Siberian Branch of Russian Academy of Science

BUDKER INSTITUTE OF NUCLEAR PHYSICS

P.G.Silvestrov

LOCALIZATION IN IMAGINARY
VECTOR POTENTIAL

Budker INP 98-6

NOVOSIBIRSK
1998



Localization in imaginary vector potential

P.G. Stlvestrov

Budker Institute of Nuclear Physics SB RAS
630090 Novosibirsk, Russia

Abstract

Eigenfunctions of 1d disordered Hamiltonian with constant imaginary vector
potential are investigated. Even within the domain of complex eigenvalues the wave
functions are shown to be strongly localized. However, this localization is of a
very unusual kind. The logarithm of the wave function at different coordinates x
fluctuates strongly (just like the position of Brownian particle fluctuates in time).
After approaching its maximal value the logarithm decreases like the square root of
the distance (In [¢qz/%])2 ~ |z — 2o|. The extension of the model to the quasi-1d

case is also considered.
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The non-Hermitean disordered Hamiltonians with imaginary vector potential were
introduced in Ref. [1] for the description of vortex depinning from columnar defects by a
transverse magnetic field in superconductors (later the analogous equations were used in
the context of investigation of some problems of biological growth [2]). The features of this
unusual Hamiltonians have attracted the immediate and wide interest [3, 4, 5, 6, 7, 8, 9].
From the theoretical point of view the most exciting was the prediction of the existence
of a mobility edge in 1d in such systems. However, the main attention in the existing
literature was paid to the solution of eigenvalue problem in the imaginary potential. The
spectrum of this non-Hermitean Hamiltonian was shown to consist of two segments of real
eigenvalues and two arcs of imaginary eigenvalues (see the Fig. 1). The domain of real
energy was calculated in the initial paper Ref. [1]. The analytic formula relating the real
and imaginary part of complex eigenvalues was found in Ref. [5]. While all eigenstates
with real energy turn out to be naturally localized, the complex eigenvalues are usually
associated with the extended states. Nevertheless, in this note we show that even after
the transition to complex spectrum the wave functions remain sufficiently localized in 1d
imaginary vector potential. This localization, however, is of a very unusual kind. The
logarithm of the wave function changes randomly with the increase of . The maximum
of the wave function corresponds to the maximal positive deviation of this random path

from the initial position. After approaching maximum the logarithm of the wave function

decreases also randomly being (In |[¢nez| — In[¢(2)])? ~ |& — Tpaz|. We will call the
localization of the eigenvectors of this type the Stochastic Localization.
The Schrodinger equation for a particle in one channel disordered ring with constant

imaginary vector potential has the form

_<%_h)2¢+v($)¢=m . (1)

The boundary conditions are ¥ (x + L) = ¢(x) (the closed ring). For wire with open ends
the vector potential may be washed out by the gauge transformation ¢(z) — exp(hax)y(z).
Our results do not depend on the concrete choice of the disordered potential V() (it may
be white noise or something else). Also for analytic estimates we consider the case of
weak disorder. This means that both the wave length and A™! are small compared to the

mean free path.



We will consider only the states with large complex energy. Eigenvectors with small
real energy may be obtained by gauge transformation from the usual localized states with
h = 0. The most clear difference of the Hamiltonian Eq. (1) from the usual 1d disordered
case is that at h large enough the left going and right going waves are no more divergent.
The corresponding energies for the momentum £k are Ey = k* — h? £ 2ikh. As a result
one may look for the solution of Eq. (1) of the form

Y = exp(io) . (2)

The small corrections due to back scattering may be estimated by the method which
we use below for the investigation of multichannel case. The derivative expansion for o

(direct generalization of the WCB method in Hermitean Quantum Mechanics) now gives

c=09+01+ ... |, (3)
UOI/I(\/E—V—ih)dI/ ;o= iln(E—V) e
0

The weak disorder may mix only the plain-wave states with momentum &’ close to k.
Therefore, only slow garmonics of the potential Vi came into play, which justifies the
use of WCB approximation. For our purposes it will be enough to consider only the
first term og of the expansion Eq. (3). The quantization condition now takes the form
o(L) — o(0) = 27n, which in the first order in V leads to the energy £ = (k 4 ih)* + (V)
with k = 27n/L and (V) = I7" [} Vdz. The function o(z) is almost real. However, due
to a weak disorder it acquires a small fluctuating imaginary part. Due to this imaginary

part the logarithm of the modulus of the wave function (again in the leading order in V)

behaves like
h

Info(a)* = s [ (V) = ()’ (1)
Thus we see that our wave function may be large (exponentially!) or small depending on
the occasional sign of the integral. We see also that the momentum £ emerges in the Eq.
(4) only in the overall factor (k? + h?)~!. As a result all wave functions turn out to be
localized at the same place. This feature of localization in the strong imaginary potential
is in sharp contrast with what happens in the Hermitean 1d disordered Hamiltonians,
where eigenfunctions with close energy strongly repel each other in the coordinate space.
In the case of white noise disorder W = Dd(x — 2') one may find how fast the
logarithm Eq. (4) changes from point to point. Namely

