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Abstract

It is shown that at definite conditions the problem of calculation
of the pair production and photon emission probabilities in aligned
crystals can be solved analytically. The method developed allows one
to describe the QED processes practically for any energies and crystal
orientation. Possible applications are discussed.
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1 Introduction

It is well known (see e.g. [1]) that QED-processes in crystals
reveal energy and angular dependence with large magnitudes of
effects especially at high energies. So, in contrast to amorphous
targets crystal radiators and converters are tunable devices pro-
viding good angular resolution. To get the maximal gain one
should choose specific optimal conditions. For example, when a
crystal radiator is used in high energy photoproduction experi-
ment, the hard part of photon spectra should be amplified while
the soft part should be diminished to improve background condi-
tions. On the other hand, the soft part increases faster than the
hard one when electron momentum approaches some axial direc-
tion but far from this direction the sought enhancement turns out
to be insufficient. Thus, one always deals with the multiparameter
problem and to solve it contributions at different crystal orienta-
tions should be compared. To calculate these contributions, one
should know the probabilities of basic QED-processes in rather
wide energy and angular range.

In Sec. 2 new constructive method for the calculation of the
probabilities of ete™ pair production by a photon and photon
emission from electron (positron) valid for any crystal orientation
and particle energy is suggested. This method can be applied
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to carry out the yield optimization for any problem dealing with
crystals as radiators, converters or detectors. In Sec. 3 an example
of such application is given: the possible advantages of a crystal
radiator as compared to an amorphous one are considered for the
conditions like those of Fermilab experiment dedicated to charm

photoproduction studies.

2 Theoretical approach

In the framework of the operator quasiclassical method (see [2])
arbitrary characteristics of radiation and pair production pro-
cesses are expressed in terms of classical particle trajectories. For
example, the spectral distribution of the photon emission proba-
bility by the relativistic (y = ¢/m > 1,e and m are the electron
energy and mass) electron or positron for unpolarized particles (

eq.(2.1) in [1]) reads
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here v(t) is the particle velocity, vi2 = v(t12), ti2 =t F7/2, w
is the photon energy, 8 = ¢/e +¢ /¢, € = ¢ —w. The quantity

p(7,1)
o(1,t) = 4° /dzv ( /dzv ) (2)

is the squared particle deflection angle ©% measured in units of 62
(6, = 1/ is the characteristic angle of photon emission) averaged
over time 7 which has meaning of the radiation formation time. In
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the limit 7 — oo, the quantity p(7,¢) — p which is independent of
t and has the same meaning as p(7,t) but for the entire trajectory.

Let the angle of incidence ¥y with respect to the chosen axis
is small Jy <« 1, then the crystal potential can be represented
as a sum of individual axial potentials arranged periodically in

the transverse plane: U(r) = Y G(q)exp(—iqr) = Y. G(qy)
q q.1

exp(—iq.ry). Here a; means the component of a vector a trans-
verse to the chosen axis. Since v, ~ ¥y <« 1 and vy~ 1— %('}'“2 +
v? ), one can substitute v.— v in eqs.(1) and (2). After that only
transverse components of all the vectors are present and the sub-
script L will be omitted in what follows when it does not lead to
an ambiguity.

So at this stage a two-dimensional problem of classical motion
is to be solved and it is well known that it can not be done an-
alytically. The main goal of the present paper is to show that
for sufficiently large ¥y (in fact already for ¥y of the order of
U2%/m or several axial critical angle 0% ~ (Ug%/¢)!/?, where Ug*
is the depth of the axis potential well) the corresponding problem
becomes one-dimensional and always can be solved analytically.
Since the spectral (over the energy of one of the created particles)
distribution of pair production probability dw, obtained within
quasiclassical method is very similar to dw.,, given by eq.(1), the
pair production process can be described analytically under men-
tioned conditions as well. Actually (cf.eqs.(2.6) and (2.8) in [1])
the probability dw, is obtained from eq.(1) by following substitu-
tions: dw/e? — defw?, € — w —¢, and 1- —1 in [...]. Below
the photon emission process will be discussed in detail, keeping
in mind that one can always obtain corresponding expressions for
the pair production process by means of simple substitution rules
stated above.

