5)

The corrections to ¢ may be also easily found. The quantization condition,
which allows one to find the set of complex eigenvalues ¢, is o(l) — o(0) =
2mni. It will be enough for us to consider only low lying excitations of the
Hamiltonian Eq. (3). In this case

n = —(ikT — h)2 /24 (V) , k=2mn/l , (6)

On(z) = —ikz +/: V(I?l,; (V>dz’ ;

Here (V) =11 fﬂf Vdz. The most exciting in this result is that o(z) acquires
the nontrivial real part in the presence of columnar field V(z) (in general
[Reo|>> 1if 1 > h/V). This means that even after the depinning transition
eigenvectors of the non-Hermitean Hamiltonian Eq. (3) still remain strongly
(exponentially!) localized. The localization described by the Egs. (5,6) has
almost nothing in common with usual localization at A = 0. To see this
consider the simple example of very wide square-well potential: V = U,
for0 <z <lf2and V = —Uj for —1/2 < £ < 0. Instead of almost ex-
tended ground state in the absence of transverse field ¢/(h = 0) ~ sin(2xz /I)
at =l/2 < z < 0 one finds via the Eq. (6) the clearly localized even for
h? > U, eigenvector ¢ff ~ exp(—Us|z|/h) [9]. Moreover, we see from this

5




example that the imaginary vector potential first creates the localized states
(maximum of localization is reached at h? ~ V — (V). However, with fur-
ther increase of h the localization length grows up again. All eigenstates
described by the Eq. (6) are localized near the minimum of oo(z). This
feature of "non-Hermitean” localization is also in sharp contrast with the
usual Anderson case, where eigenstates with close energy strongly repel in
the coordinate space.

The Eqgs. (5,6) describe localization of eigenvectors by the long wave-
length harmonics of potential V(z) in strong imaginary vector potential. In
the case of random disorder, however, a part of eigenfunctions (whose with
the localization length ¢ < h=1) may be localized in the usual Anderson sense
on the rare local fluctuations of V(z) [2]. In this case, if there are only few
vortices in the sample, they will be trapped by these true localized states.
However, with increase of the number of fluxes, the fraction of depinned
vortices emerges. Corresponding wave functions are described again by the
analog of Egs. (5,6). Just this situation is shown on the Fig. 1.

The localization described by the WKB formula Eq. (5) should have a
simple classical explanation. Indeed, the action for the solution of classical
equation of motion for the string connecting points z; and zz with n windings
over the cylinder may be shown to have a form

SM =¢L, +]

T

nl4xra

(V2(V —¢) — h)dz , (7)

where the classical energy € should be found from f:"'ﬁ de[\/2(V —¢) =

L,. Note that we use the reversed sign of the kinetic energy £ = -z2/2+4+V
compared to usual classical definition. In order to find the most important
classical configuration we have to determine the minimum of S(™) with respect

to n. For n 3> 1 one has for A5y = SEI‘H) i 5?)
' I
AR Ty ARAES A +f (VI —¢) - h)dz , (8)
0

where ¢ is the energy difference for two paths. Thus, the condition of ex-
tremum dS5(") /dn = 0 coincides with the semi-classical quantization condi-
tion for the ground state of Hamiltonian Eq. (3). Consequently, the con-

tribution of smallest SE?] into the functional integral Eq. (2) is enough to
reproduce the WKB result Egs. (4,5) in the limit of large L,. The classi-
cal consideration allows also to find the typical tilt of the vortex trajectory

(&) = h+ O(V2/h?).