_ R?D]z —y|(L — |z —y])

(Infot@)l =W = —— e e : (5)

In particular this equation allows us to estimate, how the wave function decreases after
approaching the maximum. One may introduce via the Eq. (5) the typical size of the
wave packet (analog of the localization length)

(k? _I_ h?)?

€n ~ D : (6)



This localization length formally is of the same order of magnitude as the usual Ander-
son localization length in 1d disordered wire {4 ~ 1/D. However, the nature of this
localization is completely different. In Anderson case all wave functions decrease at large
distances like exp(—x/€4). In our case the wave functions decrease like exp(—consty/x /&)
and even the constant in the argument of the exponent fluctuates with = and from sample
to sample (no thermodynamic limit).

Our results Eqgs. (3-6) are valid only far from the transition from real to complex
spectrum in the limit of weak disorder. In order to study the more general situation, nu-
merical simulations were performed. For numerical computations it is natural to consider
the tight binding variant of the model (1)

—t (e usr + €"Yucr) + Vith = B, (7)

The approximate solution of this equation may be easily found for the case A > 1 (compare

also with [9])

B, ~ —t[eh_mS + e_h"'ld’] ~ —tehi ;b= ZWN (8)

n—1
o0 = exp s+ 0 5 (1, = () 0
m=0
Here integer N and k are the size of the closed chain and the number of solution (momen-
tum), (V) = N~ N V,. For concrete calculation we have used N = 300, ¢ = 1, h = 0.4,
and the random potential uniformly distributed within the range —1.5 < V,, < 1.5. Thus
we consider the case of intermediate or even strong disorder. The eigenvalues on the
complex plane for one realization of disorder are plotted on the Fig. 1. The left segment
of real eigenvalues includes 29 low energy states. The more interesting for us are the
squared wave functions [¢/{?)|? shown on the Fig. 2 (the wave functions are normalized to
unity in the usual sense and only the values |t),|> > 107° are shown). We have shown
the few typical states well below the phase transition : = 9,10, 11 and the states around
and above the transition 1 = 27,30,36,50. The solutions are numbered in accordance
with increase of ReFE. First, one sees that all the states below and above the "mobility
edge” are clearly localized. Second, this localization has a very different form below and
above the transition. The consecutive real eigenfunctions : = 9,10, 11 practically do not
overlap. Alternatively, the states above the transition (and even slightly below) turns out
to be very similar. This features of the wave functions are in explicit accordance with
what we expected from the analytic estimates for weak disorder. On the Fig. 3 we have
shown the In [)()|? for i = 4,50,150. As we have mentioned before, up to exponentially
small corrections the real wave functions may be obtained from the solutions with A =0
via ¥, (h) = €, (h = 0). In accordance with this prediction we see on the Fig. 3 for
1 = 4 that the logarithm of the wave function decreases linearly from the maximum with
different slopes to the left and to the right. Also as we expected the logarithm of the
complex functions resembles to large extent the Brownian path. Moreover, due to the
Eq. (8) at the middle of the zone (¢ = m/4) the contribution of the leading order in V
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Figure 1: The eigen values on the complex plane for closed chain with N = 300, t = 1,
h=04,and —1.5 <V, < 1.5.
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Figure 2: The |[¢?|? for the same model for states with numbers i = 9,10, 11, 27, 30, 36, 50.
The first vector with complex energy is ¢ = 30. All states are clearly localised. However,
the states for below the “ mobility edge” differs strongly from each other, while the

complex states looks quite similar.



Figure 3: The In[@)|? for i = 4 ("localized”) and i = 50,150 ("stochastic”) states.
The data for : = 150 was multiplied by 5. The Brownian curves for complex states and

different left and right slope for ¢ = 4 are clearly seen.

changes only a phase of the wave function but not an amplitude. The Eq. (8) is valid only
for A > 1 and this peculiarity at the center of the band should not necessary survive in
our simulations. However, as we see, the effect of localization is strongly suppressed (but
is not washed out completely!) for ¢ = 150.