Consider as an example the situation when the particle mo-
mentum is nearly aligned with the axis (001) of a crystal having



fce(d) structure (C, Si, Ge). Numerical estimates will be given
for Si, but qualitative features are the same for other crystals
and axes. Let us choose two orthogonal unit vectors in the plane
transverse to the (001) axis : e; lying in the (110) plane and e,
lying in the (110) plane. Taking into account the structure fac-
tor Smak(G(Q)x Smnk, see egs.(2.9), (2.10), (2.11) in[1]) one can
represent the reciprocal lattice vector q as q= 27 (e k + eym)/do,
where dy is the inter-planar distance for the (110) plane and k, m
are arbitrary integers which do not vanish simultaneously (q* #
0). Introducing also the azimuth angle of the average transverse
particle velocity (v ) ~ dg(ey cos o+ ez sin @o), one has q = (q,
(vi)) = 2ndo(k - cos g + m - sinpg)/do. Then the angle ¢ of the
average particle velocity with respect to the corresponding plane
is ¢(m, k) ~q /a= do(k-cos po+m-singg)/(k? +m?*)/2 < 1. So,
the angle 1¥(m k) = 9, - sin(¢ (m,k)), where ¢ (m,k) is the angle
between one of the planes containing (001) axis and the average
particle velocity is small as long as ¥y < 1. From the other hand,
the planes become apparent when average velocity along the plane
is large enough. With respect to axes, the planar motion is over-
barrier one and planar potential describes action of subsequent
axes (let L be spacing between them ) averaged over the fast fre-
quency vy ~ ¥g-cos(p(m, k))/L which should be much larger than
the frequency of arising slow motion vg = 1/Ty. Estimating Ty <
d/9*! (where d is the inter-planar distance and ¥*' = (2UP [)'/2,
UP is the depth of the plane potential well), we can rewrite the
condition vy 3> vy as Uy - cos(p(m, k)) > do¥?'/2d, where do,9%
are the parameters of the (110) plane. Note that sums appearing
in calculation of U? and of the corresponding contributions to the
radiation converge rapidly. It will be shown below that the rela-
tive accuracy of the approach developed is about 5 percent what
is provided when only terms with (k% + m?)'/? < 5 are taken into
account in a double sum over q (over m,k). It means that not very
many planes actually contribute, they are not extremely weak and
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the ratio dg/2d is not too large. Remind now(see [2, 3]) that for a
given plane the parameter p is always less than p. = UP'z/m? (our
definition differs from that used in[l] by the factor 1/2). For the
oscillator potential one has just above the plane barrier p ~ p./
6.5 and high above the barrier when v > 9P p o~ 2p (9P )2 /45,
so that for 3 ~ UP'/m the parameter p is small if p. > 1. Note
also that the quantity \/p/T (T is the period of a planar motion)
is independent of 1 in a wide 3 range practically beginning with
W ~ 9P /p/T ~ 97, /p./5d for the oscillator potential) what will
be used below. When ¢ increases, the quantity /p/T approaches
the limiting value from above for positrons and from below for
electrons.

Generally speaking, the range of o values is —7 < 5 < T,
but owing to the symmetry of the problem, results depend on the
absolute value of ¢ only. Moreover. in our example it is suffi-
cient to consider the range 0 < o < m/4 since the situation is
the same for (o and for m/2— . This range is bounded by the
(110) plane ((0,1) plane in (k,m) notation) and by (001) plane
((-1,1) plane in (k,m) notation). Besides these two strong planes
(UP'(=1,1) =~ U.SGT{-IEI) there is only one plane of comparable
strength, namely (-1,2) with UP/(-1,2) ~ 0.2480%" while all the
others have UP' < {}.leU{f". As it was explained above, at sufhi-
ciently high energies when p. > 1 the parameter p (and p(7.t)
in eq.(1)) is small for 1y > UP'/m. For the given value of v', the
corresponding range of o around the plane where the parame-
ter p is not small narrows with growing . Beginning with some
do = 0,,, these domains corresponding to two different strong
planes do not overlap already. In our example it happens first
for (0,1) and (—1,1) planes at ¥y > 0.86 - 107" then for (—1.1)
and (—1,2) planes at dg ~ 1.07 - 10~* and, finally, for (0,1) and
(—1,2) planes at dJo ~ 1.14 - 10~*. Note that at Jg ~1.14-107*
the corresponding domains for weaker planes (-1.2) and (-1.3) also
do not overlap. So, for ¥ > 0, = 1.14 - 107% ~ 2.72 - [P /m at
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anv o only one plane could provide p > 1 while for any other
plane the corresponding partial contribution to p is small and its
influence on the motion can be considered in terms of a pertur-
bation theory. In fact it means that for ¥y > #,, the motion
becomes one-dimensional. One can make the corresponding ex-
pansion in eq.(1), keeping in the phase only the contribution of
the plane providing p > 1. It should be emphasized that this
picture is still valid in some interval of ¥y < 8,5, since for ¥ = 0,
the corresponding domains are touching only and have p < 1 on
their boundaries. Accurate calculations show that for any plane
(-k.m) the quantity p which is the actual parameter of the prob-
lem varies from 0.098 to 0.125 for ¥ = UP/m if p. > 1, i.e. it
becomes of the order of unity for ¥ ~ UP'/3m. Then for the
energy ¢ > 100 GeV we get two planes with p > 1 inside one
domain when vy < . ~ 1.25 - U /m. Hence, for such angles 9
our description is broken and the axis returns to the scene. From
the other hand, for ¥y < 0. the yield should be independent of
o and po. Therefore we hope that axial results may be obtained
within our approach as the limiting case by averaging some yield
over Vg in the interval 8, < Uy < 0,, and over ¢p in the whole
range 0 < o < m/4. Unfortunately, up to now theoretical de-
scription of the radiation at the axial alignment is possible only
for sufficiently high energies when p2* >> 1 and the so called con-
stant field approximation (CFA) is valid. We have verified that in
this case the limiting procedure suggested above reproduces with
a good accuracy the results of the direct CFA calculation.