The Hamiltonian Eq. (3) and its transpose are related via HT(h) =
H(—h) [2]. This simple equality allows one to introduce the conserving cur-

rent for left- and right- eigenvectors with the same energy J = YLy’ —
YLl 4+ ohyLyR 3 J' = dJ/dz = 0. For small h and random V() in the
thermodynamic limit I — oo one has J = 0 for all low (real)energy states.
Above some critical value Ree = €. the current become non-zero and the
energy acquires nontrivial imaginary part. This appearance of conserving
current J # 0 was usually considered as an indication of existence of de-
localization transition in 1d non-Hermitean quantum mechanics. However,
formally the existence of current shows the absence of exponential localiza-
tion only for quantities bilinear in L and ¥®. Individually YL and ¢
still may be localized. Indeed, for the WKB wave functions Eq. (5) one
finds y=(z)yR(z) = I}, i.e. exponential growth of ¥ f is compensated by
the same decrease of . The probability to find vortex at the point &
on the transverse slice 7 of the cylinder due to the Eq. (2) has the form
plz,T) = Z‘I(‘I'-r|e“3{Lf‘T)HEm}(m|e’ﬁfH['-I'i). For large 7, Ly — 7 ~ Lo
one finds p(z,7) ~ VR (z)yk(z). We see that the effect of localization
is washed out inside the cylinder. However [2, 8], at the top of cylinder
pR(z) = p(z, L+) ~ ¥¢'(z) and at the bottom pE(z) = p(z,0) ~ ¢f () the
vortex is strongly localized.

As we have told, the ensemble of vortices should be treated as the system
of interacting bosons with single particle Hamiltonian Eq. (3). At least for
low density of fluxes, the inter-boson interaction is equivalent to short-range
repulsion U = Upd(z — z'). For many vortices the single-particle wave func-
tions 1;‘;,3’1‘ and energy ¢; should be replaced by the many-particle ones "I-';q’j“
and the total energy E. The ground state for impenetrable bosons is found
by the analogy with N-fermion solution [10]

R
v = H (H sign(z; — z; + ‘Zﬂ'i)) dﬂfl%m]l : (9)

i<j {

Here /7 are the eigenvectors of the single particle Hamiltonian Eq. (3) with
lowest Ree,. For odd N the eigenvectors should be the usual periodic YE(z+
l) = ¥R (z). However, for even N one should use the antiperiodic boundary
conditions Y2 (z +{) = —¢F(«). In both cases the total ground state energy
E = Y &, entering the analog of the Eq. (4) is real. Also for the even and odd
N and smooth V(z) the ¥f(z) are well described by the Egs. (5,6). Within



this approximation the wave function is further simplified
sin (ﬂ—{-{%—m)‘ : (10)

Furthermore, in the most interesting case, when the function exp(—oo(zm))
has a narrow (Az < I) peak one may replace |sin(n(z; — z;)/1)| by w|z; —
z;|/l. This means that the distribution of vortices described by the ¥#
coincides formally with the distribution of eigenvalues of N x N Orthogonal
Random Matrix Ensemble with the weight function exp(—Trao(M)). The
density of vortices p(x) at the end of the cylinder is found after integration
of the ¥ over the all z; except for one. The saddle-point method (large N
approximation) for calculation of such integrals was developed many years
ago in Ref. [11]. In particular, in the most general case of quadratic minimum
of oy one has

—0o(Tm)

1 €
\Pﬁzm];} \/}.'_ H?

i<H

on =

al(z — zp)? o !
(T~ 2p)° \/ZFTN—(;:—IU)3+ (11)

T L T

Here we have shown explicitly the dependence of o on the transverse field
h and temperature T. The coefficient o is determined only by the potential
V(z). With the increase of N the anharmonic contributions to a4 should be
also taken into account. For example one may write (we put zg = 0)

1 az?

dg = ﬁug—;V(.E/)t) " H‘I[UJ — (12)