Up to now we have studied the effect of imaginary vector potential only in the 1d

systems. Consider now the closed strip of the width [ and length L with random weak

disorder V(z,y)V(2',y") = Dydé(x — 2')0(y — ') and imaginary potential along the ring.
The Hamiltonian for this system differs from that of the Eq. (1) by the only additional

term —0?%/0y*. It is convenient to look for the solutions of this Schrodinger equation of

= 3" ¢n(2)y/2/Isin(gny) . (9)

with g, = nm/l. The analog of the Eq. (1) now has the form

the form

- (6/8;17 - h)2 U, + Z Vim¥m = €nthn (10)

where the longitudinal energy ¢, = E — ¢*>. In the case of white noise disorder
Vin(2)Van(2') = (3D2/20)6(z —2') and for m and n different V., (2)V,,.(2') = (D2 /1)d(x—

z'). At least for small [ (or large ¢,, — €, ) and for disorder weak enough one may consider

the hopping V., in Eq. (10) as a perturbation. The zeroth approximation for the wave
function in this simple case is again ) = exp{ [*(\/e, —1h)dz'} with some given n
and £ = ¢, + ¢* = (k+1h)*+ ¢>. Physically interesting, however, is the range of validity

of this single chanel approximation. The corrections to ¥{) are described by the equation

[_ (6/8;1; - h)2 - 5m]¢g) = - mnl/)?(zo) : (11)



The solution of this equation may be found by the Green’s function method. Let for
definiteness ¢, — e, > 0 (note that I'me,, = I'me,). In this case the Green’s function for

the Eq. (11) G(x — y) equals zero at @ > y and has a cusp at @ = y. The solution reads

oo eM(z—y) _ gAa(z—y)
(1) _ / € €
where Ay &~ 2h — ik and Xy = ik + (¢, — €,)/(h — ik) (k is related with F as we have
shown above and we suppose that |¢,, —e,| < €,,). For |n —m| < n one has Rely < k, h.
However, if (k? 4+ h*)|e,, — €n] > hDy/l (compare with Eq. (6)) the amplitude of the
exponent | exp(Ayz)| still vary with z much faster than [¢/(°)(z)|. In this case the averaged

Vin ()0 (y)dy | (12)

value D
(D2 _ 2 13
O = () (13)
The analogous formula for ¢,, —e, < 0 is obtained after the replacement n —m — |n—m|.
In the similar way one may find the correction to the direct potential V,,,, induced by the
hopping V,,,, in the second order of perturbation theory. This correction in its turn

renormalizes the speed of stochastic growth of the amplitude of wave function Eq. (5)

and the localization length Eq. (6). The generalization of the Eq. (5) for the strip gives

(In [0 () /0 (y)])? = % {_ 32~rhq Z |n—m| }

Here |z — y| < L. The sum over m in the r.h.s. is logarithmically divergent. The

summation should be cut at |n —m| ~ kl (we suppose that & ~ g ~ h). Thus we see that
at small [ the growth of the wave function simply reproduces that of the single chanel case
Eq. (5) with the effective localization length proportional to the width of the strip &, ~ [.
Only at DyIn(kl)/hg ~ 1 the features of wave functions in a strip became sufficiently
different from those in 1-chanel wire. One may interpret this results as an indication of
the existence of exponentially large localization length on 2d plane with imaginary vector
potential. However, additional investigations will be useful in order to clarify the situation
in 2d.

One may easily repeat the calculations Eqs. (9-14) also in the case of thick 3d wire. The
results of such generalization will be the formula analogous to the Eq. (14) and &, ~ [/ D5
(I is the typical transverse size of the wire). Also like in 2d case the new physics starts
only at exponentially thick wire D3 In(kl)/q ~ 1. However, the concrete behaviour of the
perturbed wave function may be completely different for 2d and 3d. In a strip due to a
complex energy E = (kj+ih)*+¢] there is no degeneracy of different transverse channels.
Thus the only new phenomena we may expect with increase of the width of the strip is
localization of wave functions in transverse direction due to the mixing of channels with
very close ¢ . In 3d case the analog of the Eq. (13) describes the diffusive mixing of many
channels with close (g )* but completely different ¢, .

In summary, we have shown in this paper that the transition from real to complex
spectrum in 1d disordered systems with imaginary vector potential is not a delocaliza-

tion transition. However, the nature of localization below and above the transition is



completely different. The most interesting is the localization at complex energies, there
the wave function decreases (increases) like the exponent of \/% Although this new
localization is formally much weaker than the usual Anderson localization and even has
no a well defined thermodynamic limit, it should be important for physical applications
of non-Hermitean quantum mechanics [1, 2]. For the 2d strip and 3d wire the same ef-
fect takes place with the effective localization length &, proportional to the transverse
size(area) at least until the system became exponentially thick.

Author is thankful to L. F. Khailo for help in computations.
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