The obtained value of 6, can be expressed in terms of axial
potential characteristics: 8, ~ 0.69U3"/m. For moderate and
low energies the consideration is practically the same, but now
the angle 9% is the boundary t value instead of U”/m. Corre-
spondingly one finds the value of Jg = 07 when all the o region is

splitted into non-overlapping domains : 67 ~ 3.919% ~ 2.786°*.

For ¢ = 50 GeV when py = 8.16, one has 8,, = 6}, so that our
approach is certainly valid for ¥y > 65, in the region ¢ > 50 GeV
and for Yo > 07, when the energy is lower than 50 GeV. These re-
strictions on ¥y are compatible with the condition obtained above
providing the existence of planes at least for planes giving the
significant contribution. So, the approach is self-consistent. It
is interesting that the period of motion near the plane providing
p > 1 is always much larger than those connected with traversing
any other plane. For example, even for ¢ = Ug'r/i}m and ¥y = 4,
when moving near the (0,1) plane, the ratio 701 /T(-13) ~ 55
and increases at least linearly with increasing 5. So, the con-
tributions to the motion are consistently separated within our
approach into one slow with the comparatively large amplitude
and all others being fast and having small amplitudes. We can
now represent the transverse velocity as v o~ v*o¥ 4 y/ast and
carry out the corresponding expansion in eq.(1). In turn, we can
use the rectilinear trajectory approximation by calculating v/°*

(cf. eq(2.5) in [1]) :

t 1 -
viot(t) = —— 3 G(q)—q‘?ﬁ exp [~ilgt +arp)],  (3)

E
q

where rg is the entry point and the probability will be averaged
over it assuming uniform distribution within the area per one axis.
Note that the velocity v*°* depends implicitly on ry as well. After
averaging over time t over an interval of the order of Ty,, which
does not affect the slow motion, we finally have:

d o0

7 Hiadwf d:c.;;/ dtdr
T 242 d 'rwiUx

0 — 00

EWT
exp{—z%,??(l +p“m(r,f))} (Fy+ F), (4)
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where
1 in 1
Fi=1+239%v-vh fl)= =" y=3ma, (O
y 2
: 8 pui 1
PFa = Z [G(ql 12 - {3 Sin Y [siny + —(q, vy — vl)lb} -
EWT :
ZTRfia - P+ le )
r/2
¢ = q“’ f d=(q.v(t + 2)) |exp(—izgy ) - f(y}] -
A

Here v(t)= v*'¥(t. zo) is actually one-dimensional vector directed
perpendicular to the plane (x is the distance from this plane
having the inter-planar distance d) providing slow motion. In-
tegration over rg corresponds to the averaging over ro mentioned
above. The term x F) in eq.(4) represent the contribution to
the radiation provided by the slow motion only. It can be calcu-
lated analvtically for any analytical parametrization of the inter-
planar potential. In the limiting cases of a non-relativistic mo-
tion (p** <« 1) when the radiation has a dipole nature and of
an ultra-relativistic motion (p®* > 1) when the radiation has
a magnetic bremsstrahlung nature, approximate methods can be
used in the calculatiqn. The intermediate case (piov ~ 1) was
also investigated rather thoroughly (see e.g.[3]).