Now a contains the information about the strength of interaction V(zx), while
A is the characteristic length for its variation. The vortices at the edge of the
cylinder in this case also form a smooth dense bunch with square root plz)
at the border (see Fig. 2a). The width of the bunch is z. ~ VNhT/a and
the anharmonic contributions became important starting from N ~ N, =
aA’/hT. The new phenomena may take place if the function oo(z) has more
than one minimum. Some variants of a peculiar behavior of p(z) in this case
are illustrated by Figs. 2b and 2c. With increase of N in the case of two
minimums the second small stable bunch of vortices is born at some value
Ny. These two bunches join together at the second critical value No. The
moment of consolidation of two bunches into one is shown on the Fig. 2b.
Tht? density of states close to the transition in the vicinity of meeting point
Iy 18

p=a(z—zo)\/(x—20)2 +Alh—h,] for h<h,,
p=a((z—z0)* +A[h—h.]/2) for h>h,, (13)
8

where a, A. zg and h, vary smoothly with the change of N, T, or h. The
number of vortices which may be kept in equilibrium in each well may be
regulated by the external parameter h. This feature of the vortex distribution
opens the way to create the metastable configurations like one shown on the
Fig. 2c. For h < h} the vortices are confined (during exponentially long time)
in the deepest well. Above h the fast decay into second well takes place,
The critical configuration shown on the Fig. 2c is characterized by the novel
singular behaviour of the density at the border p(z) ~ (2 — 24)3/2. Just this
type of critical behaviour corresponds to the continuous limit in the Random

Matrix regularization of 2d-Gravity.

Figure 2: Examples of distribution of vortices at the end of cylinder: a).
Semicircle in a single well b). Confluence of two bunches in a double well c).
Opening of a decay of metastable bunch.

The catastrophic change 1n vortex distribution at the transitions should
also change the thermodynamic characteristics of the ensemble of flux lines.
After integration over the positions of the ends of vortices one finds the

partition function and the Free energy
F=-Th(Z)=F, +FR4+FL, (14)
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The contribution proportional to the total volume Fi_ in our simple case has

the form
Fy, = NL, {~h?/2+ (V) + (eNT/1)* /6 + fo} . (15)

Here fo(T) accounts for the short wave-length fluctuations of string and does
not depend on h, V(z) and N. The more interesting for us are the edge
contributions F® and FL. For large N and the quadratic op

FR=pNT{3 41y i + N (16)
s g8 T4 \4xNhT i

Here again go depends on the details of regularization of the functional inte-
gral Eq. (2). With the increase of N (or h,T) the edge Free energy changes
smoothly until one meets one of the singular points considered above. The
first possible singularity is the birth of new small bunch. The corresponding
correction at N > N 18

AF, = —AT(N — N,)* . (17)

Here A = A(N,hT) > 0. As we have learned from the 2d-Gravity, this
correction is purely nonperturbative, i.e. it could not be related with the
analytic behaviour of F, below the singularity. Another two kinds of singular
corrections associated with the confluence of two bunches (h.) and decay of
metastable bunch (h}) lead to

AF,
NAT

The constants h. and h: are the functions of N and T. Depending on the
concrete way of realization of physical experiment one may write instead of
the Eq. (18), for example, AF ~ (T. — T)*/? or AF ~ (Na — N)3/2,

In summary, the edge effects in vortex distribution in superconducting
cylinders may provide us with the variety of new phenomena with clear ex-
perimental signature (see again the Figs. 1,2). Among them are the strong
localization of vortices at the end of cylinder and various critical regimes
for this localization available by tuning of the longitudinal current. Techni-
cally these effects arose due to the peculiar features of localization in non-
Hermitean quantum mechanical Hamiltonian (3). From the pure theoretical
point of view, the most exciting is the correspondence between distribution of
flux lines at the end of cylinder and distribution of eigenvalues of the ensem-
bles of random matrices. The ensemble of fluxes turns out to be the almost
unique example of the system, where not only local (correlations of close
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AF?

~ (he — h)3/? and
(h ) 2 N2T

~ (13~ R (18)

levels etc.), but also global features of random-matrix spectrum are of 100%
importance. For example, the phase transitions in non-Gaussian Matrix en-
sembles have been a subject of enormous activity in last 10 years within the
context of 2d-Gravity [6]. However, to the best of my knowledge, in this
paper the first proposal is presented of a real physical experiment where such
a singular behaviour may be observed.
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