If we put v¥¢ = 0 (p* = 0) in the second term o F; in
eq.(4). then it will represent the results of the ordinary coher-
ent bremsstrahlung (CBS) theory describing in fact the Compton
scattering of equivalent photons provided by the periodic crystal
field on a chargeparticle in the proper reference frame. The stan-
dard CBS theory is exhausted by this picture both qualitatively
and quantitatively (see eqgs.(4.8).(1.5) in [1}). In particular, due
to the 4-momentum conservation in Compton effect, the energy
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w and the emission angle of a photon O, are rigidly connected
. w/e = s/(1 4 5+ (¥0,4)*) and there is the boundary photon
energy w;, = £5/(1 + s) corresponding to pr = 0. Let the initial
(equivalent) photon has the momentum qy, then the parameter s
is s = 2(qp)/m? (in our case s = 2¢ | gy | /m®). The CBS for-
mation time is 7_p ~ (1 —u/s) | g | where u = wfe . It is about
| gy |~* for small u (w ) and formally tends to infinity when w
tends to ws (u — s). In deriving eq.(4), terms of the order of plast
are omitted and it determines the accuracy of our calculations.
For example, at po = 0 (channeling along the (110) plane) we
estimate the relative contribution of neglected terms of the sec-
ond order to be about 5 percent. To the same time contributions
of three planes to psas (first order), namely, of (-1,1),(-1,2) and
(-1,3) planes give about 94 percent, the (-1,4) plane gives about
5 percent and others altogether about 1 percent. So, taking into
account the contributions of high-index planes can not improve
the accuracy.

The description in terms of the standard CBS theory holds as
long as p**¥ < 1 but beginning with pew ~ 1 the influence of the
slow motion on CBS must be taken into account. This influence
is caused by the deviation of the particle velocity during CBS for-
mation time. If the angle of the deviation becomes larger than
8, =, the phase conditions are broken, what leads to a change
of CBS. Let us consider first the case of large p. > 1 (we omit
index ” slow” in what follows) which had been investigated in [4]
theoretically and in [5] experimentally at wo = 0 for a diamond.
Far from the kinematic boundary where (1 —u/s) is not too small,
the values of 7 ~ Ton ~| g I~ give the main contribution to the
second term o< F, in eq.(4) when wor € 1 (wo = 27m/T) and we
can expand the velocity in egs.(4),(5) : v(t + 2) v(t)+ = v (1).
Then: p(7;t) =.{v v 7)2/12 = (urq )*/3 where as in [4] the
parameter p = /s is introduced, and x is the conventional pa-
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rameter (see,e.g. [1, 2]) of CFA: x = 4% |v (¢) | /m. It should

be emphasized that in this photon energy range the expansion is

valid for p. ~ 1 as well. Carrying out the expansion and inte-

grating over 7, we reproduce the term in eq.(8) of [4] oc T if we
q

put p = 0 (in our notation p in [4] means p/***) in that equa-
tion what is consistent with the accuracy of the approach devel-
oped. Let us now estimate the magnitude of the parameter p for
the strongest (110) plane. For the oscillator potential we obtain
g < UP'/mmdy. Recalling the restriction on 9 obtained above,
we conclude that the parameter p is small even for the strongest
plane and even for the smallest possible ¥y value: p <« 1. For
small p rather complicated formula (8) of [4] is essentially sim-
plified. We can omit there the terms depending on z, and z
keeping only those which depend on z_ = (2u/3x) | 1 — s/u [¥/2.
The smaller is z_, the larger is a change of CBS. The quantity
z_ is minimal (z- = 0) for s = u and becomes of the order of
unity for | 1 — s/u |~ p?/® what determines the range of photon
energies where CBS is affected by the slow motion for p. > 1.
It can be easily understood in terms of formation times. In fact,
we deal in this case with two competing mechanisms of the pho-
ton emission: CBS and magnetic bremsstrahlung. The formation
time of the latter is 7y ~ T/7\/p - (3x/u)"/® which, owing to
the mentioned constancy of the ratio T'/,/p, can be rewrite as
Tmag ~ (3x/u)'3/(u | g |). Equating Tyq, and 7,5 we find that
it occurs just when (1 — s/u) ~ u?® where the photon emission
mechanism changes. Note that for p. > 1 the photon emission
process has a local nature since the formation time is always much
less than the period of the slow motion and therefore the expan-
sion in terms of wy7 is valid for any photon energy as well as the
corresponding formtulae like eq.(8) of [4]. For p. ~ 1 this picture
is valid as long as woT.on € 1. The latter condition is violated
in the region (1 — s/u) ~ ¥8'/(2rd,) < 1 (recall that do > 7))
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which also is very narrow but to describe a change of CBS in this
region of photon energies quantitatively, we should use the exact
formulae (4). The same is true for p. > 1 if the angle ¢ is so
large that p ~ 1.

3 Some applications and conclusion

In applications we usually deal with rather thick crystals where
electromagnetic showers are developed. On-line calculation of the
corresponding probabilities is extremely time consuming and we
should calculate them beforehand. The set of the probabilities can
be represented as the many-dimensional map where every point
corresponds to some values of the variables w, e, o, @o. Certainly,
it is a discrete map. Such maps have been created first to estimate
the possible gain from using a crystal radiator instead of an amor-
phous one in producing a wide band photon beam at the Fermilab
Tevatron (see [6] describing the facility itself and what can be ob-
tained using an amorphous radiator). Different crystals and axes
were considered: < 001 > axis for C and S1; < 001 >, < 110 >,
and < 111 > for Fe. The following steps were chosen: 20 GeV for
e, 0.02 for w/e, 0.1mrad for ¥, /120 for wy. Somewhat simpli-
fied version of the method presented in previous section was used
in the calculation. In Figs.1,2 the intensity radiation spectra are
shown extracted from the created map for C. The contributions
from strong planes are clearly seen. They are especially promi-
nent in the soft part of the spectra. In accordance with results
of [4] the hardest peak corresponds also to the motion near the
(110) plane (small ¢9). There are regions of @y where the radia-
tion is hard enough but its soft part is suppressed. As it should
be, with the increase of ¥y (cf. Fig.l and Fig.2) the radiation
becomes harder and regions where the soft part is suppressed are
extended. So, it was a hope that if we choose the proper crystal
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orientation to locate rather wide in angular (9o, ¢o) space electron
beam inside these preferable regions, the hard part of radiation
will be increased while the soft one suppressed as compared to
the amorphous radiator.The calculation of the photon yield were
carried out for different crystal orientations and thicknesses. The
comparison was made with the case of the amorphous 0.27X, ra-
diator used before (dash-dotted lines in Figs. 3,4). Note that in
Fig.4 the amorphous yield is larger than for every crystal yield
presented for w < 15 GeV what can be seen only in the logarith-
mic scale. The gain is larger for Fe crystal (Fig.3) than for Si
crystal (Fig.4). The same relation is between C and Si crystals.
However the spot size of the used electron beam on the radiator
surface is about 4x4 cm and the pure technological preference of
a Si crystal becomes evident.

We conclude that use of a Si radiator of the thickness about
lem would increase the charm production rate by the factor of
2 or more. To the same time the soft part of photon spectra is
suppressed as well as the hadronic background.
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Figure 1: The intensity spectra in a diamond crystal for ¢

250 GeV and Jy = 0.3mrad.
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Figure 3: Fig.3. The photon spectra from crystal Fe ( axis

< 110 >) radiator of the thickness L = 0.25 cm. The beam is
centered at o = 0.1 and vy = 0.5 mrad (solid curve), ¥y = 0.9
mrad (dashed curve), Jp = 1.3 mrad (dotted curve). The dash-

dotted curve represent the amorphous yield.
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Figure 4: Fig.4. The photon spectra from crystal Si ( axis

< 001 >) radiator of the thickness L = 1 cm. The beam is
centered at ¢y = 0.45 and Jy = 0.4 mrad (solid curve), Jg = 0.5
mrad (dashed curve), Jp = 0.6 mrad (dotted curve). The dash-
dotted curve represent the amorphous yield.

19



V.M. Strakhovenko

Constructive method for calculation
of photon emission |
and pair production probabilities in crystals

Budker INP 97-99

OTBeTCTBeHHRI 32 BEIIYCK AM. Kynpsasnes
Pabora noctymuia 3.12. 1997 r.

Coano B nabop 15.12.1997 r.
Ilonnucano B mevaTh 15.12.1997r.
Popmar Gymaru 60x90 1/16 O6bem 0.9 nev.a., 0.8 yu.-m3m.a.
Tupax 110 sk3. Becnnarno. 3akas N° 99

O6paborano na IBM PC 1 ornevaraso ma
poranpunTe UAP um. I''U. Bynkepa CO PAH,
Hosocubupex, 630090, np. axademuxa Jlaspexmveea, 11